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Abstract

ELECTRE TRI is a well-known method to assign actions to predefined ordered categories, considering multiple
criteria. Using this method requires setting many parameters, which is often a difficult task. We consider the
case where a group of Decision Makers (DMs) is unsure of which values each parameter should take, which
may result from insufficient, imprecise or contradictory information, as well as from lack of consensus among
the group members. In a framework where DMs provide constraints bounding and interrelating the parameter
values, rather than fixing precise figures, we discuss the problem of finding the best and worst category that
each action may attain.
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1. Introduction

ELECTRE TRI (Yu, 1992) is a well-known approach to decision aid when there is a discrete
set of actions a

1
, ..., a

m
 (e.g. investment projects) to be assigned to a set of ordered categories

(e.g. “reject”, “accept if ...”, “accept as is”), according to multiple criteria. This method
builds a fuzzy outranking relation (Roy, 1991) and then exploits it for decision aid (see
description in Section 3). Decision Makers (DMs) have to set the performance of each
action on each criterion, the thresholds that characterize pseudo-criteria, the importance
and veto power of each criterion plus a cut threshold that is used to transform the resulting
fuzzy relation into a crisp one, all of which constitute the model’s parameters. We refer to
parameters in a broad sense, including input usually referred to as “data”, input concerning
the DMs’ values and beliefs, etc.

Given a numerical value for each parameter, the pessimistic or optimistic ELECTRE
TRI assigns each action to a well-determined category. However, it is unrealistic to expect
that DMs are able to agree on the values for the parameters, since (see also on this subject
Roy and Bouyssou, 1989; French, 1995):

– the performance of each action on each criterion may be unknown at the time of the
analysis (uncertainty concerning the future), it may result from aggregating several
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aspects with impact on the criterion (arbitrariness in constructing parts of the model),
and it may result from a measuring instrument or a statistic measure (which usually
involve imprecision);

– parameters such as the importance coefficients and veto thresholds have no objective
existence (independent from the method): they reflect the DMs’ subjective values,
which they may find difficult to express and that may change over time;

– in either case, the DMs may not entirely agree on the values that each parameter
should take, due to different opinions (perceptions) and values (preferences).

We consider a group decision setting where multiple instances of a model (each one
corresponding to an admissible combination of values for the parameters) are accepted.
The multiple instances are expressed as a set of constraints, rather than a discrete set of
values. The constraints may be explicitly provided by the DMs or inferred from holistic
comparisons (as in Mousseau, 1993). Although constraints are not always easy to provide,
requiring precise values for the parameters is obviously more demanding. We consider the
use of our approach to be an interactive learning process, where the results of the analysis
may stimulate the DMs to discuss and revise their inputs.

The information leading to the set of constraints is often called “imprecise” (e.g.
Athanassopoulos and Podinovski, 1997), “incomplete” (e.g. Kim and Ahn, 1997),
“partial” (e.g. Hazen, 1986) or “poor” (e.g. Bana e Costa and Vincke, 1995). We will use
the expression “imprecise information”, meaning that it does not impose a precise
combination of values for the parameters, which also allows coping with insufficient or
contradictory information.

Let T represent the set of all acceptable combinations of parameter values. This set
could be either the intersection or the union of the combinations of values accepted by
each individual DM, as discussed in the next section. The first possibility implies accepting
a conclusion as possible if it is compatible with the input of all the DMs. The second
possibility amounts to accept a conclusion as possible if any DM, individually, could reach
that conclusion. In general, DMs may begin with little information (starting with a set T
not too constrained) and then progressively enrich that information (reducing T) as they
form their convictions and as consensus emerges regarding the input values. Our aim is to
identify conclusions that can be accepted by all the DMs, even in the situations where they
might not have agreed on precise values for the input parameters.

Robustness analysis considers all the results compatible with all the acceptable
combinations of values for the parameters. Roy (1998) presented a framework defining
the concept of robust conclusion as a formalized premise that is true for all these
combinations. This contrasts with traditional sensitivity analysis, conducted after obtaining
a result, which determines how much may each parameter vary without leading to a different
result. Although useful in many circumstances (e.g. Henggeler Antunes and Clímaco, 1992)
sensitivity analysis requires an initial value for each parameter (where some consensus
would be needed) and focuses on the first result found, hence ignoring other interesting
conclusions that might have been reached otherwise. For instance, in the context of
ELECTRE TRI, it is interesting to know the range of categories where an action may be
assigned. Sensitivity analysis is often performed changing a single parameter at a time,
thus ignoring possible interdependencies among the parameters.
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We will use Roy’s definition of a robust conclusion, although there is a further distinction
(introduced in Dias and Clímaco, 1999) that we deem useful when using decision aid
methods:

– An absolute robust conclusion is a premise intrinsic to one of the actions, which is
valid for every combination in T. For instance, in an additive aggregation model one
may check the robustness of the absolute conclusion “the value of action x is greater
than 0.7”.

– A (relative) binary robust conclusion is a premise concerning a pair of actions, which
is valid for every combination in T. For instance, “x dominates y” or “x outranks y
with credibility greater than 0.7” are possible binary robust conclusions.

– A (relative) unary robust conclusion is a premise concerning one action but relative to
others, which is valid for every combination in T. For instance, “x is non-dominated”
or “x is among the three top actions in a ranking” are possible unary robust conclusions.

In the context of ELECTRE TRI, DMs will be interested in evaluating the absolute
merits of each action, rather than comparing actions among themselves. Hence, they
would possibly like to know whether an absolute premise of the type “action a

i
 belongs

to category C or better” is robust. This in turn will result from a conjunction of relative
binary conclusions of the type “action a

i
 outranks (or does not outrank) reference action

b”. Given T, we will propose optimization tools to address the problem of finding the
best category B(a

i
) and worst category W(a

i
) that each action may attain. Clearly, the

premise that a
i
 does not belong to a category worse than C is robust if W(a

i
) ≥ C (where

“≥” stands for “is a category better or equal to”), whereas the premise that a
i
 does not

belong to a category better than C is robust if B(a
i
) ≤ C. If W(a

i
) = B(a

i
) = C, then the

assignment of a
i
 to C is robust, i.e. although the information is not precise, the action a

i

can be assigned only to C.
Testing robustness may be performed by sampling or optimization tools. Roy has

suggested testing the robustness of a conclusion in a finite number of sample points in T
(Roy and Bouyssou, 1993; Roy, 1998). The points suggested are those admissible in the
Cartesian product of a finite number of sets (one per parameter), each one containing a
few values concerning the respective parameter. This approach is simpler than optimization
and may provide an idea of the robustness of a conclusion, but if there are interdependencies
among the parameters these points may yield a poor approximation of the admissible set
of parameter values. Hence, it may be better to use optimization to test the robustness of
conclusions in ELECTRE methods accurately, although at much higher computational
cost. Optimization has been used for some time in the context of additive value functions
to cope with imprecise information on the scaling constants. For a review of such approaches
refer to Hazen (1986), Weber (1987), Rios Insua and French (1991) or Bana e Costa and
Vincke (1995). For an extension of those approaches in a group setting see Kim and Ahn
(1997).

