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Recent experimental developments on the electric field effect on magnetism in metallic

magnetic materials are reviewed. The change in the electron density at the surface of

metallic ultra-thin magnets by the application of an electric field results in modulations of

the Curie temperature, magnetic moment, magnetic anisotropy, and domain wall velocity.

The study focused on this paper is the electric field effect on the Curie temperature

(magnetic phase transition) in Pt/Co ultra-thin film systems. Electric field modifications of

the magnetic moment induced by ferromagnetic proximity effects in Pd, which is usually

a nonmagnetic element, are also discussed.

Keywords: electric field effect, metallic ultra-thin films, ferromagnetism, phase transition, ferromagnetic proximity

effect

INTRODUCTION

Magnets are often needed in modern industry because they have spontaneous magnetization. The
direction of themagnetization is utilized as an information bit inmagnetic recordingmedia, and the
strength of the magnetization is one factor that determines the performance of magnetic devices,
e.g., a motor. If the direction or strength of the magnetization can be effectively controlled, the
functions and applications of magnetic devices could be expanded, and the dissipation power of
these devices will be drastically reduced.

The mechanism for controlling magnetism by the application of an electric field through an
insulator is one strong candidate which can fulfill the above expectation [1, 2]. The electric field
control of the Curie temperature [3], coercivity [4], magnetization direction [5, 6], domain wall
motion [Yamanouchi_JJAP], and magnetic moment [7] has been experimentally demonstrated
using ferromagnetic semiconductors, in which the magnetic property is a function of a carrier
concentration that can be modulated by the application of an electric field. These works have defied
the previously held belief that the magnetic properties of a material cannot be changed without
changing the temperature once the material has been prepared.

Recently, in ferromagnetic metals (FMs), similar results based on the electric field effect have
been reported at room temperature [8–11]. Because of the screening effect, the electric field
cannot penetrate into the bulk in such metallic systems. Thus, the effect obtained in FMs could
be attributed to the change in the electron density at the surface of the material [12, 13]. In
particular, at the surface of the 3d transition FMs, the shift of the Fermi level due to the electric
field application changes the relative occupation of the 3d orbitals, resulting in the change in the
interface magnetic anisotropy [9, 13, 14]. This electrical control of magnetic anisotropy is useful for
magnetic recording technology.

Although magnetization switching in magnetic tunnel junctions using spin transfer torque
[15–17] is existing technology for writing information in magnetic random access memories, it
requires current with very high density; thus, further reduction of unwanted energy dissipation by
Joule heating is required. Magnetization switching using the electric field modulation of magnetic
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anisotropy [6, 18–21] is expected to reduce the power
consumption by more than one or two orders of magnitude
because the power required for switching is attributed to charging
or discharging of the electrons.

To apply an electric field to the surface of an FM, voltage is
applied to a capacitor structure containing an FM electrode. In
this structure, the change in the sheet electron density ∆ns in
the FM electrode by gating corresponds to CVG/e, where C is
the capacitance per unit area, VG is the gate voltage, and e is
the electron charge. Therefore, using a device with larger C and
applying a larger VG is the key for realizing a larger ∆ns. The
capacitance is determined by the relative permittivity k and the
thickness of the insulator layer d as C = kε0/d, where ε0 is the
vacuum permittivity. To obtain a larger C, a higher k and smaller
d are required for the dielectric layer.

A conventional approach for obtaining a large C is the
adoption of high-k materials (e.g., Al2O3, HfO2, or ZrO2).
Another important consideration is that the capacitor should
have a high breakdown field EBD (= VBD/d, where VBD is
the breakdown gate voltage), allowing for the application of a
large VG across the capacitor to obtain a large ∆ns. Dielectric
layers obtained by atomic layer deposition (ALD) are known
to have a high EBD [22]. In particular, if 50-nm-thick HfO2

(k ∼ 20) dielectric layer is adopted and 10V of VG (electric
field of 0.2V/nm) is applied, ∆ns ∼ 2×1013 cm−2. If only
the electrons in the topmost mono-layer (ML) of the FM
surface can be modulated because of the screening effect, the
modulated electron number per FM atom is on the order of
0.01 [11].

