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We present a 2þ 1-flavor lattice QCD calculation of the electromagnetic Dirac and Pauli form factors of

the octet baryons. The magnetic Sachs form factor is extrapolated at six fixed values of Q2 to the physical

pseudoscalar masses and infinite volume using a formulation based on heavy-baryon chiral perturbation

theory with finite-range regularization. We properly account for omitted disconnected quark contractions

using a partially quenched effective field theory formalism. The results compare well with the experimental

form factors of the nucleon and the magnetic moments of the octet baryons.
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I. INTRODUCTION

The ability to accurately reproduce the experimentally

determined baryon electromagnetic form factors stands as a

fundamental test for any theoretical description of baryon

structure. This is a test which quantum chromodynamics

(QCD), our theory of the strong interactions, has not yet

definitively passed [1].

In particular, with ever-improving experimental deter-

minations of the form factors revealing slight deviations

from the phenomenological dipole form [2–5], a precise

determination of these and related quantities from first-

principles QCD is essential. Lattice simulation remains

the only rigorous method to quantitatively probe the

nonperturbative domain of QCD. As well as facilitating

a comparison of theory with experimental data, lattice

simulations provide a great deal of physical insight and

valuable information for model building by revealing the

dependence of hadron properties on quark mass [6–8].

Recent years have seen a progression from quenched to

fully dynamical lattice QCD studies of the electromagnetic

form factors. Despite this significant advance, operator

self-contractions (disconnected quark diagrams) are still

often omitted from simulations as they are notoriously

noisy and expensive to calculate. While, in general, this

omission produces a systematic effect (shown to be small

in Ref. [9]), exact results may be obtained for isovector

quantities, where contributions from disconnected

loops cancel.

We present new dynamical 2þ 1-flavor lattice QCD

simulation results for the electromagnetic form factors of

the octet baryons. This data set includes results for GE=M

for all outer-ring octet baryons at a range of discrete Q2

values up to 1.3 GeV2. As chiral extrapolations are differ-

ent for the electric and magnetic form factors, we present

here an analysis of the magnetic form factor only. GE will

be considered in future work.

We extrapolate the lattice results forGM, at each value of

Q2, as a function of quark mass to the physical point. As the

lattice simulations neglect disconnected quark contractions,

this extrapolation is performed using a variation of partially

quenched chiral perturbation theory. The distinguishing

feature of this formalism is that valence and sea quarks

are treated separately. For example, one may set the electric

charge of the sea quarks to zero, removing the same

disconnected quark contractions omitted in the lattice sim-

ulations [10–12]. This is termed “connected chiral perturba-

tion theory.”Finite-volume effects are estimated by using the

leading one-loop results of the chiral effective field theory.

By carrying out the lattice simulations over a range of

light and strange quark masses, it is possible to tightly

constrain the chiral extrapolation on the relevant parameter

space and obtain surprisingly accurate results for the form
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factors at the physical point. Those results compare quite

favorably with the experimental values.

The details of the lattice simulation are given in Sec. II,

while Sec. III presents the effective field theory formalism.

Fits to the lattice simulation results are described in Sec. IV,

followed by results for the magnetic isovector form factors,

octet baryon magnetic moments and magnetic radii in

Sec. V. The appendixes provide further details, including

tables of lattice results and functional forms for the chiral

expansions.

II. LATTICE SIMULATION

Here we describe our lattice setup and summarize the

standard methods used to calculate the octet baryon

electromagnetic form factors. While the nucleon form

factors have been investigated in many lattice studies

[16–27], we emphasize that the results presented here also

include values for the hyperon form factors, which have so

far received only limited attention [24,28–30]. These are of

significant interest both in their own right and because they

provide valuable insight into the environmental sensitivity

of the distribution of quarks inside a hadron. For example,

one may learn how the distribution of u quarks in the proton
differs from that in the Σ

þ, an effect caused by the mass

difference of the spectator d and s quarks.

A. Simulation parameters

We use gauge field configurations with Nf ¼ 2þ 1

flavors of nonperturbatively OðaÞ-improved Wilson fer-

mions. The clover action consists of the tree-level

Symanzik-improved gluon action together with a mild

“stout”-smeared fermion action [15]. As the main aim of

the work presented here is to perform a chiral (as well as

infinite volume) extrapolation of the baryon electromagnetic

form factors at fixed values ofQ2, we restrict ourselves to a

single lattice volume of L3 × T ¼ 323 × 64. The lattice

scale a ¼ 0.074ð2Þ fm is set using various singlet quantities

[13–15]. The lightest pion mass is about 310 MeV. A

summary of the simulation parameters is given in Table I.

