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Abstract

Software personal assistants continue to be a topic of signif-
icant research interest. This paper outlines some of the im-
portant lessons learned from a successfully-deployed team of
personal assistant agents (Electric Elves) in an office environ-
ment. These lessons have important implications for similar
on-going research projects.

The Electric Elves project was a team of almost a dozen
personal assistant agents which were continually active for
seven months. Each elf (agent) represented one person and
assisted in daily activities in an actual office environment.
This project led to several important observations about pri-
vacy, adjustable autonomy, and social norms in office envi-
ronments. This paper outlines some of the key lessons learned
and, more importantly, outlines our continued research to ad-
dress some of the concerns raised.

Introduction

The topic of software personal assistants, particularly for
office environments, is of continued and growing research
interest (Scerri et al. 2002; Maheswaran et al. 2004;
Modi and Veloso 2005; CALO 2003; Pynadath and Tambe
2003). The goal is to provide software agent assistants for
individuals in an office as well as software agents that rep-
resent shared office resources. The resulting set of agents
coordinate as a team to facilitate routine office activities.

This paper outlines some key lessons learned during the
successful deployment of a team of a dozen agents, called
Electric Elves (E-Elves), which ran continually from June
2000 to December 2000 at the Information Sciences Institute
(ISI) at the University of Southern California (USC)(Scerri
et al. 2002; Chalupsky et al. 2001; Pynadath and Tambe
2003; 2001; Pynadath et al. 2000). Each elf (agent) acted as
an assistant to one person and aided in the daily activities of
an actual office environment. Originally, the E-Elves project
was designed to focus on team coordination among software
agents. However, while team coordination remained an in-
teresting challenge, several other unanticipated research is-
sues came to the fore. Among these new issues were ad-
justable autonomy, i.e. agents dynamically adjusting their
own level of autonomy, privacy and social norms in office
environments.
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This paper outlines both the lessons learned during the
E-Elves project and our continued research to address the
issues raised. Several publications outline the primary tech-
nical contributions of E-Elves and research inspired by E-
Elves in detail. However, the goal of this paper is to high-
light some of what went wrong in the E-Elves project and
provide a broad overview of technical advances in the areas
of concern without providing specific technical details.

Description of Electric Elves

The Electric Elves (E-Elves) project deployed an agent or-
ganization at USC/ISI to support daily activities in a hu-
man organization(Pynadath and Tambe 2003; Chalupsky et
al. 2001). Dozens of routine tasks are required to ensure
coherence in a human organization’s activities, e.g., moni-
toring the status of activities, gathering information relevant
to the organization and keeping everyone in the organiza-
tion informed. Teams of software agents can aid humans
in accomplishing these tasks, facilitating the organization’s
coherent functioning, while reducing the burden on humans.

The overall design of the E-Elves is shown in Figure 1(a).
Each proxy is called Friday (after Robinson Crusoe’s man-
servant Friday) and acts on behalf of its user in the agent
team. The basic design of the Friday proxies is discussed
in detail in (Pynadath and Tambe 2003; Tambe et al. 2000)
(where they are referred to as TEAMCORE proxies). Fri-
day can perform a variety of tasks for its user. If a user is
delayed to a meeting, Friday can reschedule the meeting, in-
forming other Fridays, who in turn inform their users. If
there is a research presentation slot open, Friday may re-
spond to the invitation to present on behalf of its user. Friday
can also order its user’s meals (see Figure 2(a)) and facili-
tate informal meetings by posting the user’s location on a
Web page. Friday communicates with users via user work-
stations and using wireless devices, such as personal digital
assistants (PALM VIIs) and WAP-enabled mobile phones.
Figure 1(b) shows a PALM VII connected to a Global Po-
sitioning Service (GPS) device, for tracking users’ locations
and enabling wireless communication between Friday and a
user. Each Friday’s team behavior is based on a teamwork
model called STEAM(Tambe 1997). STEAM encodes and
enforces the constraints among roles that are required for the
success of the joint activity, e.g., meeting attendees should
arrive at a meeting simultaneously. When an important role
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Figure 1: (a) Overall E-Elves architecture, showing Friday
agents interacting with users. (b) Palm VII for communicat-
ing with users and GPS device for detecting their location.

