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1 Introduction

Despite the tremendous success of the Standard Model (SM), the arguments for the ne-

cessity of an extension are compelling. Specifically, Sakharov’s conditions [1] require the

presence of additional CP violation with respect to the SM. Assuming CPT invariance,

electric dipole moments (EDM) are known to be highly sensitive to new CP-violating

phases in new physics (NP) models. The contributions in the Standard Model are ex-

tremely tiny (e.g. dSM,CKM
n .

(

10−32 − 10−31
)

e cm, see e.g. [2, 3] and references therein),
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with one exception: the gluonic operator OGG̃ ∝ ǫµνρσG
µνGρσ gives in principle a contribu-

tion many orders of magnitude above the present experimental limits for e.g. the neutron;

this is called the strong CP problem. To explain the absence of this contribution, typically

symmetries are invoked, involving additional particles. The most famous example is the

Peccei-Quinn mechanism [4], predicting the presence of axions [5, 6]. While these have not

yet been found in experimental searches, we implicitly assume in this work when discussing

hadronic EDMs that the strong CP problem is solved by this or some similar mechanism.

The combination of the resulting tiny SM “background” and very strong experimental

upper limits makes EDMs a well suited laboratory to search for NP, complementary to

direct searches at e.g. the LHC and Tevatron as well as searches involving flavour-changing

processes. The strong suppression in the SM is due to its very specific connection between

flavour and CP violation, i.e. the Kobayashi-Maskawa mechanism [7]. When new sources of

CP violation are included in NP models, usually large contributions are induced, specifically

in models which contain flavour-blind phases. Therefore these models include typically an

additional mechanism to keep them at bay. This in turn, as realized first by Weinberg [8],

leads in a wide class of models to the situation that the dominant contributions actually

stem from two-loop diagrams, when the additional loop allows to avoid strong suppression

factors like masses of light quarks or small CKM matrix elements.

An attractive option for NP is provided by Two-Higgs-Doublet models (2HDM), due

to their simplicity and their being the low-energy limit of various theories with a viable

UV completion. In the most general version of the model, the fermionic couplings of

the neutral scalars are non-diagonal in flavour and, therefore, generate unwanted flavour-

changing neutral-current (FCNC) phenomena. Different ways to suppress FCNCs have

been developed, giving rise to a variety of specific implementations of the 2HDM. In the

past, mainly 2HDMs without new sources of CP violation have been considered, especially

those with a discrete Z2 symmetry [9, 10]. Recently, however, there has been increased

interest in models without this restriction, see e.g. [11–21] and also [22] for a recent review.

Potentially huge EDMs used to be the main argument to discard these models. The critical

reconsideration of this argument is one of the main motivations for the present work. We

show in this article that while the present experimental limits impose strong bounds on the

CP-violating parameter combinations, in models with an appropriate flavour structure they

have not yet to be unnaturally small. However, large enhancements in other CP-violating

observables are very strongly restricted by these bounds. Furthermore, the generic size

for EDMs lies well within reach of the next-generation experiments, presently planned and

some already in progress. These will therefore provide critical tests for this class of models

in the coming years.

The direct observation of the EDM of a charged particle is very difficult, due to the

presence of a hugely dominating “monopole” contribution, i.e. its charge. Therefore, the

most sensitive measurements, at least so far, stem from neutral systems, especially neu-

trons and atoms/molecules. Relating them to fundamental parameters involves complex

calculations at different scales, often implying large uncertainties. Without their careful

estimate no reliable constraints on NP parameters can be obtained. We start therefore in

the next section by giving model-independent expressions for these observables in terms

– 2 –
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of Wilson coefficients of the relevant effective operators, taking recent developments into

account and estimating the uncertainties of the QCD, nuclear and atomic calculations in a

conservative manner. For a subset of systems, this has been done very recently by one of

us in [23]; these results are used when appropriate. This is followed in section 3 by a quick

description of the experimental situation, after which we proceed in section 4 to discuss the

situation of EDMs in 2HDMs with new sources of CP violation. We start by describing the

various sources, pointing out their different importance. To be specific, we then calculate

the resulting constraints in the Aligned Two-Higgs-Doublet Model (A2HDM), which has

been introduced in [15, 17] and whose phenomenology has been further discussed in [24–28].

However, the structure of the model is such that the results hold rather generally. In this

context, we point out a general cancellation mechanism for neutral scalar contributions,

which questions the way they are commonly treated in the literature. We analyze the

phenomenological constraints coming from the presently available experimental bounds in

section 5, before giving our conclusions in section 6.

1.1 Comparison to existing work

There is a huge amount of literature on EDMs, and there is no hope of reviewing it here;

instead, we refer the reader to [2, 29–32] for recent reviews. Generally, most of the analyses

in the literature are performed within the framework of supersymmetric models (SUSY)

(for recent examples, see [33–41] and also the phenomenological analysis in [30]). While

in principle the 2HDM contributions are present in these models as well, they are usually

subdominant, which is why they do not receive much attention. Especially the charged

Higgs exchange is usually negligible in these models, as it does not exhibit the strong

tanβ-enhancement of other terms, which is why some of the corresponding contributions

discussed below are not incorporated at all in these analyses.

Recent studies more closely related to our work include [42–44]. In the first of these, the

authors discuss one contribution discussed below, namely the charged Higgs contribution to

the neutron EDM. The results are similar to ours,1 apart from a different treatment of the

hadronic matrix element, which yields weaker constraints in our case. The second article

discusses EDM contributions in the context of Minimal Flavour Violation (MFV), including

complex phases in that framework. The authors perform the analysis in the decoupling

limit and assume a small breaking of the Z2 symmetry, as was assumed already for the

2HDM analysis in [45]. Their results are therefore relevant for a subset of our parameter

space. They conclude, as we will below, that one-loop contributions are generally not

exceeding the experimental limits. In addition, they consider a subset of the two-loop

contributions we discuss below, corresponding to the more restrictive assumptions they

make. Finally, in [44] the authors discuss a subset of MFV operators which might generate

a new phase in Bs mixing; the corresponding operators are not relevant in our context.

1The interested reader can compare them using the relations ηu = ςu and ηd = −ς∗d .
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2 Model-independent expressions for EDMs

From the point of view of particle physics, the proper starting point for a model-independent

analysis is the following effective Lagrangian at the hadronic scale (here up to dimension

six, see e.g. [2]):

L = −
∑

f

[

dγf
2
Oγ

f +
dCf
2
OC

f

]

+ CWOW +
∑

f,f ′

Cff ′Off ′ , (2.1)

with the operator basis

Oγ
f = ieψ̄fF

µνσµνγ5ψf , OC
f = igsψ̄fG

µνσµνγ5ψf ,

OW = +
1

6
fabcGa

µνǫ
νβρσGb

ρσG
µ,c

β , Off ′ =
(

ψ̄fψf

) (

ψ̄f ′iγ5ψf ′

)

. (2.2)

The operators in eqs. (2.2) are the (colour–)EDM operators Oγ,C
f for light fermions

(f = e, d, u, s), the Weinberg operator OW and T- and P-violating four-fermion operators

Off ′ without derivatives (see, e.g., [46]). The factors of 1/2 for the (C)EDM operators are

included to identify the coefficients dγ,Cf with the classical electric/gluonic dipole moment

in the corresponding limit. The analysis of their influence on experimental observables is

divided into two steps: first, the observables have to be expressed in terms of the coeffi-

cients of this effective lagrangian. This step can be done independently from the NP model

considered and is performed in this section. The necessary calculations are on the QCD,

nuclear, and/or atomic/molecular level. They typically involve relatively large uncertain-

ties. Their careful assessment is essential to obtain reliable bounds, which is why we will

pay close attention to this. In the second step, performed exemplarily for the A2HDM

later in this paper, the coefficients have to be calculated in terms of parameters of the NP

model considered, allowing to obtain the constraints on the latter.

In calculations on the QCD level, the corresponding matrix elements are often known

only up to a factor of a few, sometimes without a definite sign. There are different methods

to calculate/estimate them; while Naive dimensional analysis (NDA) [47] is still used

occasionally, mostly due to its simplicity, its estimates are known to be uncertain e.g. by

arbitrary powers of 4π (see e.g. [48]), which is why we do not consider these estimates here.

Instead we are going to use QCD sum rule estimates, where such factors are absent and

which are supposed to be uncertain “only” by the aforementioned factor of a few (depending

on the operator). The main reason for this limited precision is that for sum rules with

baryons the suppression of excited states does not work as well as for mesons. For a review

on these issues, see [2]. While ultimately progress may come from Lattice QCD, there are

severe difficulties obtaining reliable results at the moment, such that we are not aware of

available results competitive to the ones used here. Note also available calculations in the

framework of Baryon Chiral Perturbation Theory [49] (see e.g. [32, 50] for recent analyses

and references therein). There, the scaling of the various matrix elements can be analyzed

from the chiral properties of the operators, leading to a systematic classification scheme.

However, it is typically accompanied by NDA estimates, as unknown low-energy constants

prevent quantitative estimates. We therefore do not use their results here quantitatively.
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The involved calculations on the nuclear and atomic/molecular level are in very dif-

ferent shape, uncertainties ranging from a few to several hundred percent; these are com-

mented upon in the appropriate subsections. These relatively large uncertainties are in a

sense of minor importance for the experimental searches, since NP contributions can easily

be larger than the SM ones by several orders of magnitude. However, they are essential

in obtaining bounds for NP parameters from the experimental limits. Readers not inter-

ested in their detailed discussion find the final expressions for the corresponding EDMs

in eqs. (2.3), (2.5) and (2.31). For paramagnetic systems, we use the results from [23],

but perform an update to include the very recent measurement with thorium monoxide

(ThO) [51]; its results are summarized in table 1.

2.1 The neutron EDM

The neutron EDM can be related to the coefficients in eq. (2.1) by QCD calculations alone.

Here we collect the necessary formulae, for details see again e.g. the review [2]. This EDM

is dominated by contributions from the (C)EDMs of its constituents and the Weinberg

operator, while four-quark operators play a minor role.

The QCD sum rule calculation for the contribution from the quark (C)EDMs

yields [52, 53]

dn
(

dγq , d
C
q

)

/e =
(

1.0+0.5
−0.7

) [

1.4
(

dγd(µh)− 0.25 dγu(µh)
)

+ 1.1
(

dCd (µh) + 0.5 dCu (µh)
)] 〈q̄q〉(µh)

(225 MeV)3
, (2.3)

where µh ∼ 1 GeV denotes a hadronic scale. In the following we suppress the scale depen-

dence in the notation for brevity and evaluate at µh = 1 GeV unless stated explicitly. The

uncertainty given here for these matrix elements is similar to the estimate given in [52].

