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Abstract
Electromagnetic properties of a new class of two-dimensional periodic
nanostructured materials, sub-wavelength plasmonic crystals (SPCs), are
investigated. An SPC is a periodic lattice of metallic inclusions with
negative dielectric permittivity ǫ < 0 imbedded in a dielectric host with
ǫh > 0, with the lattice period much smaller than the wavelength of light. It
is found that two types of propagating electromagnetic waves are supported
by SPCs: (a) scale-invariant modes whose dispersion relation is almost
independent of the lattice period, and (b) scale-dependent narrow-band
resonances whose dispersion strongly depends on the lattice period. The
scale-invariant modes are accurately described using a frequency-dependent
quasi-static dielectric permittivity ǫqs(ω) and a vacuum magnetic
permittivity µ = 1. The scale-dependent resonances exist inside narrow
frequency bands where they can have a modified magnetic permittivity
µ �= 1. Magnetic properties originate from the non-vanishing magnetic
moment produced by the currents inside any given plasmonic inclusion due
to the close proximity of the adjacent inclusions. Applications of SPCs to
the development of novel left-handed metamaterials in the optical range are
discussed. A new paradigm of the SPC-based surface-enhanced Raman
scattering is also introduced.

Keywords: sub-wavelength plasmonic crystals, electromagnetic properties,
left-handed metamaterials, periodic nanostructured materials

(Some figures in this article are in colour only in the electronic version)

1. Introduction and motivation

The ability of periodic dielectric structures to significantly alter

the propagation of light has been realized with the introduction

of a photonic crystal [1–4]. To maximize the effect of

the structure on the dispersion properties of propagating

electromagnetic waves, the crystal period is typically of

the order of the light wavelength. Light propagation is

affected in several ways: through creation of the stop-bands

(band gaps) separating adjacent propagation bands, group

velocity reduction near the propagation band edge, generation

of cavity states localized near a defect [3], polarization-

dependent birefringence [5], and extreme anisotropy with

1 Author to whom any correspondence should be addressed.

respect to propagation direction [6]. Applications of dielectric

photonic crystals (PCs) include low-loss fibres [7], microcavity

lasers [8], band-edge quantum cascade lasers, cavity

quantum electrodynamics, and development of novel quarter

waveplates [5].

Several even more exotic applications of dielectric PCs

have been recently suggested: development of the so-called

left-handed (or negative index) materials, flat photonic lenses,

and sub-wavelength imaging [9] capable of exceeding the

diffraction limit. Since the resolution of any PC-based lens

is limited by the crystal period [10], beating the diffraction

limit requires using a PC with a sub-wavelength period [11].

In addition to dielectric PCs, a new class of metallic photonic

crystals (MPCs) has recently drawn attention because of their

wide bandgap for short wavelengths [12] and the ability to
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act as efficient filters of electromagnetic radiation [13, 14].

Even more exciting electromagnetic phenomena occurring

in MPCs are the existence of left-handed waves [15] which

can be used for sub-wavelength imaging [16] and extreme

field enhancement by arrays of metallic nanorods [17] which

can be used for surface-enhanced Raman scattering (SERS).

Since all these applications require sub-wavelength scale

MPCs, it is important to understand and classify the types of

electromagnetic (EM) waves supported by such structures.

Moreover, in the optical/UV frequency range metals

behave very differently than at the longer wavelengths.

Because of the strong (plasma-like) frequency dependence

of the metallic dielectric permittivity ǫ(ω) in that frequency

range, metallic inclusions are referred to as plasmonic.

Accounting for the dispersion of ǫ(ω) becomes necessary,

even further complicating an already challenging task of

calculating the detailed photonic bands of a PC. To address

this challenge, we develop a new technique for calculating

the dispersion properties of sub-wavelength plasmonic crystals

(SPCs). This technique is based on the assumption ωd/c ≪ 1,

where d is the crystal period and c is the speed of light in

vacuum. However, we go beyond the traditional electric dipole

approximation [18, 19] and demonstrate how higher-multipole

plasmonic resonances can produce magnetic moments of a

plasmonic inclusion and give rise to electromagnetic waves

with a negative magnetic permeability. When metals are used

as negative ǫ inclusions, the typical lattice period that satisfies

the ‘sub-wavelength’ criterion is under 50 nm. Therefore,

metallic SPCs are necessarily nanostructured. Because the

focus of this work is on plasmonic structures, the metallic

inclusions will be occasionally referred to as nanorods or

nanoparticles.

By examining numerically obtained solutions of

Maxwell’s equations for the SPC, we identify two classes of

waves supported by an SPC: (a) hybridized dipole modes that

are characterized by a quasi-static period-independent dielec-

tric permittivity ǫqs(ω), and (b) hybridized higher-multipole

resonances (HMRs) that depend on the crystal period d.

Two types of dipole modes are identified: almost disper-

sionless (non-propagating) bulk plasmons (BPs) satisfying the

ω(�k) ≡ ω
(c)
i dispersion relation (where ω

(c)
i are multiple zeros

of ǫqs), and propagating plasmon polaritons (PPs) satisfying the
�k2c2 = ω2ǫqs(ω) dispersion relation. The effective medium

dielectric permittivity ǫqs calculated from the quasi-static elec-

tric dipole theory (QSED) [18, 19] is found to be highly ac-

curate in predicting wave propagation even for SPCs with the

period as large as λ/2π . Dipole mode propagation bands are

‘sandwiched’ between multiple resonance ω
(r)
i and the cut-off

ω
(c)
i frequencies of the SPC. For two-dimensional SPCs with a

high lattice symmetry (square and hexagonal) a duality condi-

tion expressing a simple one-to-one correspondence between

the resonant and cut-off frequencies is discovered.

