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Abstract—This paper addresses the problem of electric distri-
bution network expansion under condition of uncertainty in the
evolution of node loads in a time horizon. An immune-based evo-
lutionary optimization algorithm is developed here, in order to find
not only the optimal network, but also a set of suboptimal ones, for
a given most probable scenario. A Monte-Carlo simulation of the
future load conditions is performed, evaluating each such solution
within a set of other possible scenarios. A dominance analysis is
then performed in order to compare the candidate solutions, con-
sidering the objectives of: smaller infeasibility rate, smaller nom-
inal cost, smaller mean cost and smaller fault cost. The design out-
come is a network that has a satisfactory behavior under the con-
sidered scenarios. Simulation results show that the proposed ap-
proach leads to resulting networks that can be rather different
from the networks that would be found via a conventional design
procedure: reaching more robust performances under load evolu-
tion uncertainties.

Index Terms—Artificial immune systems, load evolution uncer-
tainty, multiobjective sensitivity analysis, network optimization,
power distribution planning.

I. INTRODUCTION

ELECTRIC distribution networks, from time to time, are ex-
panded and re-designed, in order to follow the changes that

occur in the load [1]–[3]. The design of such networks must
take into account not only the present load, but also the load
that is expected to exist within some time horizon. This means
that the design problem is intrinsically endowed with some un-
certainty. Performing a design procedure that under-estimates
the load growth means that the system will no longer be able
to supply the demand and a new expansion will be necessary
early. It leads to a global cost that is much greater than if the
expanded network were able to supply the future load with the
configuration of the first design. On the other hand, a design
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procedure performed with over-estimated loads would lead to a
costly network that does not make a reasonable usage of the re-
sources employed for its installation. These considerations lead
the electric utility companies to perform the planning of elec-
trical distribution network expansion according to some fore-
cast of the demand for a given time horizon, considering some
“mean” or “most likely” scenario for the load expansion [2], [3].

The design of a distribution network is a complex problem:
it is of combinatorial nature, with nonlinear functionals [4],
[5]. This problem consists of finding an optimal configuration
for the network, including the topology (connection configura-
tion) and conductor setup (capacity of each conductor in a spe-
cific topology), with constraints related to technical specifica-
tions such as load demands and capacity of the distribution lines
[5]–[8]. Finding the exact optimal configuration of such system
becomes a hard computational task even for a moderate number
of nodes [7], [8]. This possibly explains why most of the design
methodologies just consider a single future scenario (the “most
likely” one), instead of considering a set of possible load sce-
narios [6], [7], [9]. Furthermore, the approaches that consider
multiple scenarios just take into account the simplified situa-
tions in which the load in all nodes grow with identical rates
[1].

In fact, the variation of the load in each system node is a sto-
chastic process, leading to a set of load probability distributions
in the system nodes. The variances of these distributions grow
with time [10], [11]. Consequently, a representative discrete set
of possible load scenarios in each system node leads to a combi-
natorial set of load scenarios for the whole system. In addition,
some factors may cause the net energy tax in each system node
to become different from the other nodes. For instance, the final
consumer load location can evolve with different geographical
patterns, which leads to different costs and different losses in
the secondary distribution systems.

Since the cardinality of the set of possible scenarios grows ex-
ponentially with the number of nodes, it becomes clear that any
attempt for directly performing the (combinatorial) optimiza-
tion of the network configuration considering the whole set of
scenarios is infeasible, even for small instances of problems.

In this paper, the probability distribution of load evolution is
supposed to be known for each node of a system to be expanded.
The computation of the optimal network is performed consid-
ering the mean load for each node, and a unique expected mean
energy tax. Several suboptimal solutions whose costs are not
far from the optimal one are simultaneously found, leading to a
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candidate-solution set. The candidate-solution set is employed
within a sensitivity analysis, under a set of load-evolution con-
ditions (including load level and net energy tax) which is repre-
sentative of the combinations of possible load evolutions in each
node. The final solution is chosen as the one that minimizes the
cost function weighted by the probability distributions, while
keeping the probability of feasibility1 and the fault cost2 above
a specified level. The case studies presented here reveal an inter-
esting pattern: the mean-scenario optimal solution is sometimes
more sensitive than other solutions for such variations, and often
is not the final solution to be chosen.