In the next section we discuss imprecise information in a group setting. Then, we
overview the ELECTRE TRI method. In Section 4 we characterize the region T of admissible
combinations of parameter values. In Section 5 we present an algorithm to find the best
and worst categories that an action may belong to, according to the pessimistic and optimistic
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variants of ELECTRE TRI. Depending on the result to be calculated, only one test within
the algorithm changes. Section 6 discusses how to perform the tests using optimization,
and an example is provided in Section 7. We conclude with a summary and some thoughts
on future research.

 2. Assignment of actions in a group setting

Let us consider a group of K DMs, each one having a set T
k
 of acceptable values for the

parameters (k = 1,...,K), who are collaborating to recommend a solution to a decision
problem. We assume that there is no strong conflict among these DMs, so that a consensus
on what to recommend may be considered an attainable goal without third-party mediation
or arbitration (Raiffa, 1982).

In this framework, group decision processes may be divided according to the level
where the individual perspectives are aggregated: either at the input level or at the output
level. When aggregation occurs at the input level (Figure 1), an operator f(.) aggregates
the individual T

k
 (k = 1,...,K) into a set T of values accepted by the group, whereas an

operator e(.) yields all the results of the method (ELECTRE TRI in our case) compatible
with T. When aggregation occurs at the output level (Figure 2), the operator e(.) yields the
set of results of the method compatible with each DM’s T

k
, whereas an operator h(.)

aggregates the individual sets of results R
k
 into a set of results R. The aggregation performed

by f(.) and h(.) may consist in averaging, minimizing a distance measure, voting, etc. For
instance, in the context of additive value functions, Kim and Ahn (1997) suggest an approach
where h(.) (see Figure 2) is a difference of weighted sums for each pair of actions.

When seeking consensus on what to recommend, it may be appropriate to consider f(.)
or h(.) as the set operations ∩ (intersection) or ∪ (union). When using intersections, set R
will gather the DMs consensus on the results that should be considered, whereas if the
union operation is used, the DMs will agree on the results that should not be considered
(those not in R). The remaining of this paper presents a method to obtain all the results

Figure 1. Individual perspectives aggregated at the method’s input level.
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compatible with a set of constraints, i.e. an operator e(.), for the case of the ELECTRE
TRI. This operator may be useful in two different types of approach, as follows.

If the aggregation occurs at the input level (Figure 1), f(.) may build T as an
intersection of the individual polytopes T

1
, ..., T

K
 of acceptable values for the

parameters. In this case, for each action to be assigned, the procedure e(.) will yield a
single category or a range of categories compatible with the parameter values that are
accepted by all of the group’s members. It may happen that T becomes void, although
this should not happen frequently if there is no strong conflict among the DMs. In
such cases, the individual polytopes may be changed either by discussing the constraints
or by automatically dropping or loosening constraints in a “fair” manner. For instance,
a linear program may be solved to find a polytope minimizing some “fair” measure of
the violations as regards the original constraints. The approach in the next paragraph
may also be used.

A second type of approach performs the aggregation at the output level (Figure 2). In
this case, the operator e(.) may be helpful to yield a single category or a range of categories
for each individual DM, while h(.) builds R as the reunion of all these results. For each
action, a possible assignment is considered by the group (is in R) if it is considered by at
least one of its members.

We believe that dealing with imprecise information is not only necessary (given the
difficulties in providing precise values for the parameters), but also beneficial in a
group setting as described here. Rather than forcing each DM to choose and defend a
combination of values, we are inviting DMs to progressively and cooperatively form
their convictions as they interact with the decision aid method. The DMs may focus
on those actions where imprecise information implies more variability in the output,
while they can easily agree on the assignments concerning the remaining actions.
Indeed, a potential benefit of the approach proposed here is that the DMs may agree
on a result although they would not be able to agree on precise values for the input
parameters.

Figure 2. Individual perspectives aggregated at the method’s output level.



360 DIAS AND CLÍMACO

3. An overview of  ELECTRE TRI

Let A be a set of m actions a
1
, ..., a

m
 characterized according to multiple attributes. ELECTRE

TRI (Yu, 1992; see also Mousseau et al., 1999) is a multicriteria decision aid method that
evaluates the absolute merits of each action in A. The method assigns each action to one of
k pre-specified ordered categories: C1 (the worst), ..., Ck (the best). Each category Ci is
limited by two reference actions (profiles): bi is its upper limit and bi-1 is its lower limit. Let
B denote the set of k+1 profiles b0, ..., bk. Each action in A will be assigned by comparing
it with the profiles in B successively.

Consider any ordered pair of actions (a
1
, a

2
), where either a

1
 ∈ A and a

2
 ∈ B or vice-

versa. We will start by recalling how to compute an index measuring the credibility of the
statement “a

1
 outranks (is at least as good as) a

2
” (for details see Roy, 1991; Roy and

Bouyssou, 1993).
Let there be n pseudo-criteria. The j-th criterion (j = 1,...,n) is characterized by an

importance coefficient k
j
, an indifference threshold q

j
, a preference threshold p

j
 and a veto

threshold v
j
. These thresholds obey v

j 
≥ p

j
 
 
≥

  
 q

j
 
 
≥ 0. For simplicity of notation we assume

that thresholds do not depend on the profiles’ performances and do not vary from profile
to profile, but this work could be easily extended to drop this assumption. Let g

j
(a

1
) and

g
j
(a

2
) denote the performance on the j-th criterion of the actions a

1
 and a

2
, respectively. Let

∆
j
 represent the advantage of a

1
 over a

2
 on this criterion:

{ gj(a1)  – gj(a2
)    , if the jth criterion is to maximised (the more the better)

∆
j
 =

g
j
(a

2
)  –  g

j
(a

1
)     , if the jth criterion is to maximised

{
0 , if ∆

j 
 < – P

j

c
j
(a

1
,a

2
) =    (p

j 
+ ∆

j
)/(p

j
 – q

j
)  , if – p

j 
≤ ∆

j ,
< – q

j
(3.1)

1 , if  ∆
j
 ≥ – q

j

C(a
1
,a

2
) =    n

j = 1 

k
j
c

j
(a

1
,a

2
),  where we assume that      

n

j
 
   

= 1 

k
j 
= 1 (3.2)Σ   Σ

For each criterion (j = 1,...,n), the concordance index regarding the hypothesis “a
1
 S a

2
” is:

A global concordance index is then computed by aggregating the n single-criterion
concordance indices aas a weighted sum using the importance coefficients:

For each criterion (j=1,...,n), a discordnance index regarding the hypothesis “a
1
 S a

2
” is:
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This binary valued relation is transformed into a crisp relation through a cut threshold λ:

a
1 
outranks a

2
 (represented as a

1
 S a

2
) ⇔ σ(a

1
,a

2
) ≥ λ.