within the team (e.g. role of a presenter for a research meet-
ing) opens up, the team needs to find the best person to fill
that role. To achieve this, the team auctions off the role, tak-
ing into consideration complex combinations of factors and
assigning the best-suited agent or user. Friday can bid on be-
half of its user, indicating whether its user is capable and/or
willing to fill a particular role. Figure 2(b) shows a tool that
allows users to view auctions in progress and intervene if
they so desire. In the auction shown, Jay Modi’s Friday has
bid that Jay is capable of giving the presentation, but is un-
willing to do so. Paul Scerri’s agent has the highest bid and
was eventually allocated the role.

Adjustable Autonomy

Adjustable autonomy (AA) is clearly important to the E-
Elves because, despite the range of sensing devices, Friday
has considerable uncertainty about the user’s intentions and
even location, hence Friday will not always be capable of
making good decisions. On the other hand, while the user
can make good decisions, Friday cannot continually ask the
user for input, because it wastes the user’s valuable time.

We illustrate the AA problem by focusing on the key ex-
ample of meeting rescheduling in E-Elves: A central task
for the E-Elves is ensuring the simultaneous arrival of atten-
dees at a meeting. If any attendee arrives late, or not at all,
the time of all the attendees is wasted. On the other hand,
delaying a meeting is disruptive to users’ schedules. Friday
acts as proxy for its user so its responsibility is to ensure
that its user arrives at the meeting at the same time as other
users. Clearly, the user will often be better able to determine
whether he/she needs the meeting to be delayed. However, if
the agent transfers control to the user for the decision, it must
guard against miscoordination while waiting for the user’s

Figure 2: (a) TOP: Friday asking the user for input regarding
ordering a meal. (b)BOTTOM: Electric Elves auction tool.



response, especially if the response is not forthcoming, e.g.,
if the user is in another meeting. Some decisions are poten-
tially costly, e.g., rescheduling a meeting to the following
day, so an agent should avoid taking them autonomously. To
buy more time for the user to make a decision, an agent has
the option of delaying the meeting, i.e., changing coordina-
tion constraints. Overall the agent has three options: make
an autonomous decision; transfer control; or change coor-
dination constraints. The autonomy reasoning must select
from these actions while balancing the various competing
influences.

Lessons from Electric Elves

Our first attempt to address AA in Electric Elves was to re-
solve the transfer-of-control decision by learning from user
input; in particular by using decision-tree learning based on
C4.5. In training mode, Friday recorded values of a dozen
carefully selected attributes and the user’s preferred action
(identified by asking the user) whenever it had to make a
decision. Friday used the data to learn a decision tree that
encoded various rules. For example, it learned a rule: IF two
person meeting with important person AND user not at de-
partment at meeting time THEN delay the meeting 15 min-
utes. During training Friday also asked if the user wanted
such decisions taken autonomously in the future. From these
responses, Friday used C4.5 to learn a second decision tree
which encoded its AA reasoning.

Initial tests with the C4.5 approach were promising (Py-
nadath and Tambe 2003), but a key problem soon became
apparent. When Friday encountered a decision for which it
had learned to transfer control to the user, it would wait in-
definitely for the user to make the decision, even though this
inaction could lead to miscoordination with teammates if the
user did not respond or attend the meeting. To address this
problem a fixed time limit (five minutes) was added and if
the user did not respond within the time limit, Friday took an
autonomous action. Although performance improved, when
the resulting system was deployed 24/7, it led to some dra-
matic failures, including:

• Example 1: Tambe’s (a user) Friday autonomously can-
celled a meeting with the division director because Friday
over-generalized from training examples.

• Example 2: Pynadath’s (another user) Friday incorrectly
cancelled the group’s weekly research meeting when a
time-out forced the choice of an autonomous action when
Pynadath did not respond.

• Example 3: A Friday delayed a meeting almost 50 times,
each time by 5 minutes. It was correctly applying a
learned rule but ignoring the nuisance to the rest of the
meeting participants.

• Example 4: Tambe’s Friday automatically volunteered
him for a presentation, but he was actually unwilling.
Again Friday had over-generalized from a few examples
and when a timeout occurred had taken an undesirable au-
tonomous action.