Due to the nature of network design problems, of combina-
torial optimization with nonlinear functional, evolutionary opti-
mization techniques have become the main class of techniques
applied in such problems [12]. Genetic algorithms (GAs) [5],
[6], simulated annealing methods [9], ant colony system algo-
rithms [7], and other evolutionary techniques have been used
successfully for searching optimal configurations for electric
distribution networks. These algorithms, however, usually de-
liver a single final solution, that is expected to be near the global
optimum. Artificial Immune Systems (AIS) are computational
techniques inspired by theoretical immunology that, differently
from other evolutionary algorithms, deliver not only a single
solution (the optimal solution) at the end of the optimization
procedure, but also an entire set of suboptimal solutions (local
optima) that are explicitly kept and evolved along the optimiza-
tion process [13], [14]. This motivates applying AIS algorithms
for developing the approach used in this paper3. The suboptimal
solutions delivered by AIS are nearly optimal related to the cri-
terion that was employed for the optimization. The point is that
they can be useful as design alternatives under perturbed load
conditions not considered explicitly in the optimization stage.

This paper is structured as follows.
— Section II presents the problem to be dealt with, defining

its representation, objective functions, and constraints.
— Section III presents the sensitivity analysis approach which

has been employed to deal with the uncertainty scenario.
The uncertainty model employed is discussed in this sec-
tion too.

— Section IV presents the characteristics and structure of the
AIS algorithms developed here. The metric which is used
in the developed algorithms is also shown in this section.

— Section V shows the results of the proposed algorithms in
two systems.

II. PROBLEM STATEMENT

A. The Distribution System Design

The distribution system can be represented by a planar tree
graph in which each possible connection between nodes repre-
sents a variable. It is a multibranch graph, once many conductor
types can be used to connect the nodes. Two main factors must
be considered in optimizing a distribution system:

1A network is feasible if it is able to supply a demand within the technical
specifications.

2The fault cost is used to estimate the reliability of the network.
3A case study presented in the last section of this paper shows that a genetic

algorithm is not suitable for developing the procedure proposed here.

— Minimization of energy losses.
— Minimization of investment in new facilities and distribu-

tion lines.
Besides, some constraints must be considered:
— Line capacity.
— Voltage level in the load buses.
— Graph connectivity (all nodes in the tree must be connected

to the root of the graph, directly or indirectly).
— Radiality of the network (the network is a tree, or a fully

connected graph without loops).
The radiality constraint can be expressed as , where
is the number of connections and is the number of nodes.

An important feature of the objective functions considered
in the optimization of distribution networks is the strong inter-
action they present with respect to changes in network topology
and changes in the type of conductors to be used in each connec-
tion. This precludes the application of very simple algorithms,
such as algorithms that find firstly the “optimal topology”, and
then the “optimal conductor set” for that topology, in a two-step
approach.

The main objective functions mentioned previously can be
joined in a single one through the computation of the “present
value” of the energy losses along the time horizon [5], [6]. This
objective function is presented in (1)

(1)

where

present monetary cost of network ;

number of possible connections;

1 if branch is present in network or 0
elsewhere;

fixed cost of branch in network ;

analysis time;

maintenance cost of branch in network ;

loss cost of branch in network ;

interest rate.

Due to text length limitations, it is not considered here an ob-
jective function that accounts for a reliability cost, in which case
an encoding of alternate paths for energy restoration could be
included. Such formulation could be easily adapted to the pro-
posed methodology via a weighted objective function approach,
and the same objective function and variable encoding that have
been used in [5].

B. Representation of Variables

Each variable represents each possible connection between
two nodes of the graph. A graph with nodes in which any node
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can be linked to any other one has possible connections, with
given by

(2)

From (2), it can be noticed that the increment of one node in
the graph increases the problem dimensionality by new vari-
ables, where is the number of graph nodes before the node
insertion. Problems with a large number of nodes become hard
to be solved, due to this combinatorial characteristic, since the
search inside this growing variable space is also combinatorial:
the number of trees joining the nodes ( ) increases expo-
nentially with the number of nodes, as shown in (3)

(3)

Nevertheless, some characteristics of the problem can be
used for reducing the number of variables. Here, the strategy
proposed in [5], named Controlled Greedy Encoding, has been
adopted. This heuristic comes from the observation that distant
nodes are not usually linked in optimal systems, which means
that a node can be reasonably linked only to some neighbor
nodes. In order to account for rout limitations, some links can
be excluded from the encoding.