However, given the results in [53], we extended the range to include lower values.2 This

incorporates larger values for the normalization factor λn, determined by the matrix ele-

ment of the nucleon and its interpolating current, see [54–56].3 We note that alternative

treatments are compatible within the estimated level of precision, however indicating in

some cases higher sensitivity, see e.g. [59]. Note furthermore that the quark condensate

〈q̄q〉 in this formula combines with the light quark masses in the Wilson coefficients as [60]

(mu +md)〈q̄q〉 = −f2πm2
π +O(mu,d) , (2.4)

which reduces the corresponding uncertainty.

For the Weinberg operator, the contribution reads [61]4

|dn(CW )/e| =
(

1.0+1.0
−0.5

)

20 MeVCW , (2.5)

with the sign left undetermined. This expression is based on several estimates that all lead

to similar results, but is not a direct calculation.

2Note that the analytical differences have minor numerical impact.
3Note, however, that the rather large central value in [54] does lead to a too small value for the nucleon

sigma term σπN when using the sum rule in [57, 58].
4Here and in eq. (2.6) the authors state a 100% uncertainty for the result, which we incorporate as

allowing for twice and half the computed value.
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Finally, for the sake of completeness, for an exemplary four-quark contribution to the

neutron EDM the sum rule estimate results in [62]

|dn(Cbd)/e| = 2.6
(

1.0+1.0
−0.5

)

× 10−3 GeV2

(

Cbd(µb)

mb(µb)
+ 0.75

Cdb(µb)

mb(µb)

)

, (2.6)

again with an unspecified sign. Note that here four-fermion operators involving the beauty

quark, defined analogously to their equivalents with light fermions, contribute below the

b-quark mass scale effectively via an effective two-gluon coupling of the down quark, which

is also why the coupling is to be evaluated at µb ∼ mb. The contribution from up-type

quarks is ignored, as enhanced couplings in that sector (corresponding e.g. to tanβ ≪ 1 in

a Type II model or to |ςu| ≫ 1 in the A2HDM) are usually excluded.

2.2 EDMs of atoms

For atoms, Schiff’s theorem [63] implies a vanishing EDM in the non-relativistic limit

for systems of particles whose charge distribution is identical to their EDM distribution.

The limits from the non-observation of these EDMs are then related to violations of the

conditions for this theorem, and separated into two classes, depending on which of the

approximations is more strongly violated. For reviews on atomic calculations, see e.g.

refs. [29, 46].

In paramagnetic atoms, i.e. atoms with non-vanishing total angular momentum, rel-

ativistic effects are important, which are largely enhanced for atoms with a large proton

number [64–66], scaling at least like d ∼ Z3. This implies a sensitivity mainly to the

electron EDM, but also electron-nucleon interactions are enhanced, described by

HeN =
GF√
2

∑

N=n,p

(

C̃N
S

(

N̄N
)

(ēiγ5e)+C̃
N
P

(

N̄iγ5N
)

(ēe)+C̃N
T

(

N̄iγ5σ
µνN

)

(ēσµνe)
)

. (2.7)

The coefficients of both classes of contributions are estimated in atomic multi-body calcula-

tions. In some publications, these operators are classified instead according to their isospin,

HX
eN =

∑

N

[

N̄Γ1
X

(

C
(0)
X + C

(1)
X τ3

)

N
]

(

ēΓ2
Xe
)

, (2.8)

where X = S, P, T and the Dirac structures Γ1,2
X can be read off from eq. (2.7).

In diamagnetic atoms, where the total angular momentum vanishes, the finite size

of the nucleus is the main source for the violation of Schiff’s theorem. The dominant

contribution to the corresponding EDM stems from its nuclear Schiff moment, which can

be expressed in terms of the nucleon EDMs and pion-nucleon couplings, which are in turn

related to the basic terms in eq. (2.1). Although the quark CEDMs typically give the

dominant contribution, the above electron-nucleon interaction is relevant as well.

For an atom with proton number Zp, neutron number Zn and consequently nucleon

number A = Zn + Zp, the parameter combinations effectively contributing to the EDMs

read (see again e.g. [29, 46])

AC̃S ≡ ZpC̃
p
S + ZnC̃

n
S and 〈σ〉atC̃at

P,T ≡ 〈σn〉atC̃n
P,T + 〈σp〉atC̃p

P,T , (2.9)

– 6 –
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where 〈σN 〉at denotes the sum over the spin of the indicated nucleon species in the cor-

responding nuclear state, and we used 〈σ〉at = 〈σn〉at + 〈σp〉at and 〈σi〉at = 〈σi〉atI/I,
where I denotes the total nuclear spin. The spin sums stem from the quantum-mechanical

expressions derived from the pseudoscalar operator N̄γ5N . In this equation, the contri-

bution from the first term in eq. (2.7) is seen to be additionally enhanced, because the

contributions from neutrons and protons enter spin-independently. This renders this term

dominant for paramagnetic systems, as for the other two coefficients closed shells in the

nucleus barely contribute. In diamagnetic atoms, it does not contribute at leading order,

however, which is why the relative influence of the other two terms is relatively enhanced.

In fact, if present, among the electron-nucleon interactions the third term is typically dom-

inant in this case.

In general, the definitions for C̃
(at)
X imply a dependence of these coefficients on the

system considered. However, because of (Zn + Zp)/A = 1 and C̃n
S ≈ C̃p

S , this is usually

neglected in the case of C̃S . More importantly, the ratios ZN/A are approximately universal

for the systems considered here, leading to a universal C̃S even for C̃n
S 6= C̃p

S [23]. However,

for the spin-dependent terms the relative weights are not atom-independent, such that C̃at
P,T

depend on the atom if C̃n
P,T 6= C̃p

P,T . To remind the reader of that fact, we added the label

‘at’ on the corresponding quantities.

Expressed in terms of the isospin coefficients, the effective contributions correspond to

GF√
2
AC̃S = AC

(0)
S − (Zn − Zp)C

(1)
S and (2.10)

GF√
2
〈σ〉atC̃at

P,T = 〈σ〉atC(0)
P,T − (〈σn〉at − 〈σp〉at)C(1)

P,T . (2.11)

Note again that the coefficient of the triplet contribution is neither atom-independent

nor generally small in the latter case; for example, 〈σp〉Xe ≈ 〈σn〉Xe/3 and 〈σp〉Hg ≈
〈σn〉Hg/10 [67], implying (〈σn〉at − 〈σp〉at)/〈σ〉at ∼ 1 for the latter. Note furthermore that

the coefficient for C
(1)
P is sometimes mistakenly given as (Zn − Zp)/A.

2.2.1 The EDM of paramagnetic systems

The EDM of paramagnetic systems is dominated to very good approximation by the contri-

butions from de and C̃S , as explained above. The presently most constraining measurement

from this class is performed with ThO [51]. Their result is given in terms of an angular

frequency, corresponding to an energy shift, which can be parametrized as

ω = 2π

(

Wd

2
de +

Wc

2
C̃S

)

, (2.12)

using the conventions from [23] for the atomic constants Wd,c. For these, we obtain Wd =

−(3.67± 0.18)× 1025Hz/e cm from [68–70] and Wc = −(598± 90) kHz [69]. Note that the

calculations for the former are consistent; we use the value given in [70] (corresponding to

Eeff = 75.6GV/cm), and enlarge only slightly the uncertainty to 5% due to the rather large

difference to the central value in [69]. Note furthermore the consistency within uncertainties

between the explicit calculations and the analytical estimate in [71].

– 7 –
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Input Limit for |de| (95% CL) Limit for |C̃S |(95% CL)

Result w/o ThO [23] 1.4× 10−27e cm 7× 10−8

Including ThO, C̃S bounded by Hg 1.0× 10−27e cm 7× 10−8

Including ThO, C̃S bounded by ThO (n = 3) 0.35× 10−27e cm 2.3× 10−8

Including ThO, C̃S bounded by ThO (n = 2) 0.25× 10−27e cm 1.6× 10−8

Including ThO, C̃S bounded by ThO (n = 1) 0.16× 10−27e cm 0.8× 10−8

ThO only, C̃S = 0, 90% CL [51] 0.089× 10−27e cm†,‡ 0.6× 10−8,‡

†: using Wd from [69].
‡: theory errors neglected.

Table 1. New limits on the electron EDM and C̃S , including the measurement in the ThO

system [51], see text.

Since each measurement only constrains a combination of the two contributions, con-

servatively no constraint on the electron EDM alone can be obtained from any single

measurement. The combination with previous measurements, performed with thallium

(Tl) atoms and ytterbium fluoride (YbF) molecules [72, 73] allows for a model-independent

determination of the electron EDM, which improves significantly using in addition informa-

tion from the mercury (Hg) system [23], see figure 1. However, in contrast to the situation

in [23], the Hg measurement does not provide a competitive bound on C̃S compared to

the ThO one when setting de to zero. Therefore, this procedure results in an extremely

conservative bound,

|de| ≤ 1.0× 10−27e cm (95% CL) , (2.13)

which is allowing for arbitrarily large cancellations between the different contributions and

includes conservative estimates for the uncertainties of the various coefficients. In addition

to this value, we obtain additional ones using assumptions on the maximal amount of

fine-tuning: we restrict the contribution from C̃S alone not to exceed n = 1, 2, 3 times the

measured limit for ThO and use this as an additional constraint, thereby using effectively

the ThO result twice. While this is clearly not as rigorous as the above limit, it is still more

conservative than the common procedure to set the contribution from the electron-nucleon

interaction simply to zero. This yields the inner solutions in figure 1; the corresponding

upper limits for de and C̃S are given in table 1, together with the values quoted in [51], which

are obtained by setting the other contribution to zero and neglecting theory uncertainties.

Note that, with a second competitive measurement, de and C̃S can be extracted again

without additional assumptions, see again [23]. In the phenomenological section below,

we use all values presented in table 1, in order to demonstrate the progress due to the

new measurement and to compare the various upper limits. We consider n = 2 already

a conservative choice, since there is no dynamical relation between the two contributions,

rendering large cancellations unlikely. Nevertheless, the necessity to introduce this kind of

assumption demonstrates the importance of independent measurements in other systems,

ideally with strongly differing values for the ratio Wd/Wc like, e.g., rubidium.