The following relations can then be defined:

a
1
 P a

2
 (a

1
 is preferred to a

2
) ⇔ a

1
 S a

2
 and not a

2
 S a

1
;

a
1
 I a

2
 (a

1
 is different to a

2
) ⇔ a

1
 S a

2
 and not a

2
 S a

1
;

a
1
 R a

2
 (a

1
 is incomparable to a

2
)⇔ not a

1
 S a

2
 and not a

2
 S a

1
;

The ELECTRE TRI method expects that the profiles in B are such that:

– for every action  a
x
 in A, bk P a

x
 (recall that bk is the upper limit of the best category);

– for every action a
x 
in A, a

x
 S b0 (recall that b0 is the lower limit of the worst category);

– g
j
(b1) > g

j
(bi–1), j = 1,...,n; i = 1,...,k;

– bk P ak–1 P ... P b0;
– every action in A may be indifferent to at most one of the reference actions bi (i = 0,...,

k–1).

Finally, there are two variants of the ELECTRE TRI to assign each action in A:

Pessimistic ELECTRE TRI: This variant assigns each action a
i 
to the highest category Cc

such that a
i
 outranks bc–1. An algorithm to perform the assignment could be the following

(Yu, 1992):
c ← k (best category);
WHILE not a

i 
S bc–1 DO

c ← c –  1

{
1 , if ∆

j 
 ≤ – v

j

d
j
(a

1
,a

2
) =    (–∆

j
 –p

j
)/(v

j
 – p

j
) , if – v

j 
< ∆

j 
 ≤ – p

j
(3.3)

0 , if  ∆
j
 > – p

j

Finally, the discordance indices and the global concordance index are combined to yield
the credibility index for the hypothesis “a

1 
S a

2
”:

1 – d
j
(a

1
, a

2
)

σ(a
1
,a

2
) = c(a

1
,a

2
) 1 – c(a

1
,a

2
) (3.4)

j ∈ {1,...,n}:
d

j
(a

1
,a

2
) > c(a

1
,a

2
)

Π
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ΕΝD 
–
 WHILE

assign a
i 
to category Cc

Optimistic ELECTRE TRI: This variant assigns each action a
i 
to the lowest category Cc

such that bc is preferred to a
i
. An algorithm to perform the assignment could be the following

(Yu, 1992):

c ← 1 (worst category);
WHILE not bc P a

i 
DO

c ← c + 1
END 

–
 WHILE

assign a
i 
to category Cc

Suppose that an action a
i 
is assigned to category Cp by pessimistic ELECTRE TRI and

assigned to category Co by optimistic ELECTRE TRI. Then, we know that Cp ≤ Co (Yu,
1992).

4. Constraints on the parameter values

We consider that there is imprecise information on the values of the parameters k
j
, q

j
, p

j

and v
j
 (j = 1,...,n), on the cut threshold λ and on the actions’ performances, provided as a

set of bounds and linear constraints. These bounds and constraints may be directly provided
by the DMs or inferred through a questioning protocol, as in Mousseau (1993).

To characterize the resulting polytope T, we will take into account some reasonable
types of constraints that may appear in practice (where some types of parameters may be
varied independently of others). For instance, a constraint such as k

1
 ≥ k

2
 is reasonable,

whereas the constraint k
1
 + λ q

1
 is not. First of all, the variation of the cut threshold λ

should not depend on any other parameter, hence we assume it will appear only on a single
constraint:

λ∈[λ
min

,λ
max

] (4.1)

Indifference and preference thresholds are local to each criterion and inter-criteria
comparisons of these thresholds have no meaning. Therefore, we assume that these may
be subject to bound constraints only:

uq
j
 ≥ q

j
 ≥ lq

j
, j = 1,...,n (4.2)
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and

up
j
 ≥ p

j
 ≥ lp

j
, j = 1,...,n (4.3)

plus

v
j
 ≥ p

j
 ≥ q

j
, j = 1,...,n (4.4)

For the j-th criterion (j = 1,...,n), DMs may define a polytope G
j
 of admissible performances

both for actions in A and in B. This polytope is defined by linear constraints such as g
j
(a

x
)

≥ 3g
j
(a

y
) or g

j
(a

x
) ≥ g

j
(a

y
) + 2. We assume these constraints will satisfy the five conditions

presented in Section 3. These constraints can be represented as:

(g
j
(a

1
), g

j
(a

2
), ..., g

j
(a

m
), g

j
(b0), 

j
(b1),..., g

j
(bk)) ∈G

j
⊂Rm+k+1 (j = 1,...,n) (4.5)

Concerning importance coefficients, we also assume that the DMs define a polytope K
through linear constraints, such as k

i
 ≥ α k

j
, L

j
 ≥ k

i 
 ≥ I

j
, α

a
 k

a 
+ α

b
 k

b 
+ ... + α

c
 k

c
 ≥ 0, or k

1

+ k
2 
+ ... +

 
k

n
 = 1. These constraints can be represented as

k =(k
1
,...,k

n
) ∈ K ⊂ Rn (4.6)

Finally let us consider the veto thresholds. Veto thresholds carry information concerning
how important each criterion is, relative to others. Hence, the veto threshold value for one
criterion may be constrained by veto threshold values for other criteria. We consider three
different situations:

Type 1: (bounds only) uv
j 
≥ v

j
 ≥ lv

j
, j = 1,...,n; (4.7a)

Type 2: (polytope) v = (v
1
,...,v

n
) ∈ V ⊂ Rn; (4.7b)

Type 3: (dependence on k
j
) v

j
 = p

j
 + α

j
/k

j
, with uα

j
 ≥ α

j
 ≥ lα

j
, j = 1,...,n.

(4.7c)

Constraints such as α
m
 q

j
 ≤ p

j
 ≤ α

M
 q

j
 or β

m
 p

j
 ≤ v

j
 ≤ β

M
 p

j
 may be useful and could also be

accepted. As general assumptions, we require all parameters to be non-negative and G
j
 (j

= 1,...,n), K and V to be compact (closed and bounded), so that T is a polytope. Mousseau
(1993) has devised a questioning protocol and a computer program to obtain (4.2), (4.3),
(4.6) and (4.7a) from the DMs’ answers.
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5. Worst case and best case categories

5.1. First algorithms

Considering any admissible combination of parameters, ELECTRE TRI (pessimistic or
optimistic variant) assigns each action to a category. Our aim is to adapt the method to
determine which categories the action will be assigned to under the best and worst possible
cases. Let B(a

i
) and W(a

i
) denote he highest and lowest categories, respectively, that action

a
i
 may belong to. The premises “a

i
 belongs to a category between W(a

i
) and B(a

i
)”, “a

i

does not belong to category worse than W(a
i
) and B(a

i
) coincide the assignment is robust:

new information (tighter constraints) would bring no benefit.
The algorithms by Yu (1992) (see Section 3) may be adapted to determine B(a

i
) and W(a

i
),

for a given a
i
 ∈A. Consider the region T of admissible values for the parameters and t∈T.