The new HMR propagation bands are discovered inside

the frequency intervals where ǫqs < 0 and, according to the

QSED theory, propagation is prohibited. HMR bands should

not be confused with the usual high-order Brillouin zones

of a photonic crystal because the latter do not satisfy the

d ≪ λ condition. One HMR band defines the frequency

range for which the sub-wavelength photonic crystal behaves

as a double-negative metamaterial that can be described by

the negative effective permittivity ǫeff < 0 and permeability

µeff < 0 [20]. Negative µeff result from the induced magnetic

moment inside each nanoparticle by high-order multipole

electrostatic resonances of its neighbours.

2. Propagation bands in a two-dimensional
sub-wavelength plasmonic crystal: general theory
and numerical simulations

For the remainder of this paper we concentrate on transverse

magnetic (TE), also known as p-polarized, electromagnetic

waves propagating in the x–y plane of a two-dimensional

photonic crystal. The photonic crystal is assumed to be a

square array with period d of cylindrical inclusions (rods of

radius R infinitely extended in the z-direction) with dielectric

permittivity ǫ imbedded in a host material with dielectric

permittivity ǫh ≡ 1. The non-vanishing em field components

are Hz , Ex , and E y . Propagation bands can be obtained by

solving the nonlinear eigenvalue equation for Hz:

− �∇ ·
(

1

ǫ(ω, �x )
�∇ Hz

)

= ω2

c2
Hz, (1)

where Hz satisfies phase-shifted boundary conditions at the

edges of the elementary cell:

Hz(d/2, y) = eikx d Hz(−d/2, y),

Hz(x, d/2) = eiky d Hz(x,−d/2).
(2)

The electric field of the wave is given by �E(�x) =
−i[c/ωǫ(�x)]�ez × �∇ Hz . ǫ(�x) = ǫh outside and ǫ(�x ) = ǫ(ω)

inside the inclusion. The dielectric permittivity ǫ(ω, �x ) is

assumed to be piecewise constant: ǫ(ω, �x) = ǫ(ω)θ(�x) +

ǫh[1 − θ(�x)], where θ(�x) is a Heaviside function equal to

1 inside the plasmonic cylinder and 0 outside. Solving

equation (1) yields the dispersion relation ω versus �k = kx �ex +

ky�ey , where −π/d < kx , ky < π/d. Due to band folding,

multiple Brillouin zones (propagation bands) separated by

stop-bands are revealed. Thus ω(n)2, where n labels the

Brillouin zones (BZs), is a multi-valued function of �k and

crystal period d. The band edge �k = 0 (Ŵ-point) corresponds

to periodic boundary conditions on Hz .

There is an important difference in the electromagnetic

properties of dielectric (with frequency-independent ǫ(ω) ≡
ǫi ) and plasmonic (with ǫ(ω) ≡ 1 − ω2

p/ω
2) photonic crystals

in the limit of d → 0. For small |�k| ≪ π/d EM waves

propagating through the former can be described using the

effective medium d-independent dielectric permittivity ǫeff

only for the lowest BZ. For the upper BZs the wave frequencies

scale inversely proportionally with d. On the other hand, there

are two classes of waves supported by a plasmonic PC:

(i) Non-resonant waves (dipole modes) which exist far

from electrostatic resonances, and are described by

the dispersion relation k2 = ǫeff(ω)ω2/c2, where for

d → 0 ǫeff = ǫqs(ω). The quasi-static dielectric

permittivity ǫqs(ω) is calculated using the conventional

QSED theory [18, 19] as explained in section 3.

(ii) Higher-multipole resonances with the dispersion relation

ω ≡ ω(k2d2).
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Figure 1. Electrostatic resonances of the square lattice SPC
consisting of almost-touching plasmonic cylinders with R/d = 0.45
(shown as an inset). Vertical axis: s = 1/[1 − ǫ(ω)] ≡ ω2/ω2

p ,
horizontal axis: wavenumber. Scanned eigenvalue range:
0 < s < 0.45.

Although these waves are predominantly electrostatic, they

can excite a finite magnetic moment inside the plasmonic

inclusions. These profound differences between dielectric and

plasmonic periodic structures are caused by the electrostatic

resonances, introduced in section 2.1.

In the rest of the paper we concentrate on the specific

SPC shown as an inset in figure 1: a square lattice of round

(R = 0.45d) almost-touching plasmonic cylinders with the

frequency-dependent dielectric permittivity ǫ(ω) = 1−ω2
p/ω

2

characteristic of a collision-free electron gas described by the

Drude model. The cylinders are separated by the lattice period

d = c/ωp.

2.1. Electrostatic resonances in sub-wavelength plasmonic

crystals

For a sub-wavelength rod the rhs of equation (1) can be

neglected as long as ω2d2/c2 ≪ 1 (because ∇ Hz ∼
Hz/d). Hence, the total magnetic field satisfying equation (1)

can be expressed as Hz = Hqs + H1, where Hqs satisfies the

generalized nonlinear eigenvalue equation (for a real number

ǫ(ω) and, therefore, implicitly for ω):

− �∇ ·
(

ǫ−1 �∇ Hqs

)

= 0, (3)

where Hqs satisfies the phase-shifted boundary conditions

described by equation (2). Equation (3) is an eigenvalue

equation only in the sense of having non-trivial solutions only

for certain values of ǫ. The �k-dependent eigenvalues ǫ
(r)
j of

the equation (3) form a discrete spectrum: 1 < j < ∞,

and the superscript (r) denotes the resonance. The frequency-

dependent ǫ
(r)
j defines the mode frequency ω

(r)
j which can be

used to calculate H1, assumed to be a small correction (of order

ω2d2/c2) to Hqs. The inhomogeneous equation for H1 is

− �∇ ·
(

ǫ−1 �∇ H1

)

= ω2

c2
Hqs, (4)

where H1 also satisfies equations (2).