Therefore, an encoding scheme can be defined by consid-
ering just a pre-determined number of nearest connections for
each node, without loss of optimal solutions. Only the “possible
connections” become encoded as variables. In this encoding
scheme, each variable can assume integer values from 0 to
brtp (where means that the nodes are not connected
and values from to mean that the connec-
tion is performed via a conductor of type corresponding to ).
Thus, each possible tree can be represented by a vector of in-
teger values as shown in (4)

(4)

Every node must be connected to at least one other node, due
to the connectivity constraint, and this vector must contain ex-
actly nonzero components, due to the radiality constraint.
It is straightforward to check these conditions in this vector:
every initial candidate solution that is employed for starting the
proposed algorithm is subject to these tests, and such candidate
solution is accepted only in the case these conditions hold. As
the algorithm evolves, the conditions are implicitly kept by the
operations that are applied; in this sense, the encoding guaran-
tees that only radial connected trees are considered.

III. MULTIOBJECTIVE SENSITIVITY ANALYSIS OF SOLUTIONS

The sensitivity analysis proposed here is based on a feature of
the immune-based algorithms used in the optimization process:
they can find and maintain some suboptimal solutions together
with the current best solution. This sensitivity analysis is per-
formed for changes in the operating conditions of a distribution

network, considering each such suboptimal solution as a candi-
date solution. The reasoning behind the proposed procedure is
the following.

• The mean scenario, although being probably wrong when
compared with the a posteriori real scenario, is the most
probable one. It is reasonable to perform the network op-
timization, for a time horizon, considering this mean sce-
nario.

• The aim is to keep, in addition to the optimal network
for the mean scenario, some other ones that are also still
near-optimal under this mean scenario. These networks are
expected to keep a nearly optimal behavior under the most
probable situation and also under several variants of such
situation, and are the candidate solution networks.

• It is expected that there will be some deviation from the
mean scenario. It is possible that some networks that are
good in a single analysis under mean scenario reveal to
be very sensitive, with strongly degraded performance, for
small variations of this mean scenario. Other networks with
similar performances under the mean scenario can still
maintain a reasonable performance under perturbed sce-
narios.

The proposed sensitivity analysis procedure is as follows.

1) Generate a set of scenarios (a Monte Carlo simulation),
considering perturbed node loads and energy taxes along the
time horizon. These variables should be generated with joint
probability distributions that are assumed to be known.

2) Evaluate all candidate solutions in all scenarios, according
to four pre-established merit functions: cost of network for
nominal conditions; infeasibility rate of solutions; mean
financial cost of solutions in feasible scenarios; and mean fault
cost of solutions in feasible scenarios.

3) These merit functions are employed to extract a “subset of
efficient solutions” from the large set of candidate solutions,
based on a dominance analysis.

4) Finally, two operations are performed in this “efficient set”.

a) check which networks have become infeasible in several
scenarios, and discard them;

b) select one solution among the remaining networks, based on
the merit functions and on an “expert opinion”.

This procedure is explained in the remainder of this paper.

A. Uncertainty Modeling

In the present paper, two sets of parameters are addressed as
uncertain variables:

— future load in the nodes.
— energy tax in the nodes.

The main source of uncertainty that affects a network design is
the load level in each node. By modeling the energy tax in each
system node as an uncertain variable too, it becomes possible to
take in account another important uncertainty factor: there is a
variable net income per delivered kilowatt hour (kWh), which
is different from one node to the other, due to the different costs
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Fig. 1. Example of increase in model uncertainty.

that are incurred in the secondary distribution system that fol-
lows each node. This can be used, for instance, for taking in
account uncertainties in the geographical distribution of the fu-
ture loads that will be added to each node. This variability will
cause different costs of cable installation and different loses in
the secondary system.

A network to be designed has uncertain variables (load and
the energy tax in each node). Let denote the vector of
uncertain variables at year . The vector is calculated as

(5)

The vector is a vector of stochastic variables that represent
the increment of each problem variable from one year to the next
one. In order to express the dependencies from one variable with
the other ones, vector is calculated as

(6)

in which is a vector of “underlying” independent variables
and is a matrix that describes variable dependencies. Vector
is produced, in the Monte Carlo analysis, from within a known
probability distribution, leading to and to .

Vector can have from to dimensions; its dimension-
ality can be inferred via a principal component analysis pro-
cedure performed on time series data that are representative of
the uncertain variables. Matrix also comes from the principal
component analysis procedure.