Let a
1
 S(t) a

2
 denote an outranking of action a

1
 over action a

2
 when parameters take values

t; a
1
 P(t) a

2
 denote a

1
 S(t) a

2
 ¬Ø[a

2
 S(t) a

1
] (where ¬ is the negation operator).

The adapted algorithms will use the following proposition (these results are easy to
prove, see Roy and Bouyssou, 1993, pp. 92–93):

Proposition 5.1. Let a
i
 ∈ A and let bc be a reference action. Then,

a
i
 S(t) bc ⇒ a

i
 S(t) bc–1 and a

i
 P(t) bc ⇒ a

i
 P(t) bc–1 (c = 1, ..., k);

¬(a
i
 S(t) bc)  ⇒ ¬(a

i
 S(t) bc+1) and ¬(a

i
 P(t) bc ⇒ ¬(a

i
 P(t) bc+1) (c =

0, ..., k-1).

Considering Prop. 5.1, the following algorithms are valid:

Pessimistic ELECTRE TRI:

To find worst case category W(a
i
) To find best case category B(a

i
):

c ← k;/*best category*/ c ← k;/*best category*/
WHILE ∃ t ∈ T: ¬(ai S(t) bc–1) DO WHILE   t ∈ T, ¬(ai S(t) bc–1) DO
c ← c – 1 c ← c – 1
END_WHILE END_WHILE
Wp(ai) ← Cc. Bp(ai) ← Cc.

Optimistic ELECTRE TRI:

To find worst case category W(a
i
): To find best case category B(a

i
):

c ←1;/*worst category*/ c ← 1;/*worst category*/
WHILE    t ∈ T, ¬(bc P(t) ai) DO WHILE t ∈ T: ¬(bc P(t) ai) DO
 c ← c + 1 c  ← c + 1
END_WHILE END_WHILE

A

A
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Wo(ai) ← Cc. Bo(ai) ← Cc.

These algorithms show that absolute robust conclusions pertaining to the category where
an action a

i
 is assigned are equivalent to a conjunction of several relative binary robust

conclusions concerning the outranking relation among a
i
 and some of the reference actions.

5.2 Equivalent faster algorithms

We shall see in Section 6 that the test performed at each iteration of the algorithm may not
be straightforward to compute. Hence, it may be useful to improve the algorithms presented
above, especially if there are more than just a few categories. First of all, note that the
pessimistic TRI algorithms search for the assignment category starting from the best one
(Ck), whereas optimistic TRI algorithms’ search starts from the worst category (C1). Since
we know that the pessimistic search will stop at a category lower or equal than the one
where the optimistic search stops, modified algorithms could be used instead. A new version
of the algorithms could start the search in the opposite direction from those of Section 5.1.
These searches have complexity O(k) (where k is the number of categories).

A binary search of complexity O(log k) is even better, particularly if the number of
categories is high. Given an interval of categories, we test whether a

i 
belongs to a category

above or below the middle of the interval considered. Based on this test, half of the interval
is ignored and the other half is bisected in the next iteration. In order to present a more
general algorithm, let test(t) be a Boolean function that changes according to the purpose
of the computation:

   t ∈ T, a
i
 S(t) bc to find W

p
(a

i
) in the pessimistic ELECTRE TRI

∃ t ∈ T: a
i
 S(t) bc to find B

p
(a

i
) in the pessimistic ELECTRE TRI

   t ∈ T, ¬(bc P(t) a
i
) to find W

o
(a

i
) in the optimistic ELECTRE TRI

∃ t ∈ T: ¬(bc P(t) a
i
) to find B

o
(a

i
) in the optimistic ELECTRE TRI

Then, a new algorithm can be written as follows:

ELECTRE TRI (Binary Search Version)

L ← lower
 –
 bound

U ← upper 
–
 bound

WHILE L <U DO
c ← (L + U)/2;/∗x: max {n ∈ N: n ≤ x}*/
If test(t) returns true THEN L ← c + 1 ELSE U ← c;

END
–
WHILE

result category is CL./*result is W
p
(a

i
), B

p
(a

i
), W

o
(a

i
) or Βο(aι) depending on test(t)*/

A

A
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Note that we may start with a tighter search interval whenever some related problems have
already been solved, because we know that W

p
(a

i
) ≤ B

p
(a

i
), W

o
(a

i
)  ≤ B

o
(a

i
), W

p
(a

i
) ≤ W

o
(a

i
)

and B
p
(a

i
) ≤ B

o
(a

i
). Therefore, lower_bound ←1, or higher if more information is available

from a previously determined result, whereas upper_bound ←k, or lower if more
information is available.

6. On determining the results of the tests

6.1. Formulation as optimization problems

In Section 5.2 we presented several forms for test(t). In this section we show how
optimization may be used to determine if the test returns true or false. To simplify notation,
we omit t in σ(.,.,t), but bear in mind that the credibility index depends on the parameter
values.

To find B
p
(a

i
) in the pessimistic TRI:

∃ t ∈ T,: a
i
 S(t) bc ⇔ max{σ(a

i
,bc): t ∈ T} ≥ λ

min
.

Note that, since an iterative algorithm will be used to solve this maximization problem, it
may find that the test is true before reaching the optimum.

To find B
o
(a

i
) in the optimistic TRI:

∃ t ∈ T: ¬(bc P(t) a
i
) ⇔ ∃ t ∈ T: ¬(bc S(t) a

i
) ∨ a

i
 S(t) bc

The formulation as optimization problems is the following:

∃ t ∈ T: ¬(bc P(t) a
i
) ⇔ min{σ(bc,a

i
): t ∈ T} < λ

max
 ∨ max{σ(a

i
,bc): t ∈ T} ≥ λ

min

The two optimization problems may be performed in arbitrary order, and the second problem
only needs to be solved if the first one yields false.

To find W
p
(a

i
) in the pessimistic TRI:

A

   t ∈ T, a
i
 S(t) bc ⇔ min{σ(a

i
,bc): t ∈ T} ≥ λ

max
;

Note that an iterative algorithm to solve this minimization problem may find that the test
is false before reaching the optimum.
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To find W
o
(a

i
) in the optimistic TRI:

   t ∈ T, ¬(bc P(t) a
i
)  ⇔    t ∈ T, ¬(bc S(t) a

i
)  ∨ a

i
 S(t) bc

is true if and only if the system

t ∈ T (which includes bounds on λ)
σ(bc,a

i
)-λ ≥ 0

σ(a
i
,bc)-λ < 0

is inconsistent. This can also be formulated as an optimization problem, for instance:

   t ∈ T, ¬(bc P(t) a
i
) ⇔ min{σ(a

i
,bc)-λ: t ∈ T ∧ σ(bc,a

i
)-λ ≥ 0} ≥ 0.