It can be shown that the em waves with frequencies close

to ω
(r)
j (�k) are predominantly electrostatic. Indeed, the electric

field �E = −i[c/ωǫ]�ez × �∇ Hz can be separated into the

electrostatic and solenoidal components: �E = �Ees + �Esol,

where �Ees = −i[c/ωǫ]�ez × �∇ Hqs and �Esol = −i[c/ωǫ]�ez ×
�∇ H1. From |Hqs| ≫ |H1| it follows that |Eqs| ≫ |Esol|.
It is straightforward to show that �∇ × �Ees = 0, so that the

electric field is indeed predominantly electrostatic. Thus, it

can be expressed as the gradient of an electrostatic potential

φ: �Eqs = − �∇φ. Because in the electrostatic limit Maxwell’s

equations simplify to �∇ ·(ǫ �E) = 0, two equations for φ and Hz

are simultaneously satisfied for a sub-wavelength plasmonic

crystal:

− �∇ ·
(

ǫ−1 �∇ Hqs

)

= 0 and − �∇ ·
(

ǫ �∇φ
)

= 0. (5)

Equations (5) will be used in section 3.3 to derive a

useful duality relationship between resonances and cut-offs of

electromagnetic waves propagating in an SPC. Note that the

electrostatic assumption can only be used in close proximity

of the resonant frequencies ω
(r)
j . Away from resonances a

different procedure (described in section 3) must be used

to describe the propagation of em waves in an SPC. The

perturbative calculation of H1 according to equation (4) also

loses validity away from the electrostatic resonances.

Electrostatic resonances for the specific SPC are

calculated for a range of propagation wavenumbers �k inside

the Brillouin zone by solving the eigenvalue equation (5) for

φ. For computational convenience equation (5) is recast in the

form of
�∇ ·

[

θ(�x) �∇φi

]

= si∇2φi , (6)

where φi are the potential functions corresponding to

electrostatic resonances satisfying the periodically phase-

shifted boundary conditions analogous to equation (2), and

si = (ω
(r)
i /ωp)

2. The dependence of si on the wavenumber is

presented in figure 1, where the inset shows four unit cells of the

SPC. The wavenumber �k is labelled in figure 1 according to the

standard convention: the Ŵ–X direction is along the x-axis and

Ŵ–M along the diagonal of the SPC. The finite elements code

FEMLAB [21] was used to solve equation (6). All eigenvalues

were computed to at least fourth decimal accuracy as verified

by successive refinements of the computational mesh.

The different curves represent different families of

resonances labelled according to their symmetry at the Ŵ-point

(�k = 0). For example, the resonance labelled as B2 is a

quadrupole: its lowest azimuthal dependence is φ
(B2)

i ∝ sin 2θ

at the Ŵ-point. Azimuthal dependences of some of the other

resonances are: φ
(A2)

i ∝ sin 4θ (octupole), φ
(Ex )

i ∝ cos θ ,

and φ
(Ey)

i ∝ sin θ (dipoles). Angular dependences of the

E-modes are given for �k = δk�ex , where δkd is infinitesimal.

The resonances labelled as E y and Ex are special because

they have a non-vanishing dipole moment, and describe the

modes resonantly excited by the uniform �E = E0�ey or
�E = E0�ex fields, respectively. Ex and E y are hybridized

dipole resonances while the others (e.g. A2 and B2) are higher-

multipole resonances (HMRs). Note that the wavenumber

enters equation (5) only through the boundary conditions, and

only through the combinations kx d and kyd. Therefore, the
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dispersion relations for all resonances have ω versus |�k|d
dependences, and, therefore, are period-dependent.

It would be tempting to assume that the propagation

curves in figure 1 calculated in the vanishing period limit

ω2d2/c2 ≪ 1 accurately describe all waves propagating in

a finite-d SPC. This turns out not to be the case. Electrostatic

calculation is accurate only in close proximity of electrostatic

resonances. Away from those resonances the electrostatic

assumption is invalid, and other modes emerge. For instance,

by numerically solving the full electromagnetic equation (1),

we have identified a propagating mode below the lowest (in

frequency) electrostatic E y resonance (s < 0.14). That mode

merges with the E y curve for |�k| ≫ 1/d.

It is also found, based on the group theoretical analysis of

equation (1) explained in section 2.2, that the electromagnetic

modes form a doublet at the Ŵ-point corresponding to the Ex

resonance. The degeneracy is removed for finite �k = kx �ex ,

and the doublet is split into lower and higher frequency

modes. The low-frequency mode of the doublet referred to as

a bulk plasmon (BP) is x-polarized, practically dispersionless,

and has the propagation properties almost identical to the

electrostatic Ex mode. The high-frequency mode referred to

as the plasmon polariton (PP) is y-polarized and occupies a

much wider frequency range than the BP: between the Ex

and E y resonances. For large |�k| ≫ 1/d the PP’s frequency

approaches that of the E y resonance, and the dispersion curve

of the PP merges with that of E y . The x- and y-polarized

electromagnetic waves are strictly frequency-degenerate at the

Ŵ-point, whereas the approximate electrostatic calculation in

figure 1 gives a misleading impression that they are not. Both

the BP and the PP are hybridized dipole modes because, as

shown in section 3, their fields can be expanded as a sum of

hybridized dipole resonances.