– 8 –
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Figure 1. The constraint for the electron EDM (95% CL) from the measurements in paramagnetic

systems, see text. Left: global fit in comparison to the results from [23]. Right: zoom, showing

only the ThO measurement [51] and the global fits.

2.2.2 The EDM of diamagnetic atoms

For diamagnetic atoms mainly finite-size effects of the nucleus determine the EDM. More

specifically, its main source is the CP-odd nuclear Schiff moment5 [63]. Although contri-

butions from the nucleon EDMs are present as well, it is dominated by T, P -odd nuclear

forces. These are represented by the interference of CP-even and -odd pion-nucleon interac-

tions, the latter of which depend on the CEDMs of the up and down quark and four-quark

operators (see again e.g. [29]). All of the necessary calculations are very involved, and

the wide range of results indicates that the related theoretical uncertainties are large; for

recent discussions see, e.g., [32, 34].

The first step, namely relating the atom EDM to the Schiff moment, is parametrized as

ddiaat (S) = 10−17e cm× Cat
Schiff × S

e fm3 , (2.14)

with the constant Cat
Schiff being the result of multi-particle computations, modeling the

electron-nucleon configurations in the corresponding atom. Due to the recent measurement

in [78], the interest in these calculations has increased especially for Hg, leading to two

recent results [67, 79],6 from which we infer

CHg
Schiff = −2.6± 0.5 [67, 80] , (2.15)

5Note that the operator used in the corresponding calculations receives corrections, the precise form of

which are under discussion [74, 75]. These corrections are, however, suppressed by 1/Z and therefore not

relevant for the heavy systems under consideration here. Furthermore, there are relativistic corrections at

the level (Zα)2 [76, 77], which are included in a subset of the calculations, only.
6Note that we disagree with the statement in [34] that the sign of one calculation were incorrect.
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ref. a0
[

e fm3
]

a1
[

e fm3
]

b
[

e fm3
]

[87] 0.00004 0.055 –

[88] 0.010 (0.002–0.010) 0.074 (0.057–0.090) –

[84]† (0.009–0.041) (−0.027–0.005) (0.002–0.013)

† Note that we do not agree with the authors of [34] in that the SIII Skyrme interaction

results in [84] were the most trustworthy of their calculations. In fact, it is shown in

ref. [88] that this interaction yields the worst results in reproducing the observables

which can be used as experimental crosschecks, which is why the authors of [84]

themselves regard it as critical.

Table 2. Recent calculations for the coefficients relating the Schiff moment of mercury to the

CP-violating pion-nucleon coupling constants. The values singled out in the second line are the

“preferred values” quoted in the corresponding publication, the values in brackets show the range

of values obtained with different Skyrme interactions, where available.

which is now in agreement with the updated value of [79] (the preliminary result reads

CHg
Schiff = −2.46 [80]), strengthening the confidence in these calculations. The value also

agrees with the earlier calculation [81] and is reasonably close to an old estimate [82].

In the next step, the Schiff moment is related to the CP-odd and -even πNN coupling

constants [83], parametrized as [84] (note the different sign conventions for these constants

used in the literature)

S = gπNN

[

(a0 + b) ḡ
(0)
πNN + a1 ḡ

(1)
πNN + (a2 − b) ḡ

(2)
πNN

]

. (2.16)

The isotensor coefficient is set to zero in the following, as its effect is suppressed by an

additional factor of the mass difference of light quarks [85]. The CP-even coefficient is

given by gπNN = 13.17 ± 0.06 [86], the uncertainty of which is negligible in this context.

The corresponding nuclear calculations for mercury span a wide range and have in the

case of a1 also different signs in some of the calculations, see table 2. While in principle

the calculations in [84] are more advanced than the previous ones, for mercury at some

stage all the interactions used show problems, and the differences between the calculations

are not well understood [84]; in absence of errors in one or several of the calculations,

the problem might stem from the fact that mercury is a soft nucleus [84]. We therefore

estimate conservatively the following ranges:

a0 + b = (0.028± 0.026) e fm3 and a1 = (0.032± 0.059) e fm3 , (2.17)

covering the full range of results shown in table 2. We note that the possibility of vanishing

a1 implies that no constraint can be obtained conservatively on the corresponding isovector

combination of CEDMs. Below we will show results for a representative value, in order

to illustrate the potential of this observable, given a more reliable theoretical situation.

Regarding the coefficient a0, we point out that the tiny value obtained in [87] might be

the result of accidental cancellations, see the discussion in [88]. Finally, the parameter b

has so far only been calculated by one group; given the unclear situation, an additional

independent calculation would be worthwhile.
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In the last step, the CP-odd πNN -couplings have to be related to the (C)EDMs of

quarks. For this, typically a relation from the partially conserved axial current is used for

the pion and QCD sum rules for the remaining nucleon matrix elements of quark currents.

The main difficulty in this case is that for baryon sum rules in external fields the Borel

transform does not exponentially suppress the contributions from excited states, leading

to a large uncertainty. For the isovector coupling, this can be improved by tuning an

unphysical parameter to suppress these higher order terms, leading to [85]

ḡ
(1)
πNN

(

d̃
)

=
(

2+4
−1

)

× 10−12 d̃u − d̃d
10−26cm

|〈q̄q〉|
(225 MeV)3

. (2.18)

In the isoscalar sector a similar tuning is not possible, allowing for [85]

ḡ
(0)
πNN = (0.5± 1.0)× 10−12 d̃u + d̃d

10−26cm

|〈q̄q〉|
(225 MeV)3

, (2.19)

thereby also questioning the sensitivity to this combination of CEDMs. An additional

contribution to g
(1)
πNN comes from four-quark operators, reading [33, 62, 89, 90]7

ḡ
(1)
πNN

(

Cqq′
)

=
〈q̄q〉
2fπ

∑

q=d,s,b

Cqd 〈N |q̄q|N〉 (2.20)

=
〈q̄q〉
2fπ

(

Cdd
σπN

mu +md
+ Csdκ

220 MeV

ms
+ Cbd

2mN

3β̃mb

(1− 0.25κ)

)

(2.21)

= −(6± 3)× 10−3GeV3

(

0.6
Cdd

md
+ 3.3κ

Csd

ms
+ (1− 0.25κ)

Cbd

mb

)

, (2.22)

where naive factorization has been used for the four-quark matrix elements. Here κ

parametrizes the uncertainty in the strange quark content of the neutron, we use σπN =

〈N |muūu + mdd̄d|N〉 = (59 ± 7)MeV [92], and β̃ = 11 − 2nl/3 for nl light quarks [90].

Recent lattice studies [93–96] (see also [97–101]) indicate a smaller value for κ than as-

sumed previously (see e.g. [102] and references therein), thereby reducing the influence of

the strange quark on EDMs. However, while agreeing on a smaller order of magnitude, the

range implied by these calculations is still relatively large. We combine them to arrive at

κ ≡ 〈N |mss̄s|N〉
220 MeV

= 0.22± 0.02± 0.10 , (2.23)

where we again chose a conservative range for the central value, reflected by the second

uncertainty, while the first one is of statistical origin. However, as for the neutron, the

four-quark contributions are subleading in 2HDMs, see the discussion in section 4.

The Schiff moment receives contributions from the nucleon EDMs as well. While

this contribution is not expected to be dominant, the resulting constraint for the neu-

tron EDM is actually of the same order like the one from the dedicated experiments;

using e.g. eq. (2.14), the range for CHg
Schiff given in eq. (2.15) and the expression S(dn) =

1.9 fm2dn [103] (for simplicity with its central value), we obtain |dn| ≤ 7.8 × 10−26e cm,

which is only about a factor of two weaker than the present direct limit [104]. However,

there is no way to combine these limits, therefore we just consider the latter in the following.

7Note that we correct here several typos with respect to the numerical evaluation in [62]. Our result

also slightly differs numerically from the one quoted in [33]; we use in the evaluation eq. (2.4), together

with [91] m̄(µh) ≡ (mu(µh) +md(µh))/2 = 4.7+0.9
−0.3 MeV, fπ = 92.4MeV and mπ = 137MeV.
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Additional sources from electron-nucleon interactions and the electron EDM are

present. Regarding the latter, the value usually used in the literature for mercury reads

dHg(de) = 1.16× 10−2de [105]. The corresponding calculation, however, shows a high sen-

sitivity to higher order effects; the “corrections” to a previous estimate [106] amount to

∼ 200% and change the sign. The authors point out the sensitivity to correlation effects

(which have been found to be large for mercury for the coefficients discussed above), mak-

ing a new calculation mandatory. In light of this situation we do not see a way to extract

a meaningful upper limit on the electron EDM from mercury until the theoretical situa-

tion improves. However, even taking the central value quoted above, the bound would be

weaker than the one from paramagnetic systems.

The electron-nucleon interactions are induced via the three operators in eq. (2.7). In

this case, the C̃S contribution is suppressed, as to leading order its contribution from closed

electron shells vanishes; generically this leads to a dominance of the term proportional to

C̃T , if it is present. However, for the 2HDMs considered here, only the scalar-pseudoscalar

operators are present. The contributions proportional to C̃P are often neglected, as its

coefficient is one order of magnitude smaller than the one of C̃S , even in this case, due to the

suppression by the nucleon mass. However, expressing the corresponding matrix elements

in terms of coefficients of the four-fermion ones shows basically the opposite behaviour,

rendering the sensitivity to fundamental parameters similar. All types of contributions are

relevant in some part of parameter space [33].

Given the large theoretical uncertainties in the contributions to the Schiff moment,

the constraints on the electron-nucleon interaction might be the most important one at the

moment. The coefficients in the relation dHg

(

C̃S,P

)

are obtained again in atomic calcu-

lations; usually only the coefficient of the tensor operator is calculated and approximate

analytic relations are used to obtain the others8 [29, 67, 106, 107]:

C̃S
I

I
↔ 1.9× 103

(

1 + 0.3Z2α2
)−1

A−2/3µ−1 × C̃at
T 〈σ〉 and (2.24)

C̃N
P ↔ 3.8× 103

A1/3

Z
C̃N
T , (2.25)

where µ denotes the magnetic moment of the nucleus in terms of nuclear magnetons µN . We

expect the uncertainty for these relations to be relatively small, as also indicated by a recent

explicit calculation for a variety of atoms [67], which is why we neglect it in the following.