For the purpose of generating the examples that are presented
in this paper, the variables have been modeled as Gaussian
processes with known distributions4. The effect of accumulated
uncertainty in the variables of , after five years, is illustrated
in Fig. 1.

4Notice that any other probability distribution could be used without the need
of any modification in the proposed procedure.

B. Network Merit Functions

The results of Monte Carlo Simulation are used to evaluate
the performance of each solution, considering four relevant cri-
teria.

1) Original cost of network ( ): this criterion analyzes the
cost of the network for the nominal design conditions (most
likely scenario).

2) Infeasibility rate of network ( ): this criterion analyzes
the number of times that the network becomes infeasible
in the scenarios that have been analyzed, being correlated
with a “probability of infeasibility” of the network within
the considered time horizon.

3) Mean financial cost of solutions ( : this criterion analyzes
the mean cost of the networks in the scenarios where they
are feasible (notice that this function is, in general, different
from , and represents another measure of the expected
cost under uncertainty).

4) Mean fault cost of solutions ( ): this criterion analyzes
the costs incurred due to expected network failures, under
a given load condition, using the cost function proposed in
[15]. This function is evaluated for each scenario in which
the network is feasible, and the mean cost for all scenarios
is attributed to .

These criteria are expressed as follows:

(7)

(8)

(9)

(10)

where

cost of network for nominal load conditions
(including load value and position);
number of scenarios analyzed;

1 if the network is unfeasible for the load
conditions of scenario or 0 otherwise;
number of scenarios where the network is
feasible;
cost of network for the scenario ;

fault cost of network for the scenario [this cost
is calculated using (11)]

(11)

where

1 if branch is present in network or 0
elsewhere;

failure rate of branch in network ;
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length of branch in network ;

mean fault duration of branch in network ;

active power of branch in network ;

energy tax.

C. Dominance Analysis

The comparison between two candidate solutions, say, net-
works a and b, is performed in first place via a dominance
analysis. Given the merit factor vectors
and , the network a is said to dominate b
if for , and for at
least one . This analysis is useful for eliminating
all the dominated networks that, under the viewpoints of all
merit factors, are worse than some other network. A dominated
network should never be chosen, since another network that
dominates it is always preferable.

The dominance analysis is useful in order to discard sev-
eral solutions which have been initially found by the algorithm,
leaving just the “efficient solutions”. The networks which have
remained after this “filtering” compose the Pareto-set of the sen-
sitivity analysis.

IV. PROPOSED ALGORITHM

Immune-based algorithms rely only on mutation operators,
which represent the variation mechanism that creates solution
diversity within the search mechanism. In this section, a defi-
nition of a distance metric for networks and the distance-based
operator supported by this metric are firstly presented. Then,
the Artificial Immune System (AIS) algorithm developed here is
presented: the Clonal Selection Algorithm for Distribution Net-
works (CSA-DN) algorithm.

A. Network Distance Metric

Consider a network with nodes, encoded with vari-
ables ( possible connections). Such a network can be repre-
sented as an embedded point in the vector space using the
following expression:

(12)

where

vector which represents network in space ;

th component of the vector of integer variables
that encodes the network , as described in (4);

weight of connection in network – this
weight is zero if the connection does not exist,
and a number such that : larger if the
connection is near the root of the tree, and smaller
if the connection is far from the root;

factor that weights only the position of the
connection in network (since it multiplies only

);

factor that weights both the position in network
(since it multiplies ) and the type of branch
(since it also multiplies ). This factor
is smaller than , making the topological
information become more important than the
branch type information;

th vector of canonical base of .

The main idea of expression (12) is to express the fact that
connections near to the network root have stronger influence
on network characterization than connections that are near to
the network end-nodes; this is performed by weight . This
means that any change in a connection near the network root
causes a stronger change in the vector that represents the net-
work than a change in a connection near a network end-point.
Notice that this corresponds to what is expected to occur in an
electrical network that is connected as a tree: the power flow re-
ceives a stronger perturbation due to changes that occur in the
branches near the root than the perturbation that would occur
due to changes being performed near the network endpoints. In
this sense, the proposed distance metric is related to a “power
flow similarity” between networks. The factors and must
be adjusted such that networks with different topologies become
“more different” than networks with the same topology, but still
guaranteeing that networks with the same topology and different
types of branches be represented by different vectors.