Other propagating electromagnetic modes of a finite-

period SPC are not frequency-degenerate at the Ŵ-point.

Those modes indeed are the hybridized higher-order multipole

resonances. Even for finite-sized nanoparticles, HMR

dispersion relations are very accurately described by the

dispersion curves shown in figure 1. Electromagnetic

properties of HMRs are period-dependent because ω depends

on |�k|d.

2.2. Propagating waves in a sub-wavelength plasmonic

crystal: simulation results

Symmetry considerations are very useful in classifying

the electromagnetic modes supported by an SPC. The

square lattice of the SPC is invariant with respect to the

transformations of the C4v point group [22]. Symmetry

arguments can be most readily applied to the highly symmetric

Ŵ-point of the electromagnetic bands corresponding to �k = 0.

The eigenmodes of equation (1) satisfy the periodic boundary

conditions at the Ŵ-point. Thus these periodic solutions

transform according to one of the irreducible representations

(IRREPS) of C4v: four singlets (commonly labelled as A1, A2,

B1, and B2) and one doublet E . The Ŵ-point solutions can

also be labelled according to their IRREPS. Only the doublet

E has a non-vanishing dipole moment. Therefore we expect

that some of the solutions of equation (1) are non-degenerate
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Figure 2. Propagation bands of a sub-wavelength plasmonic crystal
with parameters from figure 1 and d = c/ωp. Circles and triangles:
calculated by solving equation (1). Solid curves: predictions of the
quasi-static electric dipole theory, k = √

ǫqsω/c.

at the Ŵ-point (singlets) while others are doubly-degenerate

(doublets).

By numerically solving equation (1) some of the

representative propagation bands have been computed for

a range of frequencies 0 < ω < 0.7ωp and propagation

wavenumbers �k = k�ex . The resulting ω versus k dispersion

relations are marked by symbols (circles and triangles) in

figure 2. The lowest propagation band (circles) starts at the

origin and approaches what appears to be a resonance. The

electric field of the propagating mode is primarily in the

y-direction, and the resonant frequency is close to that of the

lower E y resonance (ω = 0.37ωp) in figure 1 at the Ŵ-point.

The two frequencies cannot be expected to exactly coincide

because the SPC period, while sub-wavelength, is still finite:

d = c/ωp.

The upper propagation band starts at ω ≈ 0.61ωp, where

it turns out to be a doublet consisting of (i) a non-propagating

collective plasmon BP with ω(k) ≈ 0.61ωp (not shown due

to its flatness in frequency), and (ii) a propagating PP whose

dispersion is shown by circles in figure 2. The frequency of

the BP coincides with that of the Ex resonance in figure 1.

That is so because EM fields of the BP are largely electrostatic

(|Ex | ≫ |Hz|) for all values of k. The propagation band

of the PP is very narrow: 0.61ωp < ω < 0.63ωp; it is

bounded from above by a resonance at ω = 0.63ωp which

coincides with that of the upper E y resonance in figure 1 at the

Ŵ-point. As explained in section 3, for small k ≪ π/d

these two propagation bands are sufficiently far away from

electrostatic resonances to be accurately described by the scale-

independent effective dielectric permittivity ǫqs(ω) calculated

using QSED theory. The results of the full electromagnetic

calculation (circles) closely follow the theoretical curves k =√
ǫqsω/c.

The middle propagation band (marked by triangles)

corresponds to the electrostatic resonance A2 shown in figure 1.

Wave dispersion in this band cannot be derived from ǫqs

because of its proximity to the octupole resonance. Note that

for the A2 HMR ∂ω/∂k < 0: its group and phase velocity

oppose each other. Such behaviour is also found in negative
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refractive index metamaterials which are characterized by

the negative effective permittivity ǫeff < 0 and permeability

µeff < 0 [20]. Section 4 explains the origin of the negative

effective magnetic permeability of this wave.

3. Propagation bands removed from electrostatic
resonances: quasi-static electric dipole theory

Away from electrostatic resonances, a well established

methodology exists for characterizing the frequency-

dependent electromagnetic properties of a nanostructure. This

is done by introducing a frequency-dependent quasi-static

dielectric permittivity ǫqs(ω) of a nanostructure [18, 19].

We refer to this approach as the quasi-static electric dipole

(QSED) theory because it takes into account only hybridized

dipole resonances of the nanostructure. For the frequencies

sufficiently removed from higher-multipole resonances this is a

justifiable assumption: dipole scattering by individual particles

dominates over the multipolar scattering.

3.1. Quasi-static electric dipole theory

The material-independent ǫqs can be obtained [18, 19] by

calculating the frequencies and strengths of the dipole-

possessing electrostatic resonances, and summing them up

with the appropriate weighting factors:

ǫqs = 1 − p

N
∑

i=1

Fi

s − si

, (7)

where, for the plasmonic rods in vacuum, s(ω) = [1 −
ǫ(ω)]−1 = ω2/ω2

p, si ≡ [1 − ǫ
(r)
i ]−1 is the i th out of N > 1

hybridized dipole resonances, Fi its dipole strength calculated

below, and p = π R2/d2 is the filling ratio. The electrostatic

resonances si are found by solving the eigenvalue equation,

equation (6), inside the unit cell. Restricting the calculation to

long-wavelength modes with |�k| ≪ π/d, the spatial dispersion

of ǫqs can be neglected.