For the tensor coefficient, parametrized by

dHg

(

C̃T

)

= CHg
CT

× 10−20C̃Hg
T 〈σ〉e cm , (2.26)

recent results read CHg
CT

= −5.1 [67] and CHg
CT

= −4.3 [79]. Thus, using eqs. (2.24)

and (2.25), we obtain

dHg

(

C̃S , C̃P

)

= (1.0± 0.1)
(

−4.7 C̃S + 0.56 C̃P

)

× 10−22e cm , (2.27)

where we used µHg = 0.506µN
9 and 〈σ〉 = −1/3 I/I, the estimate from a simple shell

model for the nucleus, and the common convention d = dI/I.

8Note the different conventions for dT,P
at in different publications, e.g. dT,P

at = 〈σ〉dP,T
at versus d

T,P
at =

I/IdT,P
at .

9Source: WebElements (http://www.webelements.com/).
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The next step is to relate the coefficients C̃S,P to the effective operators discussed above.

The contributing operators are four-fermion operators with electrons and light quarks, and

an effective electron-2-gluon vertex from integrating out the heavy quarks. Again neglecting

the up-type quark contributions, they can be parametrized as follows [33, 62, 89, 90]:

C̃S =

(

Cde
σπN

mu +md
+ Cseκ

220 MeV

ms
+ Cbe

2mN

3β̃mb

(1− 0.25κ)

)

(2.28)

=

(

0.040
C̃de

md
+ 0.220κ

C̃se

ms
+ 0.070(1− 0.25κ)

C̃be

mb

)

GeV , (2.29)

where the same matrix element appears as for Cqq′ , see eq. (2.20). The missing ingredients

are the expressions for C̃P in terms of the coefficients of four-fermion operators. We use

the estimates for the isospin coefficients (cf. eqs. (2.8) and (2.11)) [33, 90]

C̃
(0)
P ≃ −0.375 GeV

∑

q=s,b

C̃eq

mq
and

C̃
(1)
P ≃ −0.806 GeV

C̃ed

md
− 0.181 GeV

∑

q=s,b

C̃eq

mq
, (2.30)

again neglecting up-type quark contributions.

Finally, from these considerations we obtain the following result for mercury:

dHg =
{

−(1.0± 0.2)
(

(1.0± 0.9) ḡ
(0)
πNN + 1.1 (1.0± 1.8) ḡ

(1)
πNN

)

+ (1.0± 0.1)× 10−5
[

−4.7 C̃S + 0.49 C̃P

]}

× 10−17 e cm , (2.31)

with the expressions for ḡ
(1,0)
πNN given in eqs. (2.18), (2.19) and (2.22).

The possible vanishing of the coefficients of the isoscalar and -vector CEDM contri-

butions implies that conservatively no bound can be obtained for them. Usually these

contributions are assumed to be the dominant ones in this system, underlining the impor-

tance of theoretical developments to clarify the situation. Below, we will show the limits

that would result for the central values in eq. (2.31), however only for illustration purposes.

2.3 Renormalization of the effective operators

To connect the relevant Wilson coefficients at the hadronic scale with the short-distance

calculation at the electroweak one, the renormalization group running has to be taken

into account. In general, QCD effects tend to reduce the value of the different coefficients

(see e.g. [108]),10 apart from the four-quark one [109, 110]. We neglect its mixing into

the CEDM because of its smallness; however, we take its enhancement into account in

the estimate below. As pointed out in [108], the mixing of the CEDM- into the EDM

operators constitutes a large effect. On the other hand, we consider the NLO running of

minor importance at present, given the large uncertainties in the hadronic matrix elements.

10Note that the anomalous dimensions of the operators OW and Oγ
f have been used with the wrong sign

in several publications in the past.
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Furthermore, the mixing of the Weinberg operator into the CEDM ones is of higher order

in αs and therefore neglected in the following. For models, in which this is not the case,

the operator mixing has recently been discussed in [110]. Denoting C =
(

dγf/2, d
C
f /2, CW

)

(see eq. (2.1)), this results in the following leading order expressions [108, 111–113]:

dCq(µ)

d logµ
=
αs(µ)

4π

(

γ(0)q

)T
Cq(µ) , with (2.32)

γ(0)q ≡







γγ 0 0

γCγ,q γC 0

0 0 γW







=







2CF 0 0

8CF qq 10CF − 4NC 0

0 0 NC + 2nf






, (2.33)

where β0 = (11NC − 2nf )/3, NC = 3, CF = 4/3, nf denotes the number of active flavours

and qq = 2/3,−1/3 the charge for up- and down-quarks, respectively.

As we expect the Higgs masses to be of the order of mt (as is the mass of the already

observed scalar), we choose µtH ∼ mt as the common matching scale where top quark and

scalars are integrated out. We use the solution to eq. (2.32) to scale down to µ ∼ mb,

where in addition the beauty quark is integrated out, thereby matching OC
b onto OW . The

matching condition reads [112, 114]

CW (µ−b ) = CW

(

µ+b
)

+
g3s

8π2mb

dCb (µb)

2
, (2.34)

where µ+b (µ
−
b ) refers to the same scale µb, but in the nf = 5(4) theory, respectively.

We emphasize that this matching, together with the larger anomalous dimension of the

Weinberg operator, implies a relative enhancement of the contribution involving charged-

scalar exchange compared to the one involving neutral scalars, as the suppression from

the running is weaker for the CEDM contribution. When going to the nf = 3 theory, the

charm contribution to CW becomes local, which is however severely suppressed because of

mc ≪ mt, and therefore neglected. The solution of eq. (2.32) reads

dγq (µh)

2
= ηκγ

dγq (µtH)

2
+

γCγ

γγ − γC
(ηκγ − ηκC )

dCq (µtH)

2
, (2.35)

dCq (µh)

2
= ηκC

c−hη
κC

b−cη
κC

t−b

dCq (µtH)

2
, and (2.36)

CW (µh) = ηκW

c−hη
κW

b−c

(

ηκW

t−bCW (µtH) + ηκC

t−b

g3s(µb)

8π2mb

dCb (µtH)

2

)

, (2.37)

where we introduced ηi−j = αs(µi)/αs(µj), η = ηt−h, and κi = γi/(2β0). For the sake of

simplicity, eq. (2.35) is displayed for constant nf throughout the integration, but its change

is taken into account in the numerical analysis.

Finally, regarding the Wilson coefficients of the semileptonic four-fermion operators,

we note that they scale like the quark masses, therefore the combinations Cqe/mq and

Ceq/mq are scale-independent.
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System Present limit (|d|/(e cm)@95% CL) Expected limit (ST/MT)

n 3.3× 10−26† [104] O
(

10−27/10−28
)

[116–123]

e ≤ 1.0× 10−27 , see table 1 O
(

10−29/10−31
)

[124–133]

199Hg 3.1× 10−29 [78] ≤ 1× 10−29 (a)

129Xe 6.6× 10−27‡ [136] O
(

10−30
)

[137, 138]

aInformation taken from [134]; see also [135].
†: converted to 95% CL, in the publication given at 90% CL.
‡: given in the paper as (+0.7± 3.3± 0.1)× 10−27e cm.

Table 3. Present limits on absolute values of EDMs at 95% CL for the most sensitive systems,

together with short term (ST) and mid term (MT) expected sensitivities.

3 Experimental status

At present, the limits most sensitive to the various sources discussed above stem from

searches for EDMs of Tl [72], YbF [73], ThO [51], Hg [78] (see also [115] for a more

detailed discussion) and the neutron [104], see table 3. The physical origin of their EDMs

is quite different, making them complementary sources of information. Although these

limits have different orders of magnitude, their different dependences on the fundamental

parameters of the theory actually lead to similar sensitivities.

Several developments allow to expect significantly improved bounds or a non-zero

measurement in the near future, see also e.g. [2, 29–32]. The first option is to reduce the

uncertainties within the established methods, but in the longer term techniques exploiting

different features like octupole deformation hold the promise of qualitatively improving the

sensitivities further. Regarding octupole deformation, important experimental progress

has been reported recently in [139].

There are several experiments for the neutron EDM planned and running or under con-

struction (see [140] for a recent result and again table 3) using different techniques to obtain

higher neutron densities to achieve an up to two orders of magnitude improved bound.

Regarding the electron EDM and the electron-nucleon coefficient C̃S , with the ex-

periments for thallium completely dominated by their systematic uncertainties, significant

advancement seems difficult within this system. An improvement, again up to two orders

of magnitude, might come instead from the cesium, rubidium and francium systems [124–

131], which can be stored to obtain longer oscillation times. The expected limits correspond

to probing the electron EDM down to . 10−29e cm in the midterm future (2-3 years), and

even 10−31e cm has been envisaged for the farther future in [129]. Further measurements

with YbF are expected to strengthen the present limit in the short term [73] and various

experiments are underway to gain sensitivity down to ∼ 10−30e cm or further [132, 133]

(see e.g. [31, 32] for a more complete list). A key technique is the rejection of systematic

errors by using the so-called Ω-doublet structure of a subset of paramagnetic molecules

(characterized by two very closely lying states of opposite parity, leading to an extremely

high polarizability), as demonstrated in the recent experiments [141] — so far obtaining a

less stringent limit than the one from YbF — and [51].
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In the context of the analysis in [23], the expected presence of several measurements

with similar sensitivities will allow to improve model-independently the limits on the elec-

tron EDM as well as the constant C̃S , taking into account possible cancellations and at

the same time removing the input from the Hg system and assumptions on fine-tuning.

In the future, trapped molecular ions might also be used as sensitive probes for EDMs,

however, at the moment there are still severe experimental and theoretical challenges to

overcome. Finally, also solid state systems are being explored as sensitive probes for the

electron EDM [142, 143]. While again some experimental as well as theoretical progress is

necessary before competitive results can be achieved, recent results show the progress in

this field [144].

For diamagnetic systems, apart from some improvement from the Hg system itself [78,

134, 135], significant improvement is aimed at using xenon (129Xe), for which the theo-

retical treatment is similar to the one described above. Further progress is expected with

different enhancement mechanisms like intrinsic octupole moments and, related to that,

closely neighboured parity doublets, which allow for large enhancement factors for the

corresponding Schiff moments. Prominent examples are radium and radon; however, the

calculation of the corresponding matrix elements is more complicated, making again the-

oretical uncertainties a critical issue. Furthermore, also diamagnetic molecules are under

investigation. A first measurement exists in the TlF system [145], but the planned experi-

ments are expected to improve greatly on the present limits, see again e.g. [31] for a recent

list of experiments. Generally, due to the various possible contributions to the EDMs,

measurements in different diamagnetic systems are even more necessary to disentangle the

sources and potentially differentiate between NP models. Ultimately, this could be done

in an analysis similar to the one in paramagnetic systems [23], but for that a lot more

information than presently available is necessary.