Expression (12) embeds a network into the vector space ,
making the set of networks inherit the properties of such space.
For instance, a difference vector (relative position) is defined as

(13)

Using the inner product that is inherited by this vector represen-
tation of networks, the scalar that measures the distance between
these two networks can be calculated using an Euclidean norm,
as shown in (14)

(14)

It is straightforward to verify that this “distance between net-
works” fulfills all the properties that any proper definition of a
distance must have, such as the triangle inequality.

This representation presents interesting features for network
optimization, since it can be used to establish concepts of local,
global and directional searches. These concepts can be used to
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improve the space exploitation, and consequently increase the
algorithm efficiency.

B. Mutation Operator

The network distance metric, described previously, has been
employed for building an operator which can generate networks
that are at a prescribed distance from an initial network. This
operator allows direct implementations of distance-based AIS
algorithms (which are usually conceived for optimization in
continuous-variable spaces) without structural changes, just
replacing the real-space norm by the network distance metric.

A mutation operator that is used in AIS algorithms for contin-
uous problems in should generate a new candidate solution

from a current candidate solution such that
, with being a random vector with a random norm

generated with pre-defined mean. An analogous operation can
be defined as the basis of a mutation operator for dealing with
networks, based on the metric (14).

Let be the mutation radius, generated randomly by the al-
gorithm. A new network is to be generated randomly at that dis-
tance , in relation to the initial network . The proposed oper-
ator works by increasing the distance by steps, with incremental
modifications in that are denoted by , such
that . Each step is composed of two substeps.

1) A new branch is randomly inserted in the current network

2) Another branch is removed to maintain the radiality
constraint, leading to the next network . This branch is
chosen randomly from the ones that compose the “closed loop”
that was introduced in the network by the previous step.

It is straightforward to notice that except in the rare situation
in which a random change is reversed in a next step, it holds that

. This sequence of operations
is performed until for a given rough tol-
erance . When such tolerance is reached, the branches which
are common in both networks have their type changed, in order
to make a “fine tuning”, obtaining a distance that is closer to ,
up to a tighter tolerance .

C. Description of the CSA-DN

The clonal selection principle states that those defense cells5

(candidate solutions) with higher affinity to the antigen (with
better objective function values) have greater proliferation rates.
The cells are submitted to a maturation affinity process, that
starts with the generation of several clones of each cell, followed
by the mutation of such clones. The mutation distance of each
cell clone is generated randomly, from a Gaussian distribution,
with both the mean and standard deviation of such distribution
inversely proportional to the affinity of that cell. This means that
the best cells have their clones probably mutated into nearer new
cells, in this way performing mainly a local search, while the
worst cells have their clones probably mutated into farther new
cells, in a mechanism that performs a global search. Hence, the
maturation process can be viewed as a global search with local

5Antibodies, in a biological analogy.

refinement mechanism, which provides defense cells that bind
the antigen (minimize the objective function) more efficiently.

An off-line population named memory population has been
associated to the CSA-DN to improve the mapping of subop-
timal solutions (this memory population is usually employed
in immune network algorithms [16]). The cells in this memory
population are compared to each other, for verifying the degree
of similarity or recognition among them. In typical immune al-
gorithms for real-valued functions, a similarity function for bi-
nary strings (binary coding) or the Euclidean distance for real
vectors (real coding) can be employed. For network optimiza-
tion the distance metric in (14) is used for determining the de-
gree of recognition between two cells. The CSA-DN employs
a suppression mechanism over the memory population in order
to eliminate redundancy in this set: only the best cell is main-
tained, from a group of similar cells (those with
under a given threshold ); the other ones are eliminated.

Based on such principles a simple optimization algorithm is
proposed as follows.

1) A population of cells is generated.

2) An affinity measure for each cell is evaluated by the
objective function.

3) A maturation affinity process is started, what generates more
clones for the best cells.

4) Following the maturation affinity process, a mutation is
applied to each clone, keeping higher mutation distances for
the clones of the worst cells.

5) The worst cells are replaced by new randomly generated
ones, in order to maintain diversity.

6) The solutions of current population of cells are stored in a
memory population and the suppression mechanism is applied.

7) Go to step 2 until a desired stop criteria is met.

There are many different ways of implementing those basic
ideas and the implementation may depend on the characteris-
tics of the specific problem being solved. Here, the CSA-DN is
presented as an adaptation of the general algorithm described
above. The distance metric shown in Section IV-A has been
used.