We will see that this optimization problem is hard to solve for constraints of type 2 or 3
(recall Section 4). However, we may avoid performing these tests at every iteration, based
on the following:

Proposition 6.1.:

Let C° denote the category where action a
i
 is assigned to by the optimistic TRI and let Cm

denote min{Cj (j ∈{1,...,k}): bj S a
i
}.

Then, either C° = Cm or C° = Cm+1. Furthermore, if C° = Cm+1 then bm I a
i
.

Proof: We defined Cm to be the lowest category such that bm S a
i
. If ¬(a

i
 S bm), then bm P a

i
,

which means that C° = min{Cj (j ∈ {1,...,k}): bj P a
i
} = Cm.

Otherwise, if a
i
 S bm, then bm I a

i
, and C° > Cm. Consider now the category Cm+1. Since

bm S a
i
, then bm+1 S a

i
. On the other hand, a

i
 may not be indifferent to more than one

category (Yu, 1992). Since bm I a
i
, we conclude that ¬(bm+1 I a

i
), hence we must have bm+1 P

a
i
. In that case, C° = min{Ci (i∈{1,...,k}): bi P a

i
} = Cm+1.

To find Cm = min{Ci (i∈{1,...,k}): bi S a
i
}, test(t), which is performed many times, becomes:

   t ∈ T, ¬(bc S(t) a
i
) ⇔ max{σ(bc,a

i
):  t ∈ T} < λ

min
.

Note that an iterative algorithm to solve this problem may find that the test is false before
reaching the optimum. Then, only a test will remain to be performed:

∃t∈T: bm P(t) a
i
 ⇔ min{σ(a

i
,bm)-λ: t ∈ T ∧ σ(bm,a

i
)-λ ≥ 0} < 0.

A

A

A  A
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If true, then a
i
 belongs to Cm; if false, a

i
 belongs to Cm+1. Note that this test is performed

only once. An iterative algorithm may find that the test returns true before reaching the
optimum.

6.2. On finding the best category for an action

We now discuss the problem of finding the best category that an action a
i
 may attain

subject to t ∈ T. Consider, without loss of generality, that the binary search algorithm of
Section 5.2 is being used. If the pessimistic TRI is chosen, we must solve at each loop
iteration the optimization problem max{σ(a

i
,bc): t ∈ T} until we get a solution with value

higher or equal to λ
min

 or we reach the maximum. If the optimistic TRI is chosen, we can
start by solving in each iteration the problem max{σ(a

i
,bc): t ∈ T}, until we reach a solution

with value higher or equal to λ
min

 or we reach the maximum. If we reach a minimum value
lower than λ

min
, then we must solve min{σ(bc,a

i
): t ∈ T} until we reach a solution with

value lower than λ
max

 or we reach the minimum.
Next we address the problems max{σ(a

i
,bc): t ∈ T} and min{σ(bc,a

i
): t ∈ T} separately.

Let ∆
j
 represent the advantage of a

i
 over bc on the j-th criterion (j = 1, ..., n). Let JC denote

the set j ∈ {1,...,n: ∆
j
≥0}, JD denote the set j∈{1,...,n: ∆

j
<0}, and JV denote the set j ∈{1,...,n:

∆
j
 < -p

j
} (after F∅ and F1 below have been performed).

To solve max{σσσσσ(a
i
,bc): t ∈∈∈∈∈ T}:

In recalling the definition of the polytope T (Section 4), note that only some of the parameters
are interdependent. Concerning the jth criterion, the performances g

j
(a

i
), g

j
(bc) (j = 1,...,n)

are only constrained to belong to G
j
, hence we may separately find which combinations of

performances are most favorable to a
i
, through n linear programs (P∅ below). Parameters

p
1
, ..., p

n
, q

1
, ..., q

n
 are only subject to lower and upper bounds. Hence, we may fix them

(F∅ below) to the values that most benefit a
i
 and least benefit bc (see appendix, Prop. A.1).

Bounds should satisfy constraints v
j
 ≥ p

j
 ≥ q

j
 (j = 1,...,n). The optimization of the values for

other parameters depends on the type of the constraints affecting the veto thresholds (4.7a-
c).

Type 1 (veto subject to bounds)
P∅∅∅∅∅:solve max{∆

j
: (g

j
(a

1
), ...,g

j
(a

m
), g

j
(b0), ...,g

j
(bk)) ∈G

j
}, j = 1,...n.

F∅: q
j
 ← uq

j
; p

j
 ← up

j
, j∈JD and q

j
 ← lq

j
; p

j
 ← lp

j
  j∈JC.

F1: v
j
 ← uv

j
, j∈JD and v

j
 ← lv

j
 , j∈JC. (Fixed according to appendix, Prop. A.1)

PM1: solve max{c(a
i
,bc, k): (k

1
,...,k

n
) ∈K. (Linear program, see appendix, Prop. A.2).

max s(a
i
,bc) is now immediately obtained by combining the results of these steps.

Type 2 (veto subject to linear constraints, but independent of importance coefficients)
P∅∅∅∅∅, F∅: (same as above)
PM1:(same as above)
If the optimal value c(a

i
,bc)* is 1, then max σ(a

i
,bc) is 1; else consider c(a

i
,bc)*, add

constraints to guarantee that no veto occurs and continue (note that these constraints are
linear and σ(a

i
,bc)=0 when they are violated):
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PM2: solve max σ(a
i
,bc,v): (v

1
,...,v

n
) ∈V, v

j
 ≥-∆

j
 + ε (j∈JV)}, where ε is a small positive

number (if there is no feasible solution then max σ(a
i
,bc) is 0).

Type 3 (veto is a function of the importance coefficient)
P∅∅∅∅∅, F∅: (same as above)
F3: α

j 
← uα

j
, j∈JD and α

j
 ← lα

j
,  j∈JC. (Most favorable to a

i
, least favorable to bc)

PM3: solve max σ(a
i
,bc, k): (k

1
,...,k

n
)∈K, k

j 
≤ α

j
/[-∆

j
 - p

j
] -ε (j∈JV)},

where ε is a small positive number (if there is no feasible solution then max σ(a
i
,bc) is 0).

To solve min{σσσσσ(bc,a
i
): t∈∈∈∈∈T}. Much of the process is similar to that of solving max{σ(a

i
,bc):

t∈T, hence we only highlight the differences.