The potential eigenfunctions φi satisfy the following

homogeneous conditions at the unit boundaries (x, y) =
(±d/2,±d/2): (a) φi and its derivatives are periodic;

(b) φi(y = ±d/2) = 0; (c) ∂xφi(x = ±d/2) = 0. Because of

the symmetry of the problem, the φi are periodic throughout

the lattice. Physically, these eigenfunctions describe the

electric potential distribution when a vanishing ac voltage

(with frequency ω
(r)
i such that ǫ(ω) = ǫi ) is applied between

y = ±d/2 capacitor plates. The capacitance per unit length in

z of such an imaginary capacitor, equal to the ratio of the charge

per unit length to the voltage drop, is given by C = ǫqs/4π .

Capacitance C becomes infinite for ω = ω
(r)
i according to

equation (7): finite charge induces a vanishing voltage drop

δφ = φ(y = d/2) − φ(y = −d/2). Note that another

periodic eigenfunction φ̃i corresponding to the voltage drop

applied between x = ±d/2 plates is obtained by a 90◦ spatial

rotation of φi .

For frequencies different fromω
(r)
i a finite imposed electric

field induces a finite voltage drop δφ. It is more convenient

to solve the inverse problem and calculate the electric field

required to induce a given voltage drop δφ = d. Without

the plasmonic inclusion the required electric field is E0 = 1,

and the resulting potential inside the elementary d × d square

cell is φ0 = y. With the plasmonic inclusion the electrostatic

potential can be expanded as the sum of φ0 and hybridized

dipole resonances [19]:

φ(x, y) = φ0 +
∑

i

siφi(x, y)

s(ω) − si

×
∫

dx dy φ0∇2φ∗
i

∫

dx dy φi∇2φ∗
i

. (8)

The electric field E y = −∂yφ(x,−d/2) at the bottom

capacitor plate (y = −d/2) can now be calculated from

equation (8). Because the total charge per unit length z is

δQ = (4π)−1
∫

dx E y, the total capacitance per unit length

can be calculated as C = δQ/δφ. Using equation (7) and that

ǫqs = 4πC, it can be shown [19] that the dipole strength Fi is

given by

Fi = − si

π R2

∣

∣

∫

dx dy φ0∇2φi

∣

∣

2

∫

dx dy φ∗
i ∇2φi

. (9)

From equation (9) it follows that only the resonances with

a non-vanishing dipole moment at the Ŵ-point contribute

to ǫqs(ω). For example, the E y resonances from figure 1

contribute to ǫqs while the A2, B2, and Ex do not. We

conjecture, and later verify, that the quasi-static dielectric

permittivity ǫqs(ω) calculated from equations (7), (9) can be

used for deriving the dispersion characteristics of y-polarized

electromagnetic waves propagating in the x-direction.

The dipole strengths can be significantly simplified for a

square lattice of round plasmonic rods. Because the square

lattice is invariant with respect to the transformations of

the C4v point group [22], all periodic solutions transform

according to one of the irreducible representations (IRREPS)

of C4v: four singlets (commonly labelled as A1, A2, B1,

and B2) and one doublet E . The electrostatic eigenfunctions

with a non-vanishing dipole moment φ
(E)

i and φ̃
(E)

i have the

symmetry of E . By symmetry, inside a given rod each φ
(E)

i

can be expanded as the sum of multipoles: φ
(E)

i (r, θ) =
∑∞

l=0 A
(2l+1)

i (r/R)2l+1 sin (2l + 1)θ . Because ǫ is a piecewise

constant function of the radius, and ∇2φi = 0 inside and

outside of the rod, for any φi we can simplify ∇2φi = δ(r −
R) × [∂rφi(r = R + 0) − ∂rφi(r = R + 0)]. By continuity of

ǫ(r)∂r φi we can further simplify ∇2φi = δ(r − R)(ǫi −
1)∂r φi(r = R − 0). Using the multipole expansion inside

the rod one finds that the dipole strength is proportional to the

dipole component of φ
(E)

i : Fi =
(

A1
i

)2
/
∑∞

l=0(2l+1)
(

A2l+1
i

)2
.

For the plasmonic structure analysed here there are three

significantly strong hybridized dipole resonances: (s1 =
0.1433, F1 = 0.8909), (s2 = 0.4025, F2 = 0.064), and

(s3 = 0.6275, F3 = 0.0366). In general, there are infinitely

many hybridized dipole resonances, most of them clustering

around the singular point of si = 1/2 (or ωi = ωp/
√

2) which

corresponds to the resonance of an isolated plasmonic rod. The

total sum of their dipole strengths can be rigorously shown to

be unity:
∑∞

n=1 Fn = 1. Because
∑3

n=1 Fn = 0.992, we

are justified in neglecting weaker dipole resonances and using

the strongest three in equation (7) for calculating ǫqs(ω). The

potential functions φ̃i of the three strongest dipole resonances

(corresponding to the electric field in x-direction) are shown

in figures 3(a)–(c). The first resonance is primarily dipolar

(∝ cos θ), while the second one has a significant sextupolar

(∝ cos 3θ) component. Thus, the close proximity of the rods in
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Figure 3. (a)–(c) The potential functions of the three strongest hybridized dipole resonances of the SPC with parameters from figure 1, in
the order of decreasing dipole strength (contours) and the corresponding electric field (arrows). (d) Quasi-static dielectric permittivity ǫqs

versus ω calculated from equation (7) using the three strongest resonances. If viewed in greyscale, then in (a) the low-value region is at the
right, and the high-value region is at the left; in (b) the low-value regions are at middle-left, top-right and bottom-right, and the high-value
regions are at middle-right, top-left and bottom-left; in (c) the low-value regions are at top-right and bottom-right, and the high-value regions
are at top-left and bottom-left.

the lattice results in a strong hybridization of the odd multipoles

with the dipole. Moreover, the hybridized dipole resonances
ω

(r)
1 = 0.38ωp, ω

(r)
2 = 0.63ωp, and ω

(r)
3 = 0.79ωp occur

at the frequencies controllably different (through the R/d

ratio) from that of an isolated rod, ω(r) = ωp/
√

2. Red-

shifting of the strongest dipole resonance of a nanoparticle due
to close proximity of other nanoparticles has been observed

experimentally [27].
The corresponding quasi-static dielectric permittivity ǫqs

is plotted in figure 3(d) as a function of the frequency ω.

