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ELECTRIC FIELD INDUCED TRICRITICAL POINT
IN CHIRAL POLARIZED LIQUID CRYSTALS

A. MICHELSON

and

D. CABIB

Physics Department, Technion, Haifa, Israel

(Re~u le 1 er juin 1977, accepte te 23 juin 1977)

Résumé. 2014 On présente une théorie de la transition entre un smectique C polarisé uniformément
et un smectique C* hélicoïdal en présence d’un champ électrique parallèle aux couches, en utilisant
la théorie de Landau. Le diagramme de phase (champ électrique-température) a un point tricri-
tique (Et, Tt). Les valeurs de Et et Tt sont exprimées en fonction des propriétés macroscopiques du
matériau.

Abstract. 2014 We present a Landau theory of the transition between a uniformly polarized smectic
C phase and a distorted smectic C* phase in the presence of an electric field parallel to the layers. The
field-temperature (E-T) phase diagram is shown to exhibit a tricritical point (Et, Tt). The values
of Et, Tt are expressed in terms of observable macroscopic properties of the material.
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We have been attempting recently [1] ] to explain
some macroscopic properties of recently disco-
vered [2-5] polarized liquid crystals composed of
chiral molecules (DOBAMBC and related materials).
These materials present a helicoidal smectic C phase
(named the C* phase) with spontaneously polarized
layers. On the basis of the suggested [2] linear coupling
between the layer polarization and the quadrupolar
order parameter characterizing the tilt in the C* phase,
we found qualitative agreement with experiments on
the structure of the C* phase and on the linear response
to an external electric field E parallel to the layers.
For E = 0, experiments [2] and theory [1, 6] agree in
showing a second-order phase transition from the
smectic A to the C* phase. For an infinitesimal ~ 5~ 0,
the theory [1] predicts a monotonically decreasing
line of critical temperatures 7c(F) separating a

uniformly polarized smectic C phase (at T &#x3E; 7~) and
a distorted smectic C* phase (at T  rj. The dis-
tortion induced by the field in the C* phase is essen-
tially a tilt of the axis of the helix with respect to the
layer normal, which makes the C* phase biaxial.

In this paper, we go a step further in studying the
line T~(~) and show that it terminates at a tricritical
point (Et, Tt), so that at E &#x3E; Et the phase transition
becomes first order. As in the previous works [1, 7],
we use a formalism based on the Landau theory of
second-order phase transitions.

Because of the linear coupling between the layer
polarization and the tilt angle, these two are pro-
portional below the transition [1, 2]. It can be shown [1] ]
that only one complex parameter is independent, and
one can choose P = 7B + iPy as such a parameter
(Px, Py are the cartesian components of the layer
polarization ; the z-axis is chosen to be normal to the
layers). In the smectic C* phase, P varies helicoidally
in the z-direction, with a pitch much larger than the
interlayer distance. Therefore we will consider P as a
slowly varying function of z and expand the free

energy F in both P and aP/az. The expansion of F
(per unit volume) has the form [7]

The integration is performed over the sample
volume V, and the main assumption is that only K1
is temperature dependent among the coefficients

Kl, ..., K4. The ordinary dielectric coupling, - 2 XE 2,
is omitted from (1), since it is small [2] compared with
the ferroelectric coupling, - PE. Expanding P in
a Fourier series P(z) = ~ Pk eikz and substituting

k
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into (1), we obtain

where

and the primes exclude k = 0 from the summation
on k. The quantity Po, corresponding to a uniform
polarization, obviously vanishes for E = 0. In this
case the helicoidal phase is characterized by a pitch
I = 2 7E/) ko I, where ko, the wave number of the soft
mode of the smectic A to C* phase transition, is
determined from the minimization of Ak : aAkiak = 0.
This yields

The critical temperature T~o at E = 0 is determined
from the equation Ako(Te) = 0, where

Assuming linear dependence of Ako on T near
T~o : .4jr) = C -1 (T - r.o), we obtain from (5) :