From the growing list of failures, it became clear that the
C4.5 approach faced some significant problems. Indeed, AA

in a team context requires more careful reasoning about the
costs and benefits of acting autonomously and transferring
control and needs to better deal with contingencies. In par-
ticular, an agent needs to: avoid taking risky decisions (like
example 1) by taking a lower risk delaying action to buy the
user more time to respond; deal with failures of the user to
quickly respond (examples 2 and 4); and plan ahead to avoid
taking costly sequences of actions that could be replaced by
a single less costly action (example 3). In theory, using C4.5,
Friday might have eventually been able to learn rules that
would successfully balance costs, deal with uncertainty and
handle all the special cases but a very large amount of train-
ing data would be required, even for this relatively simple
decision. Given our experience, it was decided that a more
careful approach, that explicitly reasoned about important
factors was required for AA reasoning in a multi-agent con-
text.

On-going research

To address the early failures in AA, we wanted a mechanism
that met three important requirements. First, it should allow
us to explicitly represent and reason about different types of
costs as well as uncertainty, e.g., costs of miscoordination
vs. costs of taking an erroneous action. Second, it should
allow lookahead to plan a systematic transfer of decision-
making control and provide a response that is better in the
longer term (for situations such as a non-responsive user).
Finally, it should allow us to encode significant quantities
of initial domain knowledge, particularly costs and uncer-
tainty, so that the agent does not have to learn everything
from scratch (as was required with C4.5).

Markov Decision Processes (MDPs) fit the above require-
ments and so, in a second incarnation of E-Elves, were
invoked for each decision that Friday made: rescheduling
meetings, delaying meetings, volunteering a user for pre-
sentation or ordering meals. Although MDPs were able to
support sequential decision making in the presence of tran-
sitional uncertainty (uncertainty in the outcomes of actions),
they were hampered by not being able to handle observa-
tional uncertainty (uncertainty in sensing). Specifically, Fri-
day’s “sensing” was very coarse and while Friday might fol-
low an appropriate course of action when its observations
were correct, when they were incorrect its actions were very
poor. For example, a user being in their office was “sensed”
by checking for keyboard activity but if they were reading
papers Friday would assume they were out and act accord-
ingly – often autonomously.

In a project inspired by E-Elves, we took the natural next
step to address this issue by using partially observable MDPs
(or POMDPs) to model observational uncertainty and find
appropriate courses of action with respect to this observa-
tional uncertainty. However, existing techniques for solving
POMDPs either provide loose quality guarantees on solu-
tions (approximate algorithms) or are computationally very
expensive (exact algorithms). Our recent research has de-
veloped efficient exact algorithms for POMDPs, deployed
in service of adjustable autonomy, by exploiting the notions
of progress or physical limitations in the environment. The
key insight was that given an initial (possibly uncertain) set
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Figure 3: Enhancements provide orders of magnitude
speedup over RBIP and GIP

of starting states, the agent needs to be prepared to act only
in a limited range of belief states; most other belief states
are simply unreachable given the dynamics of the monitored
process so no action needs to be generated for such belief
states. These bounds on the belief probabilities are obtained
using Lagrangian techniques in polynomial time (Varakan-
tham et al. 2005).

We tested this enhanced algorithm against two of the
fastest exact algorithms: GIP (Generalized Incremental
Pruning) and RBIP (Region Based Incremental Pruning).
Our enhancements in fact provide orders of magnitude
speedup over RBIP and GIP in problems taken from the
meeting re-scheduling of Electric Elves, as illustrated in Fig-
ure 3. In the Figure, the x-axis shows four separate problem
instances, and y-axis shows the run-time in seconds. (Since
the problem runs were cutoff at 20000 seconds, the lines for
GIP and RBIP are seen to flatten out at 20000 seconds.) DS-
GIP is our enhanced algorithm and it is seen to be at least an
order of magnitude faster than the other algorithms.