Finally, new techniques are being used for measuring the EDMs of charged particles

directly by using a storage ring [146–149], e.g. for muons, where the present limit stems

from a storage ring experiment already [150], the proton [151], which is supposed to be

tested down to 10−29e cm, or the Deuterium nucleus, which has the advantage of being

lightly bound and allowing thereby to circumvent the large uncertainties present e.g. in

the nuclear calculations for mercury. There are also proposals to use the technique for

molecular ions, see e.g. [152, 153].

4 EDMs in 2HDMs

We now address the model-dependent second step in relating EDMs to model parameters,

i.e. calculating the relevant effective coefficients in specific models. The model dependence

is in some sense more severe in EDMs than for other observables, for the following reason: as

generic one-loop contributions are excluded already, an additional mechanism is necessary

to render them small. This implies that the usual power counting is not sufficient, but

that this suppression mechanism has to be incorporated. As a result, even if a NP model

has a 2HDM as an intermediate effective theory, this does not necessarily imply that limits

calculated at that level hold for the full theory, as can be seen e.g. in many SUSY models.
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In this section we limit the discussion to 2HDMs. While generally even for these, limits

cannot be given model-independently, we hold the discussion as general as possible, and

the results, while given in the parametrization of the A2HDM, can be easily transferred to

other frameworks.

4.1 Contributions to EDMs in 2HDMs

We start by listing the contributions to the different effective operators in eq. (2.1) within

a 2HDM. As most recent analyses have been done within a SUSY framework, we will

comment on the differences to the situation there when appropriate.

• Four-fermion operators: they induce the leading contributions in the SM [2], but

there their effects remain extremely small. In 2HDMs, they are induced by CP-

violating Higgs exchanges. While they can have contributions at tree level, in that

case a further suppression by two light-fermion Yukawa couplings applies. If these

are proportional to (or of the order of) the corresponding masses (as e.g. in models

with a Z2 symmetry, the A2HDM, MFV, Type III, . . .), the ones with light fermions

are suppressed to an acceptable level. The proportionality implies also that the

induced coefficients divided by the corresponding masses are family-universal. Those

involving heavy fermions do not contribute directly, but induce higher-dimensional

operators like
(

f̄f
)

G̃G, again on an acceptable level, cf. eqs. (2.6) and (2.22).

There are two categories: CP-violating four-quark operators contribute to the nu-

cleon EDM directly, or to the Schiff moments of nuclei by inducing CP-violating

meson-nucleon interactions. As we will show below, for Higgs couplings of the or-

der of the fermion masses, in the 2HDM both contributions are subleading and can

be neglected. In SUSY, they can receive contributions proportional to tan3 β from

threshold corrections, rendering them more important there and even dominant for

very large values of tanβ [62, 154].

The second category consists of semileptonic operators. These induce CP-violating

electron-nucleon couplings in atoms, as discussed in section 2.2. While in principle

they are as suppressed as their four-quark equivalents, they receive very strong en-

hancement in heavy atoms due to the large number of nucleons and electrons, making

their inclusion mandatory.

• Weinberg operator: the contribution to this operator starts at the two-loop-level in

2HDMs, schematically shown in figure 2(a). It is neither suppressed by small quark

masses nor by small CKM elements, and therefore is expected to be large. However,

for two reasons it is not completely dominating: first, the matrix element given in

eq. (2.5) is of the order of a light quark mass instead of a typical hadronic scale, and

second the RGE running yields a strong suppression, see eq. (2.32). As mentioned

before, the second point is also the reason why, contrary to naive expectations, the

neutral Higgs contribution is generally suppressed compared to the charged one,

cf. section 2.3. In SUSY, the graphs discussed here are typically subleading, which is

why they are often ignored.
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• (C)EDMs of light quarks: in the SM they vanish at the one- and even the two-loop

level, leading to a tiny result [155]. In a general 2HDM, however, they can be gen-

erated at the one-loop level and are by far the leading contributions, which is why

an additional mechanism for their suppression is necessary. An example are mod-

els with a Z2 symmetry, where these loops are CP-conserving like in the SM. In

the A2HDM, but also more generally in models where the Higgs couplings are re-

lated to CKM-matrix elements and quark masses, the one-loop contribution for the

light fermions is suppressed by at least one corresponding mass factor, together with

factors like m2
U/M

2
H± |VUd|2 or m2

D/M
2
H± |VuD|2 (U = u, c, t, D = d, s, b), rendering

them one to two orders of magnitude smaller than the contributions discussed in the

following. The reason is that the latter factors are circumvented in Barr-Zee(-type)

diagrams [156–158], see figure 2(b), which is why these two-loop contributions dom-

inate in this class of models. The corresponding contributions are given later in this

section. They receive contributions from neutral scalars, discussed in the above pa-

pers, but also from charged ones. These contributions have been discussed partly e.g.

in [159–161], but to the best of our knowledge e.g. the ones for the down-quark EDM

with a top and beauty quark in the loop are still missing. To construct a Barr-Zee

diagram with a charged Higgs, a second charged current is necessary; therefore there

are no contributions to the CEDMs from these graphs.

In SUSY, there are more one-loop contributions from loops with gauginos and

sfermions, generally leading to strong bounds on the imaginary parts of the cor-

responding couplings. From the Higgs sector, the two-loop contributions again dom-

inate, due to the arguments given above.

• Electron EDM: the SM contribution to this is tiny, as for mν → 0 it vanishes even

on the three-loop level [162]. In 2HDMs, the one-loop contributions are real unless a

neutrino coupling is involved, which is why the dominant contributions are again on

the two-loop level, from Barr-Zee diagrams. In SUSY, already on the one-loop level

sizable contributions appear from gaugino-slepton loops, therefore again the Higgs

contributions do not receive that much attention.

Because of the arguments given above, we will explicitly consider only the contributions

stemming from the two-loop diagrams and the semileptonic four-fermion operators impor-

tant for atoms and molecules. It should be emphasized again that the limits obtained

within 2HDMs are sensitive to the UV completion of the model, as their sensitivity to

two-loop contributions already shows. Especially in SUSY there are usually large one-loop

contributions dominating, which are not included here.

The contributions listed above are related to different sources of CP violation in

2HDMs: while e.g. the charged Higgs contribution to the Weinberg operator stems only

from CP violation in the Yukawa couplings of the model, diagrams involving neutral scalars

in general receive contributions from the Higgs potential as well. Before providing results

for specific diagrams, we discuss the different classes of contributions, pointing out their

general features.
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(a) (b) (c)

Figure 2. Classes of diagrams contributing to EDMs. (a) Contribution to the coefficient of the

Weinberg operator. (b) Expample of a Barr-Zee diagram, contributing to all (C)EDMs. (c) Generic

four-fermion contribution.

4.2 Charged Higgs contributions in 2HDMs

The Lagrangian for charged Higgs exchange can for vanishing neutrino masses be

parametrized as

LH±

Y =−
√
2

v
H+

{

ū
[

V ςdMdPR − ςuM
†
uV PL

]

d + ν̄ςlMlPRl
}

+ h.c. , (4.1)

where V is the CKM mixing matrix and the form reflects the fact that we will be mostly

concerned with the A2HDM, where ςu,d,l are complex numbers of O(1); for a general

2HDM, they are arbitrary matrices and the dependences on the quark mass matrices are

artificial, i.e. just a possible normalization. Note that we consider the latter form simply as

a phenomenological parametrization. For the contributions calculated explicitly below, this

implies only the generalization of the factors ςu,d,l. However, when these elements are indeed

arbitrary, other contributions are possibly dominant, since especially the suppression for

the one-loop contributions to (C)EDMs explained above can be spoiled. If the scaling does

approximately hold, the bounds obtained below are valid for the corresponding generalized

couplings.

4.3 Neutral Higgs contributions in 2HDMs

The flavour-diagonal Higgs couplings are parametrized analogously as

Lϕ0
i

Y =−1

v

∑

ϕ,f

ϕ0
i f̄ y

ϕ0
i

f MfPRf + h.c. , (4.2)

with the fields ϕ0
i = {h,H,A} denoting the neutral scalar mass eigenstates. Introducing

the notation F (f) for the species of a fermion, e.g. F (u) = F (c) = F (t) = u, we write the

fermion couplings to neutral scalars as

y
ϕ0
i

f = Ri1 + (Ri2 + iRi3)
(

ςF (f)

)

ff
for F (f) = d, l , and (4.3)

y
ϕ0
i

f = Ri1 + (Ri2 − iRi3)
(

ς∗F (f)

)

ff
for F (f) = u , (4.4)
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to allow for the general form of ςu,d,l. Here, R is an orthogonal matrix defined by M2
diag =

RM2RT , relating the mass eigenstates to the neutral scalar fields Si in the Higgs basis,

where ΦT
1 =

[

G+,
(

v + S1 + iG0
)

/
√
2
]

and ΦT
2 =

[

H+, (S2 + iS3) /
√
2
]

, and the fields Gi

are the Goldstone bosons absorbed by the gauge bosons: ϕ0
i = RijSj . In a general 2HDM,

the ςu,d,l are the matrices introduced in eq. (4.1), only the diagonal elements of which are

relevant here.

The fact that these interactions involve three neutral bosons, two of which have un-

known masses, and that the matrix R depends on the scalar potential, which is largely

unknown so far as well, renders these contributions very hard to deal with phenomenolog-

ically, even when a specific model like the A2HDM is assumed. To avoid these difficulties,

in the literature typically the dominance of the contribution from the lightest scalar is as-

sumed; this is however problematic, as we will discuss below. While we will still apply this

assumption occasionally to obtain indicative numbers for the neutral couplings, we can also

include new information compared to earlier analyses: thanks to the huge amount of data

collected recently by the LHC experiments and to lesser extend the Tevatron ones, we have

some information already on the matrix R. The collider data shows that the Higgs-like

state discovered at the LHC couples to W+W− and ZZ with a strength close to the SM

one; assuming that it corresponds to the lightest neutral scalar h, one gets |R11| > 0.80 at

90% CL [27, 163]. The orthogonality ofR implies then
√

|R21|2 + |R31|2 < 0.60 at 90%CL.

We now return to the assumption of dominating contributions from the lightest Higgs.