The zero-field dielectric susceptibility at T &#x3E; T~o is
X = K1-1 ; it tends to the finite value

at T -~ Tgo + 0, and behaves according to the Curie-
Weiss law

at

For E =1= 0, the higher-temperature phase is a

uniformly polarized smectic C, characterized by a
real Po =1= 0 and Pk = 0 for all k =1= 0 ; Po is deter-
mined, as a function of T and E, from the equation

following from the minimization of F with respect
to Po. As T goes below 7~ = Tc(E), the free energy (2)
becomes unstable with respect to the appearance of a
non-zero Pk, in addition to Po, so that a second-order
transition occurs to a distorted (distorted because of
Po =F 0) smectic C* phase. To determine the soft mode
of this transition, one has to diagonalize the harmonic
part of F, quadratic in Pk (k =1= 0), and find the lowest
eigenvalue Ako of the quadratic expression. One
thereby determines the wave number ko of the soft
mode ~ which is a certain linear combination of Pko

and P*~ : ~ = xP~ + j8PI~. r, = 7,(E) is found
from the equation A~ = 0 together with eq. (9). It is
then possible to present Fin the effective form

Then it can be shown that, on increasing E, the
coefficient B decreases along the line 7c~)’ until it
vanishes at the tricritical point (Et, Tt). The procedure
described, which is simple but rather tedious, makes it
possible to find the exact (within the Landau theory)
parametric equations of the critical line Tc(E) and the
values of Et, Tt (expressed in terms of ~ C, and K4).
It turns out, however, that a much simpler, although
approximate, calculation based on neglecting the

off-diagonal terms Pk P - k in (2) leads to the same
results with small differences (e.g., a difference of 4 %
in the value of Et). For the sake of brevity and simpli-
city, we will use the approximate method here.
By neglecting the coupling terms Pk P-k in (2), the

soft mode is again ~ = Pko with ko from (4). However,
Tc is now determined from the equation

~ I ~ I A r; -n 2 11 /1 1 B.

where Poo is the equilibrium value of Po at the transi-
tion point. Since at this point Pk = 0(/r 5~ 0),Poo~~st
satisfy eq. (9) with Kl = Ki(T~). It then follows

from (5)-(7), (9), (11) that

Eq. (12), (13) are parametric equations of the
line Te(E). For

~ ~ -- ~ .. "~ - -

and we return to the quadratic dependence

found in our previous work [1].
Slightly below 7c, the system is characterized by two

parameters, ~ (complex) and Po (real). Putting in (2)
Pk = 0 for k =1= 0, ko and P~ = ~ we obtain

Here ~ is the order parameter of the phase transition,
and Po is a non-critical parameter coupled to 0 through
the term Po ~ ~ ~ 2 . To express F as a function of ~ only,
we proceed as in a recent work of Benguigui [9].
Solving the equation aF/aPo = 0 with respect to Po
infinitesimally below Tc and expanding the solution in
powers of I t/J 12, we get
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Substituting (15) into (14), we arrive at (10), with

To find the tricritical point, we put B = 0 and,
using eqs. (5) and (11), we obtain

Substituting (17) into (12), (13), we get

(the values obtained by the exact method are

Et = 0.220 Xc- 3/2 K4 1/2 and T~0 Tt = 0.238 Cx~ 1).
According to the Landau theory [8], K4 is related to
the jump in specific heat Ac occuring at the smectic A
to C* phase transition (at E = 0) by the formula
Ac = C2 Tco/4 K4 ; hence (we use the exact value
for E)

Formula (20) expresses Et in terms of measurable
quantities.
The simplified calculation presented in this paper

results in ko independent of E (eq. (4)). According to
the more accurate calculation mentioned before,
ko is’3. decreasing function of Po o, and thereby of E.
However, for E  E,, the decrease in ko is negligible,
and therefore the above approximation is completely
justified. For E &#x3E; Et, the growth of E should lead to
an appreciable decrease of ko until the helix is comple-
tely unwound [2, 3] (ko = 0). A theoretical description
of this unwinding poses great difficulties, because the
Landau theory is inapplicable for first-order transi-
tions far from the tricritical point.

In conclusion, we have demonstrated on the basis of
the Landau theory [8], that the line 7~(F) of second-
order phase transitions between the electrically induced
uniform smectic C phase and the electrically distorted
smectic C* phase terminates at a tricritical point.
Having related the critical quantities Et, Tt to other
measurable properties of the material, we hope to
stimulate further experimental work on these inte-
resting liquid crystal phases.
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