A particular feature of the gauge configurations is that

the primary simulation trajectory in quark-mass space,

illustrated in Fig. 1, follows a line of constant singlet

mass mq ¼ ðmu þmd þmsÞ=3 ¼ ð2ml þmsÞ=3. This is

achieved by first finding the SU(3) flavor-symmetric point

where flavor singlet quantities take on their physical values,

then varying the individual quark masses about that

point [14,15].

It is clear from Fig. 1 that this primary trajectory at

κ0 ¼ 0.120900 [where κ0 denotes the value of κl ¼ κs at

the SU(3) symmetric point] does not quite match the

physical singlet mass line [14]. Extrapolation to the

physical point thus requires a shift not only along

the simulation trajectory but in a direction perpendicular

to it. To constrain the quark-mass dependence in this

perpendicular direction, we include additional lattice

simulations at several singlet masses (i.e., values of

κ0). These are listed as simulations 4–6 in Table I and

are shown in Fig. 1.

B. Electromagnetic form factors

The Dirac and Pauli form factors F1ðQ2Þ and F2ðQ2Þ are
obtained from the standard decomposition of the matrix

elements of the electromagnetic current jμ:

hBðp0; s0ÞjjμðqÞjBðp; sÞi

¼ ūðp0; s0Þ
�

γμF1ðQ2Þ þ iσμνq
ν

2mB

F2ðQ2Þ
�

uðp; sÞ; (1)

TABLE I. Simulation details for the ensembles used here, with

β ¼ 5.50 corresponding to a ¼ 0.074ð2Þ fm. The scale is set

using various singlet quantities [13–15]. L3 × T ¼ 323 × 64 for

all ensembles. The parameter κ0 denotes the value of κl ¼ κs at

the SU(3) symmetric point.

κ0 κl κs

mπ

(MeV)

mK

(MeV) mπL

1 0.120900 0.120900 0.120900 465 465 5.6

2 0.121040 0.120620 360 505 4.3

3 0.121095 0.120512 310 520 3.7

4 0.120920 0.120920 0.120920 440 440 5.3

5 0.120950 0.120950 0.120950 400 400 4.8

6 0.121040 0.120770 330 435 4.0
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FIG. 1 (color online). Locations of lattice simulation results in

the ml-ms plane. The red star denotes the physical point and

the dashes indicate the flavor-symmetric line where ml ¼ ms.

Our primary simulation trajectory, illustrated by the dotted line,

corresponds to the line of constant singlet quark mass ð2m2
K þ

m2
πÞ at κ0 ¼ 0.120900 (simulations 1–3 in Table I). The solid line

indicates the physical value of the singlet mass.
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where uðp; sÞ is a Dirac spinor with momentum p and spin

polarization s, q ¼ p0 − p is the momentum transfer, Q2 ¼
−q2 and mB is the mass of the baryon B.

The left-hand side of Eq. (1) is calculated on the lattice in

the usual way from the ratio of three- and two-point

correlation functions:

Rðt; τ; ~p0; ~pÞ ¼ C3ptðt; τ; ~p0; ~pÞ
C2ptðt; ~p0Þ

×

�

C2ptðτ; ~p0ÞC2ptðτ; ~p0ÞC2ptðt − τ; ~pÞ
C2ptðτ; ~pÞC2ptðt; ~pÞC2ptðt − τ; ~p0Þ

�

1=2

;

(2)

where t denotes the Euclidean time position of the sink and

τ the operator insertion time. In order to ensure that excited

state contributions to the correlation functions are sup-

pressed, we employ quark smearing at the source and sink

and use a generous source-sink separation of 1–1.15 fm.

This has been shown to be sufficient [25].

The two- and three-point functions are given, as in

Ref. [25], by

C2ptðτ; ~pÞ ¼ Tr

�

1

2
ð1þ γ4ÞhBðτ; ~pÞB̄ð0; ~pÞi

�

; (3)

C3ptðt; τ; ~p0; ~p;OÞ ¼ Tr½ΓhBðt; ~p0ÞOð~q; τÞB̄ð0; ~pÞi�; (4)

where Tr denotes a trace in spinor space and the local vector

current O is

Oμð~q; τÞ ¼
X

~x

ei~q·~xq̄ð~x; τÞγμqð~x; τÞ; (5)

where qð~x; τÞ is a quark field and ~q is the three-momentum

transfer. The Dirac operator Γ represents a polarization

projection. For example, we use

Γunpol: ¼
1

2
ð1þ γ4Þ; (6)