Since EDMs are T and therefore CP violating, the contributions from neutral scalars

typically involve the combinations Re
(

y
ϕ0
i

f

)

Im
(

y
ϕ0
i

f ′

)

. While the rotation matrix R is

unknown (to the extend discussed above), we do know that it is orthogonal. This property

yields one central relation for these couplings (ξd,l = 1, ξu = −1):

∑

i

Re
(

y
ϕ0
i

f

)

Im
(

y
ϕ0
i

f ′

)

= ξf ′ Im

[

(

ς∗F (f)

)

ff

(

ςF (f ′)

)

f ′f ′

]

. (4.5)

This sum is therefore independent of the scalar potential and obviously vanishes for f = f ′,

couplings ςf,f ′ with identical phases (e.g. real couplings, as for example present in Z2 models

or MFV as defined in [45]), and also for F (f) = F (f ′) when the ςf,f ′ are family-universal (as

in the A2HDM). In the expressions below, the terms are weighted typically by some function

of the neutral Higgs masses, making it most relevant for degenerate Higgs masses. However,

the expression implies that all contributions stemming from CP violation in the potential

involve mass differences of the neutral scalars, and that generally large cancellations can

be expected in the neutral sector.

The precise form of the matrix R depends on the potential for the scalar fields;

note that in general the mass eigenstates do not correspond to CP eigenstates. For a

CP-invariant potential, specifically, the rotation takes the simple form

RCPC =







cos α̃ sin α̃ 0

− sin α̃ cos α̃ 0

0 0 1






, (4.6)
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where α̃ is often denoted α− β in Z2 models, leading to

Rey
ϕ0
1

u Imy
ϕ0
1

u = −Im(ςu) sin α̃(cos α̃+Re(ςu) sin α̃) ,

Rey
ϕ0
2

u Imy
ϕ0
2

u = −Im(ςu) cos α̃(− sin α̃+Re(ςu) cos α̃) ,

Rey
ϕ0
3

u Imy
ϕ0
3

u = Im(ςu)Re(ςu) , (4.7)

with similar expressions for the remaining combinations. Note that in this case all con-

tributions vanish for real ςu,d, while in general mixing between the CP-odd and -even

components can induce CP violation as well.

The general argument above is strengthened by a second important observation,

namely that the scalar mixing angles are not independent of their masses. To be spe-

cific, let us consider the limit where the second scalar doublet Φ2 receives a very large

mass and decouples from the low-energy effective theory. In this limit, the (SM-like) light

Higgs has a mass M2
h ∼ O

(

v2
)

, while all the other scalars become heavy and degenerate,

i.e., M2
H = M2

A = M2
H± up to corrections of O

(

v2
)

. If the potential is CP symmetric, the

mixing angle in eq. (4.6) vanishes in the decoupling limit: tan α̃ ∼ O
(

v2/M2
H±

)

. More

generally, allowing for CP violation in the scalar potential, this limit yields the following

form for the scalar mixing matrix:

Rdec =







1 0 0

0 cos θCP − sin θCP

0 sin θCP cos θCP






+ O

(

v2/M2
H±

)

, (4.8)

with some potential-dependent angle θCP which vanishes if CP is conserved.11 This implies

Imy
ϕ0
1

f = 0 and, therefore, the cancellation of eq. (4.5) takes place only between ϕ0
2 and

ϕ0
3, which in addition have equal masses in this limit. Thus, in the absence of complex

Yukawa couplings, the sum of scalar contributions would vanish even with mass-dependent

weight factors. This fact is sometimes overlooked in the literature, leading to claims of

non-vanishing contributions in the decoupling limit which are not correct in this context.

Together, these observations imply two strong statements:

1. For a vanishing right-hand side in eq. (4.5), EDM contributions from neutral scalars

in 2HDM vanish for small as well as very large mass differences. Therefore, generally

large cancellations can be expected.

2. Even with the right-hand side present, the only contribution not suffering this sup-

pression stems from the factors ςu,d,l which determine also the charged Higgs inter-

actions.

In both cases, the approximation of simply taking the contribution from the lightest Higgs

is not a good one; specifically, it is not conservative.

11The exact relation is tan (2θCP) = Im(λ5)/Re(λ5) with λ5 one of the scalar potential parameters

defined in [27].
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4.4 The Aligned Two-Higgs-Doublet Model

We are now prepared to proceed and give the expressions for the relevant coefficients within

specific models. We do this exemplarily for the A2HDM [15, 17]. We discuss here only

the constraints from EDMs; for other phenomenological constraints, see [24–27].

In the A2HDM, the problem of FCNCs is circumvented by assuming at some scale

ΛA alignment of the two Yukawa matrices present for each fermion species. The flavour-

changing Higgs couplings are then determined by the CKM matrix and the three complex

parameters ςu,d,l mentioned above, constituting new sources for CP violation. The various

models with Z2 symmetry appear as limiting (CP-conserving) cases of these parameters,

see [15]. While renormalization induces some misalignment, the structure of the model

prevents these effects from becoming sizable [15, 17, 164, 165]. Note, however, that the

operators additionally generated by the misalignment are not relevant in this context, since

they are not flavour-diagonal.

The resulting Yukawa couplings have the form given in eqs. (4.1) and (4.2), where

now ςu,d,l are complex numbers of O(1) instead of matrices. Specifically, as mentioned

above, the right-hand side of eq. (4.5) vanishes in this case for two fermions of the same

electric charge.

We now turn to calculating the expressions for the different classes of diagrams in

the A2HDM, contributing to the effective coefficients in eq. (2.1). The phenomenological

analysis of these expressions is postponed to the next section.

4.5 Four-fermion operators

For the four-fermion interactions, cf. figure 2(c), we obtain for the A2HDM

Cff ′ =
√
2GF

∑

i

mfmf ′

M2
ϕ0
i

Re
(

y
ϕ0
i

f

)

Im
(

y
ϕ0
i

f ′

)

. (4.9)

Because the neutral Higgs coupling y
ϕ0
i

f is identical for fermions of the same charge, the

ratio Cff ′/(mfmf ′) is rendered family-independent. As noted above, the electron-quark

couplings are important for the EDMs of atoms and molecules. An estimate of the contri-

butions for the neutron from four-quark operators on the other hand reads

d4fn ∼ 7× 10−28e cm
∑

i

Rey
ϕ0
i

d Imy
ϕ0
i

d

(125 GeV)2

M2
ϕ0
i

, (4.10)

where we included the RGE enhancement by an approximate factor of five, cf. [110]. Note

that additionally the cancellation discussed above has to be considered. This implies at

most a moderate contribution, which is well below the two-loop contributions discussed

later. Therefore, we neglect it in the following. An analogous statement holds for mercury.

4.6 The Weinberg operator

As mentioned before, the Weinberg operator is of special importance, as its contribution is

neither suppressed by light quark masses nor by small CKM elements. Here we have calcu-

lated the different contributions in the A2HDM; our results agree with the results obtained

in [8, 166] when translating them into the language of complex propagators used there.
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4.6.1 Charged Higgs contribution

As described in section 2.3, we perform the analysis of the charged Higgs contribution in an

effective field theory framework [112, 114], which simplifies the problem to the calculation

of one-loop diagrams. The corresponding amputated diagram contains contributions from

two operators; the correct coefficient can be read off from the Dirac structure γµ/qγ5, for

which the additional contribution is absent [167]. Our result reads

dCb (µtH)

2
= −GF√

2

1

16π2
|Vtb|2mb(µtH) Im(ςdς

∗
u) xtH

(

log(xtH)

(xtH − 1)3
+

xtH − 3

2(xtH − 1)2

)

, (4.11)

where xtH = m2
t /M

2
H± , which is to be used in eq. (2.37) to obtain its contribution to

CW . We have checked that this result agrees with [114], noting that their Lagrangian for

charged Higgs exchange corresponds to ours for n = 2 scalar doublets, −Y12/Y11 = ςu and

Y22/Y21 = −ςd. Our common result in turn corresponds at the matching scale to the one

obtained in [166].

4.6.2 Neutral Higgs contribution

For the neutral Higgs contribution the full two-loop diagram has to be calculated, as for

a top quark in the loop internally only heavy degrees of freedom appear. The calculation

proceeds via the following steps: the three-gluon matrix element is obtained by using

from every field-strength tensor only the part containing derivatives, and summing over all

possible permutations, leading to (p3 = −p1 − p2)

〈O〉=−2

3
fabcCW ǫµa(p1)ǫ

ν
b (p2)ǫ

ρ
c(−p1 − p2) [(p1 − p2)ρ ǫαβµν+2 (p1 ν ǫαβµρ+p2µ ǫαβνρ)] p

α
1 p

β
2 .

(4.12)

Here we ignored higher orders in p2i /M
2 (M ∈ {MH ,mt}) and used ǫµa(p1)ǫb µ(p2) =

ǫµb (p1)ǫaµ(p2) as well as pµǫ
µ
a(p) = 0.

The other side of the matching condition is calculated by again summing over the

different momentum configurations for the two-loop diagram, identifying the part propor-

tional to the same Dirac structure in the corresponding expression, expanding carefully in

the external momenta, and using the Feynman parametrization for the remaining integrals.

The different integrals combine to give the result12

CW (µtH) = 4g3(µtH)

√
2GF

(4π)4

∑

f=t,b

∑

i

Re
(

y
ϕ0
i

f

)

Im
(

y
ϕ0
i

f

)

h
(

mf ,Mϕ0
i

)

, (4.13)

12Note that in principle the correct procedure for the b-quark contribution would be analogous as for

the charged Higgs contribution, i.e. integrating out the Higgs, running the resulting 4-quark operator down

to µ ∼ mb and matching it on the Weinberg operator. This produces a potential enhancement from a

smaller anomalous dimension. However, considering the enhancement for the charged Higgs, the resulting

contribution would be at most on the level of the one from Barr-Zee diagrams discussed below. As their

relative sign is unknown, it would therefore not improve the limit on Im(y2
d) given later, which is why we

use this simplified treatment.
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which is again in agreement with [8] for the top-quark contribution, where however the

b-quark one was neglected. Here, h(m,M) is defined by13

h(m,M) =
m4

4

∫ 1

0
dx

∫ 1

0
du

u3x3(1− x)

[m2x(1− ux) +M2(1− u)(1− x)]2
. (4.14)

Naively, observing the factor m4 in the definition of h(m,Mϕ0
i
), it seems unnecessary

to include the beauty quark in the loop. However, the parametric integral diverges for

m→ 0; for Mϕ0
i
≫ m the limit reads

h(m,M ≫ m) =
1

4

m2

M2

[

log

(

M2

m2

)

− 3

2

]

, (4.15)

implying a much weaker suppression of the corresponding contribution, which might be

compensated if |ςd| ≫ |ςu|.