Type 1 (veto subject to bounds)
P∅∅∅∅∅, F∅, F1:(same as above)
Pm1: solve min {c(bc,a

i
,k): (k

1
,...,k

n
)∈K}. (Yielding min σ(bc,a

i
))

Type 2 (veto subject to linear constraints, but independent of importance coefficients)
P∅∅∅∅∅, F∅: (same as above)
If  ∃(v

1
, ..., v

n
) ∈V, j∈JC: v

j
 ≤ ∆

j
 (veto occurs) then min σ(bc,a

i
) = 0; else:

Pm1: (same as above)
If the optimal value c(bc,a

i
)* is 0, then min σ(bc,a

i
) is 0; else consider c(bc,a

i
)* and continue:

Pm2: solve min σ(bc,a
i
,v): (v

1
,...,v

n
)∈V}.

Type 3 (veto is a function of the importance coefficient)
P∅∅∅∅∅, F∅, F3:(same as above)
If ∃ (k

1
, ..., k

n
)∈K, j∈JC: k

j
 ≥ α

j
/[∆

j
 – p

j
] (veto occurs) then min σ(bc,a

i
) = 0; else:

Pm3: solve min {σ(bc,a
i
,k): (k

1
,...,k

n
)∈K}.

6.3. On finding the worst category for an action

We discuss in this section the problem of finding the worst category that an action a
i

may attain subject to t∈T. Consider again that the binary search algorithm of Section
5.2 is being used. If the pessimistic TRI is chosen, we must solve at each loop iteration
the optimization problem min{σ(a

i
,bc): t∈T} until we get a solution with value lower

than λ
max

 or we reach the minimum. If the optimistic TRI is chosen, according to Prop.
6.1, we can solve at each iteration the problem max{σ(bc,a

i
): t∈T} until we reach a

solution with value higher or equal to λ
min

 or we reach the maximum. The algorithm
will then stop with the output category Cm=min{Cj (j∈{1,...,k}): bj S a

i
}. Afterwards,

we need to solve {min σ(a
i
,bm)-λ: t∈T ∧ σ(bm,a

i
)-λ ≥ 0} once. Next we address all

these problems separately.

To solve min {σ{σ{σ{σ{σ(a
i
,bc): t∈∈∈∈∈T}: See Section 6.2. The problem is analogous to min σ(bc,a

i
):

t∈T}, with bc and a
i
 interchanged.

To solve max{σσσσσ(bc,a
i
):t∈∈∈∈∈T}: See Section 6.2. The problem is analogous to

max{σ(bc,a
i
):t∈T}, with bc and a

i
 interchanged.
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To solve min{σσσσσ(a
i
,bm)-λλλλλ: t∈∈∈∈∈T ∧∧∧∧∧ σσσσσ(bm,a

i
)-λλλλλ ≥≥≥≥≥ 0}. The process is similar to min{σ(a

i
,bc)

(with bm in place of bc) with an additional constraint. Let ∆
j
, JC and JD (as defined in

Section 6.2)
now refer to bm instead of bc.

Type 1 (veto subject to bounds)
Pa∅∅∅∅∅: solve min{∆

j
: (g

j
(a

1
), ...,g

j
(a

m
), g

j
(b0), ...,g

j
(bk))∈G

j
}, j = 1,...n.

Fa∅: q
j
 ← lq

j
; p

j
 ← lp

j
, j∈JD and q

j
 ← uq

j
; p

j
 ← up

j
, j ∈JC.

Fa1: v
j
 ← lv

j
, j∈JD and v

j
 ← uv

j
, j∈JC.

Pa1: solve min{c(a
i
,bm,k)-λ: (k

1
,...,k

n
)∈K, λ∈[λ

min
,λ

max
], σ(bm,a

i
,k)-λ ≥ 0}.

Type 2 (veto subject to linear constraints, but independent of importance coefficients)
Pa∅∅∅∅∅, Fa∅: (same as above)
Pa2: solve min{σ(a

i
,bm,k,v)-λ: k∈K, v∈V, λ∈[λ

min
,λ

max
], σ(bm,a

i
,k,v)-λ ≥ 0}.

Type 3 (veto is a function of the importance coefficient)
Pa∅∅∅∅∅, Fa∅: (same as above)
Pa3: solve min{σ(a

i
,bm,k)-λ: (k

1
,...,k

n
)∈K, λ∈ [λ

min
,λ

max
], σ(bm,a

i
,k)-λ ≥ 0}.

6.4. Solving the subproblems

Among the (sub)problems presented in Sections 6.2 and 6.3, problems P∅, PM1, Pm1
and Pa∅ are linear in the objective function and in the constraints, hence they may be
solved by any linear programming algorithm. The remaining problems are generally more
difficult to solve since they are nonlinear in the objective function and sometimes also
nonlinear in the constraints (the case of Pa1, Pa2 and Pa3).

The functions to maximize in problems PM2 and PM3 are strictly quasiconcave (see
Appendix, Prop. A.4 and A.7). Therefore, any local maximum of these nonlinear programs
must be a global maximum (e.g. see Bazaraa et al. (1993)). Another approach for PM2 is
to maximize the logarithm of σ(.), as a separable concave function (see Prop. A.5 in
appendix). The search for the maximum is simplified, because the constraints are linear.
However, this search must account for the nondifferentiability of the objective function.
In Lemaréchal (1989) and references contained therein the reader may find many methods
to cope with nonsmooth problems like these, that use generalized notions of derivatives
and gradients. Most of these consider the problem of minimizing a convex function, or,
equivalently, maximizing a concave function, that fortunately may often be extended to
address quasiconcavity (e.g. see Gromicho, 1998)).

The same functions are to be minimized in problems Pm2 and Pm3. These are global
optimization problems, which are difficult as there may exist multiple local minima.
However, since the objective functions are strictly quasiconcave and the constraints define
a polytope, then the global minimum of each one of these nonlinear programs can be
found at an extreme point of the polytope (e.g. see Bazaraa et al. (1993), p. 107, for a
proof). Horst and Tuy (1996) present several efficient methods to deal with such
quasiconcave minimization problems. Moreover, if the polytopes K and V do not have
many vertices, and considering that they will be used repeatedly for many problems with
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different pairs of actions (where only the objective function changes), then an algorithm
for enumerating all their vertices (e.g. Avis and Fukuda, 1992) may be run once, and then
the list of vertices can be searched as needed.

Problems Pa1, Pa2 and Pa3 can be more difficult since there is an additional nonlinear
constraint. Fortunately, they are only needed when determining the worst case for the
optimistic TRI and are solved only once per action to sort. A property shared by these
problems, which can be exploited, is that the credibility function is strictly quasiconcave
(propositions A.3, A.6 and A.7). Hence, it attains its minimum at an extreme point of the
feasible region, which is convex. The global minimum is located either at a vertex of the
polytope defined by the linear constraints (note that some vertices may now be unfeasible)
or at the surface where σ(bm,a

i
,.)=λ. In the case of problem Pa2, the independence among

the constraints on importance coefficients and those on veto thresholds might also be
exploited. Methods to deal with this sort of concave minimization problems can be found
in Horst and Tuy (1996). For a more general review of global minimization see Rinnooy
Kan and Timmer (1989).