Infinities of ǫqs correspond to electrostatic dipole resonances.
In calculating ǫqs(ω) we have neglected the finite damping in

the plasmonic rods. If damping is accounted for, the infinities
of ǫqs are removed. Another set of special frequencies ω

(c)
i

is the cut-off frequencies for which ǫqs(ω
(c)
i ) = 0. For

the structure analysed here there are three such frequencies:

ω
(c)
1 = 0.61ωp, ω

(c)
2 = 0.77ωp, and ω

(c)
3 = 0.93ωp. Note

that ǫqs is independent of the SPC periodicity scale d and is

only dependent on the geometry (i.e. R/d). Therefore, the
quasi-static ǫqs approach is the effective medium theory which

neglects the internal structure the SPC.

3.2. Wave propagation in an SPC

Propagation properties of electromagnetic waves through any

medium (including an SPC) characterized by the effective

medium ǫeff(ω) can be obtained by solving Maxwell’s

equations in the medium for space-averaged quantities �H and
�E [23]:

�∇ × �E = iω

c
µeff

�H, �∇ × �H = − iωǫeff

c
�E, (10)

where the electromagnetic field is assumed to be harmonic in

time.

The prescription for calculating the averaged fields for

a three-dimensional photonic crystal has been introduced

elsewhere [11, 24]. Modifications to those procedures were

made in order to adapt them to the two-dimensional problem

at hand. Specifically, we assumed that the elementary cell is a

cube with height d in the z-direction. Because all physical

quantities (electric and magnetic fields) are z-independent,

surface integrals over the faces parallel to z are reduced

to line integrals. For two dimensions, and assuming that
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the elementary cell of the SPC is centred at the origin, the

averaged �E and �D are defined as Ey = d−1
∫ +d/2

−d/2
dy E y(x =

−d/2, y), Ex = d−1
∫ +d/2

−d/2
dx Ex (x, y = −d/2), Dy =

d−1
∫ d/2

−d/2
dx E y(x, y = −d/2), Dx = d−1

∫ d/2

−d/2
dy Ex (x =

−d/2, y). Since away from electrostatic resonances an SPC

does not exhibit magnetic properties, it is assumed that µeff =
Bz/Hz ≡ 1, where Bz = d−2

∫

dA Hz(x, y), Hz = Hz(x =
−d/2, y = −d/2) [24].

For small |�k| ≪ 1/d the standard definition of ǫeff =
Dx /Ex = Dy/Ey exactly coincides with that of ǫqs as explained

in section 3.1. Therefore, ǫqs(ω) computed from equation (7)

replaces ǫeff in equations (10). Assuming a planar wave with a

wavenumber �k, it is found from equation (10) that two distinct

classes of modes are supported by the medium: (a) longitudinal

modes with �E ‖ �k, and (b) transverse modes with �E ⊥ �k. We

refer to the longitudinal waves as bulk plasmons (BPs) and the

transverse ones as plasmon polaritons (PPs). The dispersion

relation for a BP is ω(�k) ≡ ω
(c)
i . Thus the cut-off frequencies

also coincide with those of the BPs. For example, ω
(c)
1 almost

exactly coincides with the frequency (evaluated at the Ŵ-point)

of the longitudinal resonance Ex shown in figure 1. The small

difference is due to the finite ratio of d/λ. The dispersion

relation for a PP is |�k|2 = ǫqsω
2/c2.

The frequency bands between the cut-offs and resonances

define the non-resonant propagation bands of the PPs. From

figure 3(d), there are four propagation bands (where ǫqs > 0)

predicted by the quasi-static theory for ω < ωp. The first

propagation band is fairly broad, extending from ω = 0 to

ω
(r)
1 = 0.38ωp. The second band is very narrow: between

ω
(c)
1 = 0.61ωp and ω

(r)
2 = 0.63ωp. This band is ‘sandwiched’

between two electrostatic resonance curves shown in figure 1:

longitudinal resonance Ex and transverse resonance E y . Two

modes exist inside the band: a BP with ω(�k) = ω
(c)
1 and

a PP. These propagation bands are also revealed by the full

electromagnetic simulation of equations (1), (2), and are shown

in figure 2 (circles) to be in a very good agreement with the

prediction of the QSED theory (solid curves). The third, also

very narrow, propagation band is between ω
(c)
2 = 0.77ωp and

ω
(r)
3 = 0.79ωp, and it also supports a non-propagating BP and a

propagating PP. The fourth band extends upwards in frequency

from ω
(c)
3 = 0.93ωp. None of the four propagation bands are

revealed by the approximate electrostatic calculation which

resulted in the band structure shown in figure 1.

3.3. Duality theorem in a sub-wavelength plasmonic crystal:

relation between cut-off and resonance frequencies

We have discovered that for a highly-symmetric square lattice

the cut-off and resonance frequencies are related to each other

by a simple formula: for each resonance frequency ω
(r)
j there

exists a cut-off frequency ω
(c)
i for which ǫ(ω

(c)
i ) = 1/ǫ(ω

(r)
j ).

Numerical calculation of the zeros of ǫqs from equation (7)

accurately confirms the duality principle. The duality principle

in an SPC is rigorously derived below.