4.7 Barr-Zee diagrams

The diagrams for EDMs introduced by Barr and Zee [156] (and later generalized for the

gluonic dipole moment [157, 158], see furthermore [168–172]) are proportional to the light

quark mass, which at first sight leads to the conclusion that they should be tiny compared

to the contribution from the Weinberg operator, which does not suffer this suppression.

However, the following arguments show that their contributions are in fact comparable (cf.

also [157]):

• e3 and e g3s are of similar size at µtH .

• The anomalous dimension for the Weinberg operator is larger, implying a stronger

suppression from the running.

• The parametric integral of the Weinberg operator is smaller.

• Finally, the matrix element of the Weinberg operator is very small [61], making it

comparable to the mass of a light quark.

Therefore these contributions have to be taken into account. Which kind of diagram

dominates depends in part on the method chosen to estimate the matrix elements, which

we discussed in section 2.

4.7.1 Neutral Higgs contribution

In [156], the neutral Higgs contributions are calculated for a quark and gauge bosons in

the loop, while those with internal scalars are neglected. This contribution, however, is

generally smaller than the others [172] and we will not discuss it here. As the paper is

formulated for CP-violating Higgs propagators, the translation to our model parameters is

not always trivial. Especially it is not universal; what is called Z2 for example in [8, 156]

13The inner integral can be done analytically, simplifying the numerical analysis. Note the factor of 2

between the definition of h(m,M) in [8] and [166], the latter of which we are using here.
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changes for the type of diagram considered. Starting with the diagrams with the neutral

Higgs between two fermions f, f ′, cf. figure 2(b), it reads

Z0n = y
ϕ0
i

f y
ϕ0
i

f ′ and Z̃0n = y
ϕ0
i

f y
ϕ0
i ∗

f ′ , (4.16)

implying Im Z̃0n = 0 for f = f ′. This relation implies the following contributions for the

EDM/CEDM of a fermion f with a fermion f ′ in the loop via neutral Higgs exchange,14

generalizing slightly the results of [156, 157]:

dγf
(

µtH ;ϕ0
)

BZ

2
= −2

√
2GFα

(4π)3
mfqf

∑

f ′

∑

i

q2f ′N
f ′

C

{

f

(

m2
f ′

M2
ϕ0
i

)

(

2Rey
ϕ0
i

f Imy
ϕ0
i

f ′

)

(4.17)

+ g

(

m2
f ′

M2
ϕ0
i

)

(

2Rey
ϕ0
i

f ′ Imy
ϕ0
i

f

)

}

, and

dCq (µtH)BZ

2
= −

√
2GFαs

(4π)3
mq

∑

q′

∑

i

{

f

(

m2
q′

M2
ϕ0
i

)

(

2Rey
ϕ0
i

q Imy
ϕ0
i

q′

)

+ g

(

m2
q′

M2
ϕ0
i

)

(

2Rey
ϕ0
i

q′ Imy
ϕ0
i

q

)

}

, (4.18)

where qf denotes the charge of the fermion, i.e. qf = −1,−1/3,+2/3 for f = e, d, u respec-

tively, Nf ′

C = 3, 1 for quarks and leptons respectively, and the parametric integrals f, g are

given by [156]

f(z) ≡ 1

2
z

∫ 1

0
dx

1− 2x(1− x)

x(1− x)− z
log

x(1− x)

z
and

g(z) ≡ 1

2
z

∫ 1

0
dx

1

x(1− x)− z
log

x(1− x)

z
. (4.19)

These integrals are of order one for a top in the loop and scale (only) approximately linearly

with the fermion mass. We include therefore apart from the top contribution also the ones

from the beauty quark and the tau in the sums over f ′, q′ above.

The contribution with a charged gauge boson in the loop can be translated into our

model parameters via

sin2β Z0n = y
ϕ0
i

f Ri1 , (4.20)

implying

dγf
(

µtH ;ϕ0,W
)

BZ

2
=2qf mf

√
2GFα

(4π)3

∑

i

[

3f

(

M2
W

M2
ϕ0
i

)

+ 5g

(

M2
W

M2
ϕ0
i

)]

Im
(

y
ϕ0
i

f Ri1

)

. (4.21)

Note that again the sum of contributions cancels for degenerate Higgs masses as well as

in the decoupling limit. The main difference to the contributions with quark loops is that

it contains no part quadratic in the parameters ςi. The order of magnitude for the single

contributions is that of the top-loop one, as the suppression due to the smaller mass is

compensated by the larger charge.

14Note that the correction for the sign for Im(Z1) in the erratum of [156] applies to the whole paper.
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Note that the diagrams discussed here are only a subset of the contributing ones, see

the references given above. However, none of the additional contributions has been found

to dominate over the ones discussed here. As in [156] we assume that they do not exhibit

strong cancellations with the ones included in our calculation.15 Furthermore we observe

that in general the CEDM contribution dominates over the EDM one. Therefore our

calculation is still expected to give reasonable upper limits on the CP-violating parameters

in the Yukawa sector, to the extent discussed further in sections 4.3 and 5.2.

4.7.2 Charged Higgs contribution

As mentioned before, for CP-violating charged Higgs couplings there exist a number of

corresponding diagrams not calculated in [156]. For the electron EDM, the contribution

with CP violation stemming from the Yukawa couplings has been calculated in [159]. In

general, the translation to quarks is non-trivial, as the authors give the result only formν(=

mb) = 0, while for the quark EDM e.g. contributions with relative weight mbςd/(mtςu)

could exist. However, our analysis yields that all additional contributions are either of the

order m2
bςd/

(

m2
t ςu
)

, m2
bςd/(mtMHςu), or CP-conserving, implying that the translation is

in this case possible without evaluating new diagrams. We therefore start from the result

from [159],16 identifying ct = ςu and ce = −ςl,

dγe (µtH ;ϕ±)BZ

2
= −me

3g2

64π2
g2

32π2M2
W

|Vtb|2Im (ς∗uςl) (qtFt + qbFb)

= −me
12G2

FM
2
W

(4π)4
|Vtb|2Im (ς∗uςl) (qtFt + qbFb) (4.22)

and use17

Fq =
Tq(zH)− Tq(zW )

zH − zW
, with zx :=M2

x/m
2
t , (4.23)

Tt(z) =
1− 3z

z2
π2

6
+

(

1

z
− 5

2

)

log z − 1

z
−
(

2− 1

z

)(

1− 1

z

)

Li2(1− z) and

Tb(z) =
2z − 1

z2
π2

6
+

(

3

2
− 1

z

)

log z +
1

z
− 1

z

(

2− 1

z

)

Li2(1− z) .

Note that the functions Fq are of course finite for MH → MW (Ft|MH=MW
∼ 2 and

Fb|MH=MW
∼ 1). Furthermore, (qtFt + qbFb) ∈ [0, 1] and limM

H±→∞ Fq = 0 hold. The

generalization to the down quark reads as follows:

dγd (µtH ;ϕ±)BZ

2
= −md

12G2
FM

2
W

(4π)4
|Vtb|2|Vud|2Im (ς∗uςd) (qtFt + qbFb) , (4.24)

while the up quark contribution is negligible.

15Note, however, that e.g. in [21, 169] cancellations between different contributions in some part of

parameter space have been observed.
16The factor |Vtb|

2 ∼ 1 has been omitted in that reference.
17Note that we correct here the sign for the second term in Tt(z) as compared to [159].
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5 Phenomenological analysis

In this section, the phenomenological analysis of the constraints discussed in the previous

one is performed. Since the parametrizations in eqs. (4.1) and (4.2) are general, the cor-

responding limits hold for any model; when the scaling differs largely from the A2HDM,

however, other constraints might be stronger than the ones discussed here. In the general

case, the limits concern certain matrix elements of the ςi, which we will indicate appropri-

ately. The constraints given correspond to the quoted experimental limits in combination

with extreme values of the allowed ranges for the theoretical parameters.

We start by discussing charged Higgs exchange, as in that case the interpretation of the

results is straightforward. Specifically for the A2HDM we can relate the results directly to

those obtained in previous analyses from flavour-changing observables [17, 24]. Discussing

the different contributions separately implies assuming that no severe cancellations occur

between them, which should be kept in mind for the following discussion. For each class,

we will show in this section the most stringent constraints only; the remaining constraints

are commented upon in the text.

5.1 Charged Higgs contributions

The contributions from charged-Higgs exchange are relevant for the neutron and electron

EDMs, only; in diamagnetic systems, they are usually negligible, since they contribute

neither to CEDMs nor electron-nucleon interactions. They vanish whenever the relevant

factors ςu,d,l lack a phase difference, similarly to the SM contributions.

We start by analyzing the constraint from the electron EDM as obtained in section 2.2.

The charged Higgs contributes via Barr-Zee diagrams, cf. eq. (4.22); the resulting con-

straint is shown in figure 3 on the left, and implies |Im(ςuς
∗
l )| . 0.02 − 0.34 (ςu,33ς

∗
l,11),

depending on the charged scalar mass and the choice for |de| in table 1, together with

|Im(ςuς
∗
l )|/M2

H± ≤ 10−5 GeV−2, to be compared with |ςuς∗l |/M2
H± ≤ 10−2 GeV−2 obtained

in [17]. This demonstrates already the strength of EDMs in constraining CP-violating

parameter combinations.

The main contribution to the neutron EDM stems from the Weinberg operator, es-

pecially since there are no sizable contributions to the CEDM involving the charged

Higgs. For the considered range of charged Higgs masses, the relative contribution from

the corresponding Barr-Zee diagrams, cf. eq. (4.24), is about 15% of the one from the

Weinberg operator.

Using eqs. (2.37) and (4.11), we plot the resulting constraint in the Im(ς∗uςd) −MH±

plane (ς∗u,33ςd,33) in figure 4. For a charged-Higgs mass of ∼ 500GeV, Im(ς∗uςd) . 1 remains

allowed, which is strengthened to ∼ 0.3 for light masses. We emphasize that therefore no

fine-tuning is necessary to avoid this bound; however, the next-generation experiments will

put this scenario to a non-trivial test, i.e. we would generally expect contributions within

the projected sensitivity.

To illustrate the impact of this bound in the A2HDM, we show on the right-hand side

the comparison to the one arising from the branching ratio for b→ sγ [24] in the complex

ςuς
∗
d plane, an observable known for its high sensitivity to a second Higgs doublet. While
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Figure 3. The constraints from the electron EDM (95% CL) on charged Higgs exchange (left) in

the Im(ς∗uςl) −MH± plane and neutral Higgs exchange (right) in the Im(ς∗uςl) −Mϕ plane. The

grey area corresponds to the old result for |de|, the dark green one to the very conservative new fit,

cf. eq. (2.13). The remaining three areas correspond to |de| obtained by making an assumption on

fine-tuning (n = 1, 2, 3), cf. section 2.2.