Another way to realize a large C is to use an ionic liquid (or
a liquid electrolyte). When a gate voltage is applied between a
FM and counter gate electrodes through the ionic liquid, ions
are attracted electrostatically to both electrodes; thus, electric
double layers (EDLs), which are pairs of sheets of negative and
positive charges consisting of the ions in the liquid electrolyte
and the induced charges in the surface of the FM electrode (or
the gate electrode), respectively, are formed. The EDL capacitor
has a very large C because the gap of the two charged sheets,
which corresponds to d, is ∼1 nm [23]; thus, a large ∆ns is
realized. In this case, the modulated electron number per FM
atom can reach the order of 0.1 by the application of a few
volts of VG.

The change in the electron density at the FM surface is a
reasonable explanation for the electric field control of magnetism.
As another candidate, the electric field modulation of the uniaxial
perpendicular magnetic anisotropy (PMA) caused by the Rashba
effect at the interface between the two different materials, e.g.,
a FM metal and nonmagnetic metal or insulator, has been
theoretically proposed [24]. Furthermore, the voltage-driven
oxidation-reduction reaction or O2− migration in the FM/oxide
bilayer is known to be another source for altering the magnetic
properties of a FM [25, 26]; however, this effect is much slower
than the electron charging effect.

In this paper, recent experimental advances on the electric
field control of the ferromagnetic phase transition in Pt/Co
systems are reviewed. In addition, electric field modifications
of the magnetic moment in ferromagnetic Pd, which is usually

a nonmagnetic element, deposited on Pt/Co system are also
discussed.

ELECTRIC FIELD CONTROL OF THE
MAGNETIC PHASE TRANSITION

The author found that not only the magnetic anisotropy but also
the ferromagnetism itself is electrically switchable around room
temperature in a perpendicularly magnetized∼2ML of Co ultra-
thin film deposited on a Pt underlayer. The layer structure used in
the experiment was Pt(∼1 nm)/Co(0.4 nm)/MgO(2.0 nm) from
the bottom side. These layers were deposited on an intrinsic
Si substrate by dc or rf-sputtering. The Pt layer was confirmed
to have a fcc(111) texture by scanning transmission electron
microscopy (STEM) (see Supplementary Online Material of
Koyama et al. [27]).

The first experiment was performed using a solid-state
capacitor structure with a 50-nm-thick ALD-HfO2 dielectric
insulator layer [11]. In this experiment, the anomalous Hall
effect was used to detect the magnetization state; thus, the HfO2

insulator and the gate electrode were formed on top of the Hall-
bar-mesa structure made of Pt/Co layers. Here, the anomalous
Hall resistance RHall is proportional to the perpendicular
component of the magnetization. An optical microscopy image
is shown in the inset of Figure 1A. A clear difference was
observed in the magnetization curves detected by the anomalous
Hall effect for positive and negative VG (±10V) applications,
as shown in Figure 1A. (Note that positive VG is defined as
the direction of increasing electron density at the Co surface).
When the positive VG was applied, a clear rectangular hysteresis
loop was observed, whereas a linear response was obtained
under the application of negativeVG. ThisVG-dependent change
in the magnetization curve was observed in a reversible way.
From the detailed measurements, e.g., temperature dependence
of magnetic susceptibility, this dramatic effect was not attributed
to the switching of the magnetic easy axis from the perpendicular
to the in-plane direction. This effect was attributed to the
phase transition from the ferromagnetic to paramagnetic state.
From the Arrott-plot [28] (or the Arrott-Norkes plot [29]),
the temperature T dependence of the spontaneous RHall (R

s
Hall

)
for the application of positive and negative VG, which is
proportional to the spontaneous magnetization, was obtained
(see Figure 1B). The Curie temperature TC between them was
determined to be ∼12 K. Because of the two dimensionality
of the Co film, TC in this sample was around room
temperature [30].