Another issue that arose during the MDP implementation
of E-Elves was that both MDPs and POMDPs rely on know-
ing the probability of events occurring in the environment.
For example, the MDP for meeting rescheduling needed to
know the probability that a message posted to a Palm Pilot
while the user was away from the office would be answered
within five minutes. Clearly, these probabilities varied from
user to user and hence it was natural to apply learning to
adjust these parameters. While the learning itself was effec-
tive, the fact that Friday did not necessarily behave the same
way each day could be disconcerting to the users – even if
the new behavior might actually be “better”. The problem
was that Friday would change its behavior without warning,
after users had adjusted to its (imperfect) behavior. Later
research (Pynadath and Tambe 2001) addressed this by al-
lowing users to add hand-constructed inviolable constraints.

Privacy

Just as with adjustable autonomy, privacy was another area
of research which was not initially considered important in
Electric Elves. Unfortunately, while several privacy related
problems became apparent, no systematic solutions were de-
veloped during the course of the project. We will describe
some of the problematic instances of privacy loss and then
some recent steps to quantitatively measure privacy loss that
have been inspired by the E-Elves insights.

Lessons from Electric Elves

We begin with a few arenas where privacy issues were im-
mediately brought to the forefront. First, a key part of E-
Elves was to assist users in locating other users to facilitate
collaborative activities, e.g. knowing that a user is in his/her
office would help determine if it is worth walking down to
that user’s office to engage in discussions. This was espe-
cially relevant in our domain since the Information Sciences
Institute and main USC campus are across town from each
other. Unfortunately, making a user’s GPS location avail-
able to other project members at all times, even if GPS ca-
pabilities were switched off at home, was a very significant
invasion of privacy. This led to a too transparent tracking of
people’s locations. For instance, it was possible to see that
a user was delayed for a meeting not because he was stuck
in traffic as he suggested but rather because he was eating
breakfast at a small cafe.

Second, even when such obviously intrusive location
monitoring was switched off and the E-Elves only indicated
whether or not a user was in his/her office, privacy loss still
occurred. For instance, one user wished to work uninter-
rupted to finish up a proposal. To simulate being away, he
switched off the lights, locked the door and did not respond
to knocks or phone calls. To his surprise, a colleague sent
him an email, saying that he knew he was in the office be-
cause his elf was still transmitting the fact that he was in his
office to others.

Third, E-Elves monitored users’ patterns of daily activi-
ties. This included statistics on users actions related to var-
ious meetings, i.e. whether a user was delayed to a meet-
ing, whether he/she attended a meeting and whether the user
cancelled the meetings. These detailed statistics were an-
other source of privacy loss when they were made available
to other users – in this case, to a student who was interested
in running machine learning on the data. The student noticed
and pointed out to a senior researcher that, when his meet-
ings were with students, he was always late by 5 minutes,
while, on the other hand, he was punctual for his meetings
with other senior researchers.

Fourth, one of the parameters used in determining meet-
ing importance was the importance attached to each of the
people in the meeting. An agent used this information to de-
termine the actions to take with respect to a meeting, e.g.
canceling a meeting with someone very important in the
organization was to be avoided. Unfortunately, such infor-
mation about user importance was clearly very private and
caused a minor controversy when it was accidentally leaked.



Figure 4: Privacy loss for the SynchBB algorithm using six
different VPS metrics

On-going research

Our subsequent research on privacy has focused primarily
on the last issue, that of private information being leaked
during negotiations between team members. These negotia-
tions often took the form of distributed constraint optimiza-
tion problems (DCOP)(Modi et al. 2005; Mailler and Lesser
2004), in which cooperative agents exchanged messages in
order to optimize a global objective function to which each
agent contributes. For example, agents may try to optimize
a global schedule of meetings by setting their individual
schedules. The objective function would incur penalties if
attendees of a meeting scheduled it at different times, or if
an agent had more than one meeting scheduled at the same
time.

Many algorithms exist for solving such problems. How-
ever, it was not clear which algorithms preserved more
privacy than others, or more fundamentally, what metrics
should be used for measuring the privacy loss of each al-
gorithm. While researchers had begun to propose met-
rics for analysis of privacy loss in multiagent algorithms
for distributed optimization problems, a general quantita-
tive framework to compare these existing metrics for pri-
vacy loss or to identify dimensions along which to construct
new metrics was lacking. To address this question, we in-
troduced VPS (Valuations of Possible States)(Maheswaran
et al. 2005), a general quantitative framework to express,
analyze and compare existing metrics of privacy loss. Based
on a state-space model, VPS was shown to capture various
existing measures of privacy created for specific domains
of distributed constraint satisfaction and optimization prob-
lems. Using VPS, we were able to analyze the privacy loss
of several algorithms in a simulated meeting scheduling do-
main according to many different metrics.