Figure 4. The constraint from the neutron EDM (95% CL) in the Im(ς∗uςd) −MH± plane (left)

and together with the constraint from BR(b → sγ) in the complex ςuς
∗

d plane (right), allowing for

80 GeV ≤MH ≤ 500 GeV.

an imaginary part of O(1) is still possible, it follows from the discussion in [24] that large

effects in other observables like ACP(b→ sγ) are excluded by this constraint.

5.2 Neutral Higgs contributions

As discussed in section 4.3, the contributions from neutral scalars are more involved phe-

nomenologically. Specifically, cancellations are likely to play an important role, cf. eq. (4.5).

Since these cancellations take place for both limiting cases, universal Higgs masses and de-

coupling, and furthermore the mixing into the lightest mass eigenstate is rather small, see

the discussion in section 4.3 and in [27, 163], we use the right-hand side of eq. (4.5) as an

approximation of the appearing sums. However, since the two limits imply different pat-

terns for the single contributions, we evaluate the mass-dependent functions for a varying

effective mass Mϕ, allowing the corresponding coefficient to take any value between the
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two limiting ones. That is, we have
∑

i

f
(

Mϕ0
i

)

Re
(

y
ϕ0
i

f

)

Im
(

y
ϕ0
i

f ′

)

→ ξf ′ f
(

Mϕ

)

Im

[

(

ς∗F (f)

)

ff

(

ςF (f ′)

)

f ′f ′

]

. (5.1)

The constraints shown can be translated back into the corresponding parameter combina-

tions whenever a specific model with known Higgs masses is discussed.

For neutral Higgs exchanges between different families, the resulting constraints allow

for a comparison with the charged Higgs contributions, albeit with some caution. Note

that the two contributing terms, Re
(

y
ϕ0
i

f

)

Im
(

y
ϕ0
i

f ′

)

and Re
(

y
ϕ0
i

f ′

)

Im
(

y
ϕ0
i

f

)

both translate

in the A2HDM to Im
(

ςf ς
∗
f ′

)

, but for f, f ′ = d, l with opposite signs, implying further

cancellations, since the coefficient functions given in the previous section have identical

signs. If one of the involved fermions is an up-type quark, the two contributions instead

strengthen the bound.

For the cases in which the right-hand side vanishes, we provide the value of the contri-

bution from the lightest scalar as a reference, which is not to be understood as a conservative

limit of any kind, but as the strongest obtainable limit for the corresponding couplings in

a specific model.

For neutral scalars, we do not include the contributions from the Weinberg operator,

for two reasons: first they are subject to the cancellations discussed above (even in the

most general case), second they are slightly smaller than the contributions from Barr-Zee

diagrams with the same coefficients (for universal ςu,d), which enter now via the chromo-

magnetic moments.

We start again with the constraints from the electron EDM. In figure 3 on the right,

the constraint for |Im(ςlς
∗
u)| (ςl,11ς∗u,33) is displayed, plotted against Mϕ. This parameter

combination is now bound to be . 0.01 − 0.2, depending on Mϕ and the choice for |de|;
this is about a factor 2 stronger than the charged-Higgs constraint for MH± ∼ Mϕ, as

can also be deduced directly from eqs. (4.21) and (4.22). While this again does not yet

call for severe fine-tuning of the parameters at the moment, the bounds are strong already,

especially when accepting the bounds from ThO with restricted fine-tuning. Clearly, the

coming experiments, see table 3, will explore a region of parameter space in which we would

generally expect a signal. The contribution with a tau lepton in the loop, proportional to

Im
(

y2l
)

(Re(yl,11)Im(yl,33) and Re(yl,33)Im(yl,11)), is subject to strong cancellations in the

A2HDM; there is therefore no conservative limit. The contribution at the lightest Higgs

mass yields |Im
(

y2l
)

|/2 ≤ 2 − 15, depending on |de|. For a beauty quark in the loop, the

constraint is weaker than the one obtained from the bound on the electron-nucleon coupling

C̃S ; it is therefore omitted. It is noteworthy, however, that the single contributions are

smaller than the ones with the tau in the loop, despite the larger mass of the beauty

quark, due to the smaller charge and the occurring cancellation. Finally, the gauge boson

loops give potentially large contributions, however again subject to strong cancellations.

Furthermore, since the admixture of the lightest mass eigenstate with the second doublet

is small, this contribution gets further suppressed. Having this in mind, however, the

contribution from the lightest neutral scalar yields |R11Im
(

y
ϕ0
1

l

)

| ≤ 0.01 − 0.07, again

depending on the value for |de|.
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Figure 5. Constraint from the neutron EDM (95% CL) in the |Im(ςdς
∗

u)| −Mϕ plane.

The main constraint from the neutron EDM is again for the combination ς∗uςd
(ςu,33ςd,11), since it is enhanced by the top mass and involves different families. The result-

ing constraint, shown in figure 5, is similar to the one from the charged Higgs exchange

via the Weinberg operator; given this situation, the treatment for the hadronic matrix ele-

ment is decisive for their relative strength and possible cancellations. The other constraints

are either again subject to strong cancellations (|Im
(

y2u
)

|/2 ≤ 1.4, |Im
(

y2d
)

|/2 ≤ 26 and

|R11Im
(

y
φ0
1

d

)

| ≤ 3.6 for the lightest scalar) or not constraining due to the small masses

involved.

The final constraints we consider stem from the mercury EDM. As discussed above,

relating this observable to fundamental parameters is complicated by large theory uncer-

tainties. However, e.g. the electron-nucleon couplings are not as strongly affected by these

uncertainties, providing a more reliable bound. Furthermore, it is a conservative one: this

contribution is not expected to be dominating this observable; for that reason, assuming

this contribution to saturate the experimental limit is conservative. This fact has been used

in [23] to obtain the limit C̃S ≤ 7×10−8 (mainly) from the mercury measurement, thereby

allowing for a model-independent limit on the electron EDM. Here, as we are expressing

both C̃S and C̃P by coefficients of four-fermion operators, we make this assumption for their

combination appearing in eq. (2.31); additionally, we show the bounds from ThO with the

fine-tuning assumption. The resulting constraints are shown in figure 6 on the left. They

do not appear very strong numerically, but constrain a parameter combination which was

allowed to be very large before and are therefore relevant. Note that the contribution from

C̃P weakens slightly the constraint compared to using C̃S ≤ 7× 10−8, but not severely.

Further contributions enter via the (Barr-Zee-)CEDM contributions to the Schiff mo-

ment, yielding potentially strong bounds; we illustrate their potential impact by using

simply central values for the hadronic parameters in the equations above to obtain a con-

straint. An exemplary result, corresponding to a more reliable theoretical situation, is

shown in figure 6 on the right. We note that for the assumed situation, it would be the

strongest limit on |Im(ςdς
∗
u)| available. Furthermore, the physical mechanisms are different

for the various systems. Specifically, for mercury the charged Higgs plays a minor role, so

a possible cancellation for the neutron between these two contributions cannot take place

here. Theoretical progress for this observable would therefore be very valuable.
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Figure 6. Actual constraint from the mercury EDM (95% CL) in the |Im(ςdς
∗

l )| −Mϕ plane (left)

for the old bound on |C̃S | as well as the ones from ThO, and the potential constraint from the same

system in the |Im(ςdς
∗

u)| −Mϕ plane (right), see text.

6 Conclusions

EDMs are very sensitive probes of NP models incorporating additional sources of CP

violation. In particular, they strongly constrain possible new flavour-blind phases, as

those present in generic 2HDMs without tree-level FCNCs. We have critically analyzed

the present experimental limits on EDMs of elementary particles and composite systems

(nucleons, nuclei, atoms and molecules), and have derived the resulting phenomenological

constraints on the 2HDM parameters.

To be specific, our final results are written in the context of the A2HDM, where

the alignment in flavour space of the two Yukawa matrices coupling to a given right-

handed fermion guarantees the absence of tree-level FCNCs, while allowing for flavour-

blind Yukawa phases. This theoretical framework includes (and generalizes) all particular

(CP-conserving) types of 2HDMs based on discrete Z2 symmetries, usually adopted in the

literature. Nevertheless, our findings can be directly applied to even more general Yukawa

structures with simple notational changes.

The symmetries of the A2HDM protect in a very efficient way the flavour-blind phases

from undesirable phenomenological consequences. Although the present experimental lim-

its impose indeed strong bounds on the CP-violating parameter combinations, O(1) con-

tributions remain allowed. However, large enhancements in other CP-violating observables

are already strongly restricted by the present EDM bounds.

A strong caveat to keep in mind is the strong sensitivity of the EDM predictions

to the UV completion of the low-energy 2HDM. Since the A2HDM flavour symmetries

strongly suppress any possible tree-level or one-loop contribution, the predicted EDMs

originate from two-loop diagrams. Therefore, these theoretical results could easily be

changed by NP contributions beyond the 2HDM, as happens for instance in supersymmetry,

and unexpected cancellations could also take place. The EDM constraints should then be

interpreted with a lot of care.
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Within the A2HDM, the dominant mechanisms generating non-zero EDMs are charged

and neutral scalar exchanges through two-loop diagrams of the Weinberg and Barr-Zee

type. While the charged Higgs contributions can be determined unambiguously, the mixing

among the three neutral scalars makes their effect much more subtle. We have shown that

the neutral scalar contribution for a given fermion species vanishes exactly in two opposite

limits: universal Higgs masses and decoupling. The null result is due to the orthogonality of

the scalar mixing matrix, which generates exact cancellations among the contributions from

the three neutral scalars. This fact has been sometimes overlooked in the literature, leading

to claims of non-vanishing contributions in the decoupling limit which are not correct in

this context. In particular, simply taking the contribution from the lightest Higgs is not

necessarily a good approximation. In order to obtain a phenomenological estimate of the

neutral scalar effect we have taken an average scalar mass to evaluate any mass-dependent

function and followed the prescription indicated in eq. (5.1); we have only provided as a

reference the value of the contribution from the lightest scalar in those cases where the

right-hand side of eq. (5.1) vanishes.

Our final phenomenological results are shown in figures 2 to 5. In spite of all previ-

ous comments of caution, these plots indicate that interesting signals could be expected

within the projected sensitivity of the next-generation of EDM experiments. Experimental

progress in this field could then bring a break-through in the search for NP phenomena.
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