Steps 1 and 2 are trivial. For implementing step 3, it is nec-
essary to introduce a parameter that defines the fraction of
the set of cells to be selected for cloning ( ). An
affinity measure of each cell is computed using (1), and all cells
are sorted from the best to the worst one. The best cells
are selected for cloning. The number of clones for each cell is
given by

(15)

where is the size of the population, and is a constant (
). As an example, for , , and ,

the best cell ( ) will receive 50 clones, the second best cell
( ) will receive 25, and so forth until .
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Once the number of clones for each cell becomes determined,
new cells (candidate networks) are generated using the mu-

tation operator described before. For the clones of the best
original cells, the mutations produce new cells that are closer
to the original cell, and for the clones of the worst cells, the
new cells are generated farther from the original one. Finally,
all cells not selected for cloning are replaced by new randomly
generated networks. It should be noticed that this algorithm
performs global search, through the diversity generation mech-
anism and also local search, through the maturation affinity
process. Since CSA-DN does not rely on combination opera-
tors, like the crossover in genetic algorithms, the population is
maintained disperse through the search space and is not forced
to concentrate around an attraction basin. Therefore, CSA-DN
is capable of providing several different local solutions at the
final of the search process. CSA-DN has still other advantages:
it is very simple to implement and presents few parameters to
adjust, namely, , , and .

D. Constraint Handling

The constraint handling in artificial immunology based al-
gorithms can be performed using the same strategies usually
adopted in genetic algorithms. In the present problem, three dif-
ferent strategies have been employed to handle with the four
constraints discussed in Section II.

— Graph connectivity and radiality: the mutation operator
employed here always generates feasible solutions (tree
connected graphs). Therefore, these constraints are never
violated.

— Line capacity: if one of the network branches cannot
comply with the power demand, then this branch is
replaced by another one, with higher capacity. If this
replacement is not possible (the branch with highest ca-
pacity cannot supply the demand for that structure) then
the solution affinity receives a penalty factor.

— The voltage level in load buses is analyzed after the line
capacity, with the branches already fixed in that step. If
the voltage level is bellow (or above) the standards, the
solution affinity receives a penalty factor.

It is important to notice that these constraint handling strate-
gies are employed only within the optimization process. At the
end of the optimization procedure performed by the CSA-DN,
all delivered solutions are feasible under the mean scenario. In
the multiobjective sensitivity analysis, the solutions that could
not comply with those constraints in some scenarios are just
considered infeasible in such scenarios; the fixing process is not
used in this stage.

V. RESULTS

A. Benchmark System

The first case analyzed has the only purpose of establishing
the ability of the CSA-DN for competitively finding the optimal
solutions of electric distribution networks, still in the case of no
system uncertainty. This is performed via a comparison with an
example extracted from a previous work [7]. The system is a 23
node system, and the encoding has been based on the possible

Fig. 2. Benchmark system: best solution.

Fig. 3. Benchmark system: encoding.

connections considered in [7], resulting in a problem with 35
variables (Fig. 3). The design time considered has been of 20
years and two possible conductors have been considered in the
design.

The CSA-DN has been executed 50 times to evaluate the con-
vergence of algorithm. The relevant issue to be shown is that,
in all runnings, it has converged to a solution which is better
than the best one found in [7] (Fig. 2). This solution has a cost
of $171 698.03 and has been met using 16 909 function evalua-
tions in average.

B. The 21-Node System

In the second example, the proposed algorithm has been
applied to the optimization of a test problem composed of a
21-node system (62 variables), considering now load uncer-
tainty and energy tax uncertainty. This system has been used in
[5], in the context of a multiobjective optimization procedure.

The time horizon considered here has been of ten years and
nine possible conductor types have been allowed in design. The
whole data set related to this case can be found in [17].
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Fig. 4. The 21-node system: encoding.

Fig. 5. The 21-node system: initial network.

Here, the encoding scheme has been found using the
Controlled-Greedy Encoding, proposed in [5]. The resulting
encoding is shown in Fig. 4 and contains 62 possible connec-
tions. In this case an initial system has been considered along
the optimization process; it is shown in Fig. 5.

The CSA-DN algorithm, with memory population, has
mapped 374 solutions as shown in Fig. 6. Fig. 7 shows the best
solution achieved for nominal conditions (this solution will be
referred to as 1a), that has a cost of $1 132 799.55.