First we review a related duality principle for the

resonances of an isolated plasmonic nanocylinder of an

arbitrary shape. Recall that equations (5) are simultaneously

satisfied for the electrostatic potential φ and magnetic field

Hqs. Because the electric field is normal to φ = const lines

and along the Hqs = const lines, equations (5) simply illustrate

that in electrostatics there are two equivalent descriptions of
the electric field: using potentials and field lines. Both Hqs

and φ must vanish far away from the cylinder. It follows from

equations (5) that if a resonance is supported by a rod of an
arbitrary transverse shape for ǫ = ǫ1, then there exists another

resonance for ǫ2 = 1/ǫ1 [25]. For the resonances with ǫ = ǫ1

and ǫ = ǫ2 electric field lines and potential iso-contours are
simply interchanged. Hence, the duality principle for isolated

nanorods: all electrostatic resonances occur for frequency

pairs (ω1, ω2) such that ǫ(ω1) = ǫ1 and ǫ(ω2) = 1/ǫ1.

Symmetry considerations must be used for deriving a
duality relation for a two-dimensional SPC. Let us assume

that an electrostatic resonance is found for ǫ = ǫ1 for

a y-polarized electric field. The corresponding potential
eigenfunction φ1 is a solution of equation (5) and satisfies

the following homogeneous conditions at the unit boundaries

(x, y) = (±d/2,±d/2): (a)φ1 and its derivatives are periodic;
(b) φ1(y = ±d/2) = 0; (c) ∂xφ1(x = ±d/2) = 0. By

symmetry, another eigenfunction φ̃1 obtained by a 90◦ spatial

rotation of φ1 also satisfies equation (5). Next, consider a pair

of magnetic field functions H Ex
z = φ1 and H

Ey

z = φ̃1, and

the frequency ω2 such that ǫ(ω2) = 1/ǫ1. It follows from

equation (5) that H Ex
z and H

Ey

z both satisfy equation (1) in

the quasi-static limit of ω2d2/c2 ≪ 1. Moreover, the periodic

boundary conditions satisfied by (H Ex
z , H

Ey

z ) indicate that the

pair are the magnetic fields of the BP and the PP at the cut-off

point of �k = 0 (see equation (2)). Therefore, ω2 is the cut-off
frequency. The inverse is also true: if the cut-off frequency is

ω3, than there is a resonance at ω4 such that ǫ(ω4) = 1/ǫ(ω3).

Using a frequency-dependent label s(ω) = 1/(1 − ǫ(ω))

(which reduces to s(ω) = ω2/ω2
p for the plasmonic dielectric

permittivity ǫ(ω) = 1 − ω2
p/ω

2), the duality condition can

also be expressed as s(ω
(r)
i ) + s(ω

(c)
j ) = 1 (which reduces to

ω
2(r)
i + ω

2(c)
j = ω2

p for the plasmonic ǫ). We have verified that,

indeed, with high accuracy, ω
(r)2
1 + ω

(c)2
3 = ω2

p, ω
(r)2
2 + ω

(c)2
2 =

ω2
p, and ω

(r)2
3 +ω

(c)2
1 = ω2

p for the particular plasmonic structure

considered in this paper.

4. Propagation bands associated with electrostatic
resonances: origin of negative refractive index

In section 3 the electromagnetic properties of the SPCs

for frequencies sufficiently removed from higher multipole

resonances were described using the quasi-static electric dipole
theory. The justification for QSED theory is that the dipole

scattering of incident electromagnetic waves by individual

nanoparticles dominates over high-multipole scattering. This
is not the case for frequencies very close to those of electrostatic

multipole resonances [26]. For those frequencies multipolar

scattering is resonantly enhanced, and can dominate over the
dipolar scattering. That the QSED theory may be inadequate

for describing all propagating modes in an SPC becomes

apparent by noting that the propagation band marked by
triangles in figure 2 belongs to the frequency range where

ǫqs < 0. Therefore, in the vicinity of the A2 electrostatic

resonance the QSED description breaks down, and the resonant

frequency broadens into a frequency band with a finite group
velocity �vg = ∂ω/∂ �k.
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Moreover, we show that an SPC can also exhibit a

finite magnetization, i.e. �B �= �H. Whether or not finite

magnetization exists depends on the azimuthal dependence of

the resonant field. Here we concentrate on the A2 resonance.

Recall that in the vicinity of electrostatic resonance Hz = Hqs+

H1, where Hqs is responsible for the electrostatic (potential)

portion of the electric field, and H1 is perturbatively calculated

using equation (4). Although the electric field near resonance

is mostly electrostatic, it possesses a non-vanishing solenoidal

component:
�E = − �∇φ + �S, (11)

where �S is a purely solenoidal field �∇ · �S = 0, and φ, �S satisfy

�∇ × �S = i
ω

c
Hqs�ez and

− ∇2φ ≈ i
c

ω
�ez ·

(

�∇ǫ−1 × �∇ Hqs

)

. (12)

It is this small (to order ω2d2/c2) solenoidal part of the

electric field that is responsible for the magnetic properties of

an SPC. Those magnetic properties can manifest themselves

as the negative magnetic permeability in the vicinity of an

electrostatic resonance, and give rise to the negative refractive

index [15].