It is important to notice two aspects that can significantly decrease the computational
burden associated with all the problems of Sections 6.2 and 6.3. First, note that often one
may find whether a test is true or false before reaching the optimum (recall Section 6.1).
To benefit form this, we should use feasible-iteration optimization algorithms, i.e. algorithms
producing a sequence of feasible solutions converging to the optimum, instead of approaches
based on exterior approximations to the feasible region. Secondly, when using these iterative
optimization algorithms, we may start at the feasible solution where we stopped at an
earlier problem. For instance, suppose we were solving the problem max{σ(a

i
,bx): t∈T},

until we stopped at solution with value higher or equal to λ
min

 or at the maximum (whatever
occurred first). Then, when solving a problem max{σ(a

i
,by): t∈T}, with x≠y, we would

start iterating at the point where we had left the prior problem, instead of starting from
some other initial (possibly unfeasible) solution.

7. Illustrative example

As a small example, let us consider that the DMs’ purpose is to assign each action
(corresponding to a company) to a risk category (“bad”-C1, “neutral”-C2, “good”-C3, “very
good”-C4), according to five criteria: a financial dimension (assets, liabilities, etc.), an

Table 1. Performances of the action to be assigned and the reference actions (profiles)

Financial Historical Macroeconomic Management Opp./Thr.

a1 12 5 5 17 13
b4 20 20 20 20 20
b3 15 14 14 17 16
b2 11 10 10 11 12
b1 5 5 5 6 6
b0 0 0 0 0 0



372 DIAS AND CLÍMACO

historical dimension (credit incidents, reputation, etc.), a macroeconomic dimension (region,
sector of activity, etc.), a management dimension (qualification, commitment, etc.), and
an opportunities and threats dimension (competitors, evolution of the market, etc.). Suppose
all of these have been quantified on a 0–20 rating scale. We consider the assignment of an
action a

1
 whose performances are depicted in Table 1, together with the performances of

the reference actions.
In this example we consider fixed performances and fixed indifference and preference

thresholds (Table 2). The veto threshold is a function of the importance coefficients, v
j
 = p

j

+ α
j
/k

j
, and the fixed parameters α

j
 in Table 2. Finally, let the cut threshold λ = 2/3. The

imprecise information concerns the importance coefficients k
j
 and, since v

j
 = p

j
 + α

j
/k

j
, it

also affects the value of the veto coefficients v
j
 (Type 3 constraints). Suppose that the

information by the DMs leads to the following constraints:

k
2
 ≥ k

3
k

2
 ≤ 2 k

3

k
1
 ≥ k

2
k

1
 ≤ k

2
 + k

3

k
5
 ≥  k

1
k

5
 ≥ 2 k

2
k

5
 ≤ 2 k

2
 + k

3

k
4
 ≥  k

5
k

4
 ≥ k

1
 + k

2
 +k

3
k

4
 ≤ k

1
 + k

2
 + k

3
 + k

5

To assign a
1
 by the pessimistic TRI using the binary search algorithm we could start by

finding the best possible category for a
1
. First, we would compare it to b2 to find if

max{σ(a
1
,b2):t∈T} exceeds λ = 2/3. Using Excel’s Solver for nonlinear programming

resolves this problem, although this solver expects differentiable functions. In 5 iterations
(instantaneous time) it tells us that the maximum is 0.864 > λ, hence a

1
 belongs to category

C3 or higher. Then, a
1
 would be set against b3 to find if max{σ(a

1
,b3): t∈T} exceeds λ = 2/3.

We would find that the solution has a value of 0.682 >λ, hence a
1
 may reach category C4.

To find the worst pessimistic assignment for a
1
 we would first compare it with b2 to find

how min{σ(a
1
,b2): t∈T} compares to λ = 2/3. Using the method by Avis and Fukuda (1992)

to enumerate all the 16 vertices of this polytope, we calculate σ(a
1
,b2) at each vertex solution

and find a minimum value of 0.75 > λ. Hence, hence a
1
 belongs to category C3 or higher.

Next we compare it with b3 and find that min{σ(a
1
,b3):  t∈T}= 0.063< λ (at a different

vertex solution). Hence a
1
 now belongs to category C3. In conclusion, under these constraints

it is possible to conclude that the range of categories that a
1
 may belong to is {“good”,

“very good”}.

Table 2. Information on thresholds

Financial Historical Macroeconomic Management Opp./Thr.

qj 2 2 2 2 2
pj 4 4 4 4 4
αj 0.5 0.75 0.75 0.3 0.3
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Suppose now that we replaced the last constraint k
4 
≤ k

1
 + k

2
 + k

3
 + k

5
 by a tighter

constraint k
4
 ≤ k

1
 + k

5
 and repeated the process. To find the best category we would see

that max{σ(a
1
,b2):t∈T} is 0.842 > λ (5 iterations) and then would find that max{σ(a

1
,b3):

t ∈T} is 0.628 < λ (14 iterations more, but still instantaneous). Hence, the best category
attained by a

1
 is now C3.

Concerning the worst category, we would find that min{σ(a
1
,b2): t∈T} would remain

the same, as would min{σ(a
1
,b3): t∈T}. In conclusion, after tightening the last constraint it

is possible to conclude that the a
1
 belongs to category “good”. Although there is imprecise

information, it was possible to determine a precise assignment for this action.

action.
In a group decision-making framework, a method to find the best and worst categories

that each action may attain may be used in a conjunctive or disjunctive manner. The former
consists in accepting an assignment as possible if the input of all of the DMs warrants that
conclusion. The latter consists in accepting an assignment as possible if any DM,
individually, reaches that conclusion. A potential benefit arising from this approach is that
DMs may agree on a result although they would not be able to agree on precise values for
the input parameters.

We have shown how to find the best and worst categories that an action may belong to
given linear constraints on the parameter values. To achieve this we changed the tests in
the original algorithms. Since these tests involve solving some mathematical programs,
we presented versions of these algorithms that are more efficient when there are many
categories. We then focused on these tests and suggested some ways to solve these
mathematical programs, considering a reasonable set of constraints where some parameters
may vary independently from others. A small example was provided to illustrate the
feasibility of this approach.

In addition to its potential to discover robust conclusions and to facilitate consensus
reaching in group decisions, this approach allows to identify which results are more affected
by the fact that information is imprecise. Indeed, it may be interesting to know that some
actions have a wide range of categories where they may be assigned to, in contrast with
some other actions that are always assigned to a single category. This ranges may in turn
be used to prompt discussions about the parameter values, leading to the incorporation of
new information in an interactive way.