Γ3 ¼
1

2
ð1þ γ4Þiγ5γ3; (7)

for an unpolarized baryon or one polarized in the z
direction, respectively. As the current O is not conserved,

we enforce charge conservation by using 2=Fp;u
1 ð0Þ as a

multiplicative renormalization on each ensemble (as

explained later, the quark-level form factors are defined

for quarks of unit charge). We note that quark line

disconnected contributions to the three-point function of

Eq. (4) are neglected in these simulations. The effect of

this omission will be discussed further in the following

sections. Simulations are performed with zero sink momen-

tum and six different values of the momentum transfer

~q ¼ ~p0 − ~p, corresponding to Q2 up to ≈1.3 GeV2.

For the chiral extrapolations presented in this work, we

consider only linear combinations of F1 and F2, namely,

the electric and magnetic Sachs form factors:

GEðQ2Þ ¼ F1ðQ2Þ − Q2

4m2
N

F2ðQ2Þ; (8)

GMðQ2Þ ¼ F1ðQ2Þ þ F2ðQ2Þ: (9)

We focus particularly on the magnetic form factor GM.

C. Lattice results for F1 and F2

Although the primary focus of this work is on the values

of the magnetic form factors at the physical quark masses,

with details of the chiral extrapolation of GM presented in

the following sections, we display here some of the raw

lattice simulation results for F1;2 before finite-volume
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FIG. 2 (color online). Quark contributions to the Dirac form

factor F1 of the hyperons at the lightest simulation pion mass

ðmπ; mKÞ ¼ ð310; 520Þ MeV. (a) Doubly represented quark con-

tributions. (b) Singly represented quark contributions. The

charges of the relevant quarks have been set to unity. The lines

show dipolelike fits [Eq. (10)].
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corrections or chiral extrapolations have been applied.

Numerical results are tabulated in Appendix A. We also

give the results of a dipolelike extraction of the Dirac and

Pauli mean-squared radii and the anomalous magnetic

moment.

The Dirac and Pauli form factors at the lightest simu-

lation pion mass ðmπ; mKÞ ¼ ð310; 520Þ MeV are illus-

trated in Figs. 2 and 3. The figures have been organized as

doubly and singly represented quark contributions. This

grouping shows most clearly the environmental sensitivity

of the quark contributions to the form factors; for example,

the only difference between the u in the proton and the u in

the sigma baryon is the mass of the spectator (d or s) quark.
For F1 this sensitivity increases with Q2. The fits shown

use the two-parameter ansätze:

F1ðQ2Þ ¼ F1ð0Þ
1þ c12Q

2 þ c14Q
4
; (10)

F2ðQ2Þ ¼ F2ð0Þ
ð1þ c22Q

2Þ2 ; (11)

where the cij and the anomalous magnetic moment

FB;q
2 ð0Þ ¼ κB;q are fit parameters, while F1ð0Þ is fixed

by charge conservation. As we consider quarks of unit

charge, F1ð0Þ ¼ 2, 1 for the doubly and singly represented

quarks, respectively. Clearly, the functional forms chosen

provide excellent fits to the lattice simulation results.

Mean-squared radii are extracted from theQ2 derivatives

of the form factors:

hr2ii ¼ −
6

Fið0Þ
d

dQ2
FiðQ2Þ

�

�

�

�

Q2¼0

: (12)

The isovector radii for the nucleon are shown in Fig. 4.

These results are in line with those from other 2þ 1 and

2þ 1þ 1-flavor simulations [26,27,31–33]. We note that

the other lattice simulations included here were performed

at a range of values of mK . Although most results were
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FIG. 3 (color online). Quark contributions to the Pauli form

factor F2 of the hyperons at the lightest simulation pion mass

ðmπ; mKÞ ¼ ð310; 520Þ MeV. (a) Doubly represented quark con-

tributions. (b) Singly represented quark contributions. The

charges of the relevant quarks have been set to unity. The lines

show dipole fits [Eq. (11)].
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FIG. 4 (color online). Dirac and Pauli radii for the nucleon from

recent2þ 1 and2þ 1þ 1-flavor lattice simulations [26,27,31–33],

compared with the results of this work. (a) Isovector Dirac radii.

(b) Isovector Pauli radii.
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extracted using dipole or dipolelike fits, some include a

systematic uncertainty arising from that choice of fit

function while others do not. This partially accounts for

the large variation in the quoted errors. Tables of results for

all hr2iB;q1;2 and κB;q extracted from our fits are given in

Appendix A.