The magnetic permeability µeff is affected because the

A2 mode carries the electric current which produces a finite

magnetic moment. The electrostatic �E-field of the mode inside

the plasmonic rod is derived from the electrostatic potential

φ =
∞

∑

n=1


(A2)
n

( r

R

)4n

sin 4nθ. (13)

The electric field lines correspond to the iso-contours of the

quasi-static magnetic field given by

Hqs =
∞

∑

n=1

H (A2 )
n

( r

R

)4n

cos 4nθ. (14)

The expansion coefficients 
(A2)
n and H (A2 )

n are found

numerically by solving equations (5) with periodic boundary

conditions. Although we label the electromagnetic modes

according to the spatial symmetry of their electrostatic

potential, note from equations (13), (14) that the electrostatic

potential and the magnetic field transform according to the

A2 and A1 irreducible representations, respectively. This is a

general property of square (and hexagonal) SPCs: φ and Hqs

belong to the complimentary irreducible representations.

The monopole term H
(A2)

0 does not contribute to the

electrostatic field in the quasi-static limit. However, for a

finite particle size there is a non-vanishing solenoidal electric

field according to equations (11), (12). By Stokes’ theorem,

the azimuthal electric field inside the particle is found from

2πr Eθ = i(πr 2)H
(A2 )

0 ω/c to be Eθ = i(ωr/2c)H
(A2 )

0 . The

corresponding electric current in the plasmonic rod is given

by Jθ = −H
(A2)

0 ω2r/2c2 × (ǫ − 1). This current produces

a magnetic moment density �M = (1/2c)〈�r × �eθ Jθ〉, where

the average is taken over the unit cell. After straightforward

algebra we obtain M = (pH
(A2 )

0 /16π)(1 − ǫ)ω2 R2/c2. The

magnitude of the induced magnetic moment depends on two

factors: the particle size (through the ω2 R2/c2 term) and

the interparticle proximity (through the value of H
(A2)

0 which

rapidly decreases as a function of R/d).

We have calculated the effective permittivity ǫeff and

permeability µeff using the procedure explained in section 3.2.

Both ǫeff and µeff have been calculated for a range of

wavenumbers �k = k�ex and the corresponding frequencies

ω(k). For kd ≪ π it follows from the analyticity of ω(�k)

that the frequency depends only on |�k| and not on its direction.

For k0 = 0.6/d and ω0 = 0.6ωp (or neff = −1) we numerically

computed that µeff = −2.35 and ǫeff = −0.427. Therefore,

at this frequency our SPC can be viewed as a doubly-negative

material. This is consistent with the negative group velocity

of the A2 wave. Note that the hybridized monopole/octupole

resonance affects not only the magnetic permeability of the

SPC, but also the dielectric permittivity: the effective medium

calculation using equation (7) yields ǫqs(ω0) = −0.65 that is

significantly different from ǫeff .

It is this negative µeff that enables wave propagation in

the region where ǫqs < 0, and the QSED theory prohibits

wave propagation. We have found numerically that an

electromagnetic wave with the frequency inside the A2 band

incident from vacuum onto an SPC can couple into the

crystal with very little reflection. Moreover, we observed

strong enhancement of the field amplitude inside the crystal.

This enhancement is caused by the very low group velocity of

the A2 band. In section 5 we speculate how the flatness of this

band and its proximity to the plasmon polariton band can be

employed to improve the surface-enhanced Raman scattering.

5. Applications of SPCs to surface-enhanced Raman
scattering

The close proximity of the two flat propagation bands of

a two-dimensional SPC shown in figure 2 (labelled by

circles and triangles) may be useful for surface-enhanced

Raman scattering (SERS) [27]. Arrays of closely-spaced

nanoparticles are known to cause a significant enhancement

of the local fields with respect to the incident laser field:

R = Elocal/Einc ≫ 1 [17, 28, 29]. This enhancement

is caused by coupling to the narrow electrostatic (plasmon)

resonance. The narrower the resonance (δω = ω1/Q, where

Q ≫ 1 is the quality factor) is, the higher the enhancement.

Molecules placed in the region of the enhanced incident field

with frequency ω1 re-emit at the Raman-shifted frequency

ω2 = ω1 − �v, where �v is the vibrational frequency of

interest. The spectacular enhancements of the Raman signal

observed in the experiments [27] are related to the fact that

electromagnetic fields at both ω1 and ω2 are enhanced by

the structure. Only in that case the enhancement of the

Raman signal scales as R4. The field enhancement R is

proportional to Q. The exact proportionality coefficient can

substantially exceed unity for nanoparticles with sharp features

(for example, prisms with sharp corners or almost-touching

nanospheres).

The implication of both the emitted and absorbed light

being inside the resonance curve is that ω1 − ω2 < 1/Q, or

that Q < �v/ω1. Because the Raman enhancement scales as

R4, the largest electromagnetic enhancement is proportional to

(ω1/�v)
4. This estimate puts an upper limit on the vibrational

frequencies that can be detected with SERS while still enjoying

the enhancement benefits. For example, for �v = 1000 and

ω1 = 30 000 cm−1 (corresponding to λ1 = 350 nm) the
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electromagnetic Raman signal enhancement is only of order

106. Although higher enhancements have been reported, they

are primarily found in the narrow gap between dimer-forming

nanoparticles [27]. If the separation between the Stokes and

fundamental frequencies is larger than ω1/Q, these dramatic

enhancements of the Raman signal cannot be realized.

Our suggestion is to employ two well separated

propagation bands, each of which is very flat. If each of

the bands has the spectral width of (δω1) and (δω2), and the

frequency separation between the bands is �v ≫ (δω1,2), then

these two bands can be employed for detecting the vibrational

frequency �v. The band separation can be easily tuned by

changing the rods’ radii R and, possibly, their shapes. The

magnitude of the signal enhancement is governed by the width

of each individual band (δω1,2) while the detected vibrational

frequency is governed by the separation between the bands.

One example of such closely located flat bands is shown in

figure 2 (two upper bands marked by triangles and circles).
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