In Dias and Clímaco (1999) we present some further examples of credibility indices’
maximization and minimization, which show that despite difficult in theoretical terms, the
nonlinear optimization problems may be easily solved in practical situations.

8. Summary and future research

ELECTRE TRI is a well-known multicriteria method to assign actions to ordered predefined
categories. We addressed the use of this method by a group of DMs with imprecise
information on the values of its parameters. This approach potentially eases the burden of
each DM, in that precise values for the parameters are no longer required. Moreover, in a
group setting it also may help DMs to reach a consensus on what to recommend for each
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Future research may address the choice of the best algorithms to solve the optimization
problems. As in other circumstances (e.g. Dias et al., 1997), parallel processing may play a
positive role. Another stream of research is how to help the DMs in reaching a consensus on set
T of acceptable values for the parameters. Regarding this stream, research is needed to guide
the DMs in “narrowing” the set T as consensus emerges or more information becomes available.
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Appendix

This appendix presents some results concerning the credibility index function σ(a
1
,a

2
, t),

where t is a combination of parameter values in a given polytope T. For more detail and
proofs not presented here see Dias and Clímaco (1999). We will assume throughout that
the computation concerns the ordered pair (a

1
,a

2
), hence we will sometimes refer to the

credibility function as σ(t): T → [0,1]. Let ∆
j
 denote the advantage of a

1
over a

2
 on the j-th

criterion (j = 1, ..., n).

 The function

is obviously continuous but it has no derivative in a discrete number of points of T, since
neither c(.) nor d

j
(.) have. Function σ(t) is a monotonous function of c(t). Furthermore, it

increases when any c
j
(t) increases and/or any d

j
(t) decreases. The following proposition

shows how σ(t) changes when some parameters vary.

Proposition A.1.: If any ∆
j
 , q

j
 , p

j
 or v

j
 increases (j∈{1,...,n}), then σ(a

1
,a

2
) does not decrease.

Now consider the constraint (k
1
,...,k

n
) = k∈K (4.6). The next proposition states that the

global concordance index c(k) = c(a
1
,a

2
, k):K → [0,1] is linear on k:

Proposition A.2.: Given fixed values for q
j
, p

j
 and ∆

j
 (j = 1,...,n),

    x, y∈K, λ∈ [0,1], c((1-λ) x+λy) = (1-λ) c(x) + λ c(y).

Proposition A.3.: Given fixed values for q
j
, p

j
, ∆

j
 and v

j
 (j = 1,...,n), σ(k) is both strictly

quasiconvex and strictly quasiconcave, i.e.

                       1–d
j 
(a

1
, a

2
,t)

σ (t) = σ(a
1
, a

2
,t) = c(a

1
,a

2
,t)      Π           1–c(a

1
,a

2
, t)

       j ∈ {1,...,n}:
              d

j
(a

1
,a

2
,t)  >  c(a

1
, a

2
,t)

A
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    λ∈]0,1[,x,y∈K, σ(x) ≠ σ(y) ⇒ max{σ(x), σ(y)} > σ((1-λ)x + λy) >  min{σ(x), σ(y)}.

Proof: This is a corollary of Prop. A.2 together with the fact that σ(t) is a monotonous
function of c(t). Let for instance σ(x) > σ(y). Then, by monotony, c(x) > c(y). Hence:

c(x) > c((1-λ)x + λy) = (1-λ) c(x) + λ c(y) > c(y), and again by monotony
σ(x) > σ((1-λ)x + λy) > σ(y).

Next we consider the cases when veto thresholds cannot vary independently, i.e. constraints
of type 2 and type 3.

Type 2 constraint
First let us consider a constraint (v

1
,...,v

n
) = v∈V (Type 2). We assume that q

j
, p

j
, ∆

j
 and k

j

(j = 1,...,n) are fixed, that c(a
1
,a

2
, k) < 1 (else we know that the credibility index equals one)

and that no veto occurs (i.e. v
j
  ≥ -∆

j
, j = 1,...n). The following proposition establishes that

σ(v) is strictly quasiconcave in a subset U⊆V. Note that σ(v) is null for v outside of U.

Proposition A.4.:Let U = {v∈Rn: v
j
≥-∆

j
 (j = 1,...,n)}. Then σ(v) is strictly quasiconcave in U,

i.e.    λ∈]0,1[,x,y∈U, σ(x) ≠ σ(y) ⇒ σ((1-λ)x + λy)  > min{σ( x),  σ(y)}

Another interesting property of σ(v) is the following, which states that if we wish to obtain
a separable function by taking logarithms we keep the concavity property.

Proposition A.5.: ln σ(v) is concave in U = {v∈Rn: v
j
 > -∆

j
 (j = 1,...,n).

Now suppose we drop the assumption that the k
j
 (j = 1,...,n) are fixed. Let the constraints

on the importance coefficients be independent form the constraints on the veto thresholds,
i.e. σ(k,v):KxV→[0,1]. Then σ( k,v) is strictly quasiconcave in the region where veto does
not occur:

Proposition A.6.: Let U = {v∈Rn: v
j
≥-∆

j
 (j = 1,...,n)}. Then σ(k,v) is strictly quasiconcave

in KxU, i.e.  λ∈]0,1[, (ka,va), (kb,vb)∈KxU,

σ(ka,va) ≠ σ(kb,vb) ⇒ σ((1-λ) (ka,va) + λ (kb,vb)) > min{σ(ka,va), σ(kb,vb)}.

Proof: Note that when c(k) < 1 (if c(k) =1 then σ(k) = 1) we can write (2.4) as:

A

A

A
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where m
j
 (k,v

j
) = min {1 – c(k), 1 – d

j
(v

j
)}. Now note that c(k) is linear (Prop. A.1) and, in the

Since m
j 
(k,v

j
) = min {1 – c(k), 1 – d

j
(v

j
)} is the minimum of a linear function and a concave

function, it is concave. Then, to see that σ(k,v) is strictly quasiconcave in KxU follow the
proof in Dias and Clímaco (1999) for quasiconcavity in the case of type 3 constraints.

Type 3 constraint
We can prove a result similar to Prop. A.4 for the case with constraints (k

1
,...,k

n
) = k∈K, v

j

= p
j
+α

j
/k

j
 and uα

j
 ≥ α

j 
 ≥ lα

j
 (j = 1,...,n) (Type 3). We assume that q

j
, p

j
, ∆

j
 and α

j
(j = 1,...,n)

are fixed, and 0<σ( x)<σ(y)<1:

Proposition A.7: Let I={x∈K: σ(x)∈]0,1]. Then σ(x) is strictly quasiconcave in I, i.e.

  λ∈]0,1[,x,y∈I, with σ(x) ≠ σ(y), σ((1-λ)x + λy) > min{σ(x), σ(y)}
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