Figure 4 from (Maheswaran et al. 2005) shows an analy-
sis of privacy loss for the SynchBB algorithm across six dif-
ferent VPS metrics (ProportionalS, ProportionalTS, GuessS,
GuessTS, EntropyS and EntropyTS) for a particular meeting
scheduling scenario of three agents, averaged over 25 exper-
imental runs in which agents’ personal timeslot preference
were randomly generated. Also shown on the graph is the
privacy loss for the OptAPO algorithm (Mailler and Lesser
2004) and for a centralized solver; both of these were shown
to have the same privacy loss regardless of the VPS met-
ric used. The x-axis shows the number of timeslots when
meetings could be scheduled in the overall problem, and

the y-axis shows the systemwide privacy loss, expressed as
the mean of the privacy losses of each agent in the system,
where 0 means an agent has lost no privacy to any other
agent and 1 means an agent has lost all privacy to all other
agents. The graph shows that, according to four of the six
metrics, SynchBB’s privacy loss lies in between that of cen-
tralized and OptAPO, and, interestingly, the effect of in-
creasing the number of timeslots in the system causes pri-
vacy loss to increase according to one metric, but decrease
according to another.

The key result illustrated in Figure 4 is that distribution
in DCOPs does not automatically guarantee improved pri-
vacy when compared to a centralized approach, at least as
seen from the algorithms tested here — an important result
given that privacy is a key motivation for deploying DCOP
algorithms in software personal assistants. Thus, DCOP al-
gorithms must more carefully address privacy concerns.

Social norms
Another area which provided unexpected research issues
was social norms. Day-to-day operation with E-Elves ex-
posed several important research issues that we have not yet
specifically pursued.

Lessons from Electric Elves

Agents in office environments must follow the social norms
of the human society within which the agents function. For
example, agents may need to politely lie on behalf of their
users in order to protect their privacy. If the user is avail-
able but does not wish to meet with a colleague, the agent
should not transmit the user’s location and thus indirectly
indicate that the user is unwilling to meet with his/her col-
league. Even more crucially, the agent should not indicate to
the colleague that meeting with that colleague is considered
unimportant. Rather, indicating that the user is unavailable
for other reasons is preferable.

Another interesting phenomenon was that users would
manipulate the E-Elves to allow themselves to violate social
norms without risking being seen to violate norms. The most
illustrative example of this was the auction for presenter at
regular group meetings. This was a role that users typically
did not want to perform, because it required preparing a pre-
sentation, but also did not want to appear to refuse. Sev-
eral users manipulated the E-Elves role allocation auction
to allow themselves to meet both of these conflicting goals.
One method was to let Friday respond to the auction au-
tonomously, knowing that the controlling MDP was conser-
vative and assigned a very high cost to incorrectly accepting
the role on the user’s behalf. A more subtle technique was
to fill up one’s calander with many meetings because Friday
would take into account how busy the person was. Unfor-
tunately, Friday was not sophisticated enough to distinguish
between “Project Meeting” and “Lunch” or “Basketball”. In
both of these cases, the refusal would be attributed to the
agent, rather than directly to the user. Another source of
manipulation came in when a user had recently presented,
since the auction would not assign them the role again im-
mediately. Thus shortly after presenting users could manu-
ally submit affirmative bids safe in the knowledge their bid



would not be accepted while still getting credit from the rest
of the team for their enthusiasm. The important lesson here
is that not only must personal assistants not violate norms
but they should also minimize opportunities for individuals
to hide behind the technology to violate norms.

Summary

This paper outlines some of the important lessons learned
from a successfully-deployed team of personal assistant
agents (Electric Elves) in an office environment. This
project led to several important observations about privacy,
adjustable autonomy, and social norms for agents deployed
in office environments. This paper outlines some of the key
lessons learned and, more importantly, outlines our contin-
ued research to address some of the concerns raised. These
lessons have important implications for similar on-going re-
search projects.
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