C. Multiobjective Sensitivity Analysis

The 374 solutions achieved by CSA-DN have been submitted
to a Monte Carlo Simulation performed for 2000 scenarios.
These scenarios have been generated according to Gaussian
probability distributions. The results of Monte Carlo Simula-
tion have been used to evaluate each solution following the
criteria shown in Section III. A Pareto-set has been built with
the nondominated solutions. The parameters of probability

Fig. 6. The 21-node system: CSA-DN solutions.

Fig. 7. The 21-node system: best solution for nominal conditions (1a).

TABLE I
PROBABILITY DISTRIBUTION PARAMETERS

distributions are shown in Table I. The mean load growth rates
and energy tax variation have been considered equal for all
nodes. This has been adopted for simplicity; as discussed in
Section III, different probability distributions could be used for
each node.

For these parameters, 41 of the 374 solutions have not been
dominated by any other solution. Table II shows the perfor-
mance of the efficient solutions in each one of the analysis cri-
teria. Additional information about these solutions, including
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Fig. 8. The 21-node system – solution 3a.

Fig. 9. The 21-node system – solution 17a.

total losses, maximum voltage drop and total length of cables,
can be found in [17].

D. Analysis of Results

As discussed in Section III, the solutions with high infeasi-
bility rates should not be considered, since they are not robust
enough to comply with most of possible scenarios. One should
note that the network with minimum cost for nominal condi-
tions (1a) has an infeasibility rate greater than 70%, and should
be considered nonrobust.

Taking an infeasibility rate lower than 20% as the robustness
threshold that would be still acceptable, the set of candidate so-
lutions becomes reduced to four networks only: 3a, 17a, 67a
and 301a. Since this number of networks is quite small, they
can be easily analyzed by an experienced designer. The authors
believe that the solutions 3a and 17a (Figs. 8 and 9, respectively)
are good choices for this system. These solutions have a nom-
inal cost slightly greater than 1a (about 2% and 5% respectively)
and outperform 1a in all other criteria.

TABLE II
CSA-DN – NONOMINATED SOLUTIONS

The data in Table II shows an interesting pattern of conflict
between the objective of network feasibility and the objective
of reliability: all the four indicated solutions, which have high
feasibility, have also high cost of reliability. In particular, if the
system reliability is very important, then solution 301a could be
chosen instead of solution 3a or 17a. Also, if the infeasibility
rate could be relaxed to 26%, solution 250a could be chosen,
with a reliability cost about 30% better than solutions 3a and
17a, but at a financial cost about 20% greater.

E. Population Diversity – GA Comparison

The GA proposed in [1] has been used in the same problem, to
establish a comparison with the CSA-DN. The final population
of GA, after the employment of the suppression mechanism6,
has been defined as the set of candidate solutions. Then this set,
which has 13 solutions, has been submitted to the same multi-
objective sensitivity analysis described earlier in this paper, for

6This is the same suppression mechanism employed in memory population
of CSA-DN.
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TABLE III
GA – NONDOMINATED SOLUTIONS

the same probability distribution parameters. The efficient set
achieved is composed of seven solutions, as shown in Table III7.

One should note that the solution 12b is the only one with
infeasibility rate lower than 0.20. It is noticeable that this solu-
tion has a poor performance compared to the solutions that have
been suggested as reasonable choices among the outcome set of
CSA-DN, 3a and 17a. Those networks outperform 12b in all
analysis criteria: the only acceptable GA solution, 2b, would be
a dominated solution in the set achieved by CSA-DN.

VI. CONCLUSION

This paper has proposed a methodology for designing electric
distribution networks that can take into account the load-evolu-
tion uncertainty in the considered design time horizon. An im-
mune-based evolutionary optimization algorithm has been de-
veloped in order to generate a set of nearly-optimal solutions.
These solutions are submitted to a Monte Carlo simulation that
are performed under the load-uncertainty probability distribu-
tion in each node. The effect of such uncertainty is then eval-
uated, and the candidate solutions are compared via a multiob-
jective analysis.

This procedure has been shown to be effective and, partic-
ularly, has revealed that the conventional procedures that con-
sider only the mean scenario of load growth can be “fragile”
under uncertainty. Such conventional design, when compared
to the proposed methodology outcomes, tend to be either more
costly (in the case of a conservative design that over-estimates
the load growth) or more likely to become infeasible (in the case
of a mean-scenario minimal cost design).
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