Ionic-liquid gating was also adopted for modulating the
magnetic properties of the similar Pt/Co sample [31]. In
this experiment, a direct magnetization measurement using a
superconducting quantum interference (SQUID) magnetometer
was used to detect the magnetization under gating. A polymer
film containing the ionic liquid (EMI+-TFSI−) was placed on
the sample, and a Pt foil was placed on top to serve as a
gate electrode (see the inset of Figure 1C). This film-shaped
ionic liquid simplifies the measurement in the SQUID chamber.
By applying VG between the Co layer and the gate electrode,
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FIGURE 1 | Electric field effect on ferromagnetism in the Pt/Co system. (A) Magnetization curves detected in the Hall resistance RHall for VG = −10 and 10V at

321 K. The inset shows the top view of the Hall bar structure with the gate electrode on top (yellow region) taken by an optical microscope. Solid-state HfO2 was used

as a gate insulator in this device. (B) Temperature T dependence of the spontaneous Hall resistance RsHall which is proportional to the spontaneous magnetization

obtained with the device in (A). The Curie temperature increases (decreases) with positive (negative) VG. (C) The T dependence of the remanent magnetic moment

per unit area (mr/S) for VG = +2, 0, and −2V. The inset shows the cross-sectional image of the device structure. An ionic liquid was used to gate the sample.

the EDL is formed through the MgO capping layer, and the
electron density at the Co surface can be modulated. Figure 1C
shows the T dependence of the remanent magnetic moment per
unit area (mr/S) for three different VG values (VG = +2, 0,
and −2V). In this device, a giant change in TC up to ∼100
K around room temperature was achieved. This is believed to
be the result of the larger change in the electron density in
the EDL capacitor compared to that in the HfO2 capacitor
structure.

In both devices (the ALD-HfO2 and the ionic-liquid-EDL
capacitors), the direction of the change in TC was the same:
positive (negative) VG, i.e., the increase (decrease) in the electron
density, resulted in higher (lower) TC. Thus, the TC had a positive
slope with respect to the electron density. According to previous
reports or ab-initio calculations for a bulk CoNi alloy [32], an
increase in the Ni composition, i.e., the decrease in the electron
number per atom, results in the reduction of TC, which is similar
to the case of the Slater-Pauling curve (atomic magnetic moment
with respect to the electron number for 3d transition metal
alloys). The direction of the change in TC under gating opposed
the Salter-Pauling type behavior (negative slope). Recently, the
electric field effect on TC for a similar Pt/Co structure was
calculated by ab-initio calculations via Monte Carlo simulations
that consider the magnetic anisotropy, and the same direction of
the TC change with the gating experiment was reported [33]. In
the paper, it has been pointed out that, because the sp electrons
predominantly contribute to the screening of the electric field,

the change in the electron number for d electrons opposes that
in the total electrons, i.e., the sign of the slope of TC with respect
to the number of d electrons is the same with the Slater-Pauling
curve. This can be one reasonable explanation for the experiment.
Another possibility is the oxidation-reduction reaction by the
application of the electric field [25, 26]. The negative VG is in the
direction of the oxidation reaction, which should reduce TC and
the magnetic moment of the Co layer. Moreover, the reduction
reaction may increase TC if the Co layer was slightly oxidized
after deposition. The evaluation of these effects will be considered
in future study.

ELECTRIC FIELD CONTROL OF
MAGNETIC MOMENT IN Pd

The results shown in the previous section show that
ferromagnetism is switchable in ferromagnets using an electric
field. It is natural to consider whether the electric field can
make non-magnets ferromagnetic. Moreover, if one electron is
removed from a Cu atom by an electric field, it is not known if
Cu will show ferromagnetism similar to Ni. This is an extreme
example, and it may be impossible to remove one electron from a
metallic atom using an electric field. However, this concept may
be realized with metals that are similar to ferromagnets. Among
these metals, Pd is a nonmagnetic metal that nearly satisfies the
Stoner criterion [34–37].
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FIGURE 2 | Electric field effect on the induced magnetic moment in Pd. (A) The Co thickness tCo dependence of the saturation magnetic moment per unit

area (ms/S) at 10 K for the Pt(4.1 nm)/Co(tCo) and Pt(4.1 nm)/Co(tCo)/Pd(1.7 nm) samples. (B) The T dependence of the remanent magnetic moment per unit area

(mr/S) for the Pt(4.1 nm)/Co(0.19 nm)/Pd(1.7 nm) sample under positive (+2V) and negative (−2V) VG. The inset shows the magnetic hysteresis loops for both VG at

10 K. For the hysteresis measurement, the anomalous Hall effect was used. (C) The T/TC dependence of the normalized mr for the Pt/Co and Pt/Co/Pd samples with

various tCo. The mr was normalized at T/TC = 0.87. All data points without gating were sandwiched by the positively and negatively gated data points, indicating that

the induced magnetic moment at the surface of the Pd layer was modulated by the application of an electric field.

Ab-initio calculations have shown that the peak of the density
of states of bulk nonmagnetic Pd is located at an energy
near the Fermi level [34], suggesting that an applied electric
field may affect the magnetic state in Pd [37]. Although the
modulation of paramagnetic properties was observed in Pt
thin films using the EDL capacitor [38], electric-field-induced
ferromagnetism has not been reported in nonmagnetic metals.
Thus, as a first step, the tenability of the induced magnetic
moment in Pd by the ferromagnetic proximity effect has been
investigated [39].

A magnetic moment is induced by the ferromagnetic
proximity effect in a Pd or Pt layer deposited on a ferromagnetic
metal layer [40–45]. Figure 2A shows the Co thickness
tCo dependence of the saturation magnetic moment per
unit area (ms/S) at 10 K for the Pt(4.1 nm)/Co(tCo) and
Pt(4.1 nm)/Co(tCo)/Pd(1.7 nm) samples. The Pd and Pt layers
were confirmed to have an fcc [? ] texture using X-ray diffraction.
Both samples were capped by 2-nm-thick MgO layer. For both
series, ms/S increases with tCo. However, the samples with the
Pd layer showed larger ms/S than the Pt/Co samples, indicating
that a magnetic moment was induced in the Pd layer. Assuming
that the magnetic moment is uniformly induced in the entire Pd
layer, the induced magnetic moment per Pd atom is calculated
to be ∼0.1µB (µB is the Bohr magneton), the order of which
is in good agreement with previous studies [40, 42, 43]. The
Pd thickness dependence of the magnetic moment (not shown)
indicated that the magnetic moment was induced up to 2 nm
from the Pd/Co interface. Thus, the Pd surface of the samples
shown in Figure 2A is expected to be ferromagnetic. Note that no

superparamagnetic behavior was observed in Pt/Co/Pd samples
even when the thickness of the Co layer was about half monolayer
(∼0.1 nm). In addition, the decrease in TC and perpendicular
magnetic anisotropy were confirmed after annealing of several
Pt/Co/Pd samples at 200 or 300◦C, suggesting that there
was much less intermixing of Pd or Pt with Co before
annealing.

Figure 2B shows the T dependence of the remanent magnetic
moment per unit area (mr/S) for one of the Pt/Co/Pd samples
with tCo = 0.19 nm under positive and negative VG. Though
TC was not visibly changed, a clear difference was observed in
mr/S, and the difference increased with decreasing temperature.
The squareness ratio was almost one for both VG values at
low T as shown in the inset; thus, this change was attributed
to the change in the induced magnetic moment at the surface
of the Pd layer. Two samples with different tCo values were
investigated. The modulated atomic magnetic moment for VG =
1Vwas calculated to be 0.05–0.08µB, and themodulated electron
number per Pd atom was estimated to be 0.03–0.05 from the
measured capacitance of each device.

Figure 2C shows the T/TC dependence of the normalized mr

for Pt/Co and Pt/Co/Pd samples with various tCo. The mr was
normalized at T/TC = 0.87. In general, a larger increase in
the magnetic moment was observed in the Pt/Co/Pd samples
as T decreased. This behavior is probably due to the larger
magnetic susceptibility of the Pd layer at lower T [43, 45]. All
data points for samples without gating were sandwiched by the
data points from the positively and negatively gated ones in
Pt/Co/Pd samples. This is one example showing that the induced
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magnetic moment at the surface of the Pd layer was modulated
by the application of the electric field. Inducing ferromagnetism
in non-magnetic materials is the next challenge.

CONCLUSIONS

Many experimental results reveal that various magnetic
properties are tunable using an electrical gating. Although
control of the phase transition and the magnetic moment was
emphasized in this paper, the speed of the magnetic domain
wall is also tunable using an electrical gating [46–48]. Electric-
field-induced magnetization switching [20, 21] based on the
control of the magnetic anisotropy [5, 9, 10] should significantly
impact future magnetic recording applications. These facts mean
that use of the electric field effect has already been established
in magnetic materials as well as semiconductors. The electrical

control window of the magnetic properties is expected to
continue to increase.
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