III. CONNECTED CHIRAL PERTURBATION

THEORY EXTRAPOLATION

While lattice QCD has made great progress towards a

quantitative understanding of the physics of the strong

interaction in the nonperturbative regime, it is often

necessary to extrapolate lattice results from unphysically

large simulation meson masses to the physical point.

Partially quenched chiral perturbation theory has been

developed in order to address the extrapolation of partially

quenched lattice studies, which employ different values for

the sea and valence quark masses.

The lattice simulations considered here, although fully

dynamical, include only contributions from “connected”

insertions of the current operator. For this reason, we

extrapolate the results using a formalism based on “con-

nected chiral perturbation theory,” which is a variant of

partially quenched chiral perturbation theory.

Partially quenched chiral perturbation theory has been

widely discussed in the literature [12,34–40]. Here we

employ the heavy-baryon expansion pioneered by Jenkins

and Manohar [41–45]. For completeness, this section sum-

marizes our adaptation of this formalism and the relevant

expressions for the magnetic form factors of the octet

baryons.

A. Partially quenched chiral perturbation theory

Details of partially quenched chiral perturbation theory

may be found in Refs. [12,34–40]. Here we outline a

special case of this formalism, termed connected chiral

perturbation theory [10].

Partially quenched QCD includes nine quarks, which

appear in the fundamental representation of the graded

symmetry group SUð6j3Þ:

ψT ¼ ðu; d; s; j; l; r; ~u; ~d; ~sÞ: (13)

In addition to the three usual light quarks ðu; d; sÞ, there are
three light fermionic sea quarks ðj; l; rÞ and three spin-1=2

bosonic ghost quarks ð ~u; ~d; ~sÞ. When the ghost quarks are

made pairwise mass and charge degenerate with ðu; d; sÞ,
their bosonic statistics ensure that closed q and ~q quark

loop contributions cancel and hence such loops do not

contribute to observables. Thus, if only ðu; d; sÞ are used in
hadronic interpolating fields, these quarks truly represent

“valence” quarks, while ðj; l; rÞ appear only in discon-

nected loops and are therefore interpreted as sea quarks.

For our application, the sea and ghost quarks are mass

degenerate with their corresponding valence partners. Thus,

the quark mass matrix is

mψ ¼ diagðmu; md; ms; mu; md; ms; mu; md; msÞ: (14)

As we wish to exclude all diagrams with closed quark

loops from contributing to hadronic observables, we set the

sea quark charges to zero. As the ghost quarks ð ~u; ~d; ~sÞ
must have the same charges, pairwise, as ðu; d; sÞ, the

general form of the quark charge matrix is

Q ¼ diagðqu; qd; qs; 0; 0; 0; qu; qd; qsÞ: (15)

Individual quark contributions may be extracted by setting

all but one charge to zero, for example, by taking qu → 1,

qd → 0, qs → 0 to obtain the u-quark contribution.

Of course, reinstating the sea quark charges by Q →
diagðqu; qd; qs; qu; qd; qs; qu; qd; qsÞ will give a formalism

which exactly reproduces full chiral perturbation

theory [37].

The dynamics of the 80 pseudo-Goldstone mesons

(both bosonic and fermionic) which emerge from the

spontaneous breaking of the symmetry group SUð6j3ÞL ⊗

SUð6j3ÞR ⊗ Uð1ÞV → SUð6j3ÞV ⊗ Uð1ÞV are described

at lowest order by the Lagrangian

L ¼ f2

8
StrðDμ

Σ
†DμΣÞ þ λStrðmψΣþm†

ψΣ
†Þ; (16)

where

Φ ¼
�

M χ†

χ ~M

�

; Σ ¼ ξ2 ¼ exp

�

2iΦ

f

�

: (17)

HereM, ~M and χ are matrices of pseudo-Goldstone bosons

with the quantum numbers of qq̄ pairs, pseudo-Goldstone

bosons with the quantum numbers of ~q ~̄q pairs, and pseudo-

Goldstone fermions with the quantum numbers of ~q q̄ pairs,

respectively. Made explicit in Ref. [38], Φ is normalized

such that Φ12 ¼ πþ. Str denotes the supertrace. The gauge-
covariant derivative is given by DμΣ ¼ ∂μΣþ ieAμ½Q;Σ�.
While the complete partially quenched theory includes

baryons composed of all types (and all mixtures of types) of

quarks, for our application we need only predominantly

valence states with at most one ghost or sea quark. These

are constructed explicitly in Ref. [38]. In general terms, the

baryon field Bijk is constructed using an interpolating field

Bγ
ijk ∼ ðψα;a

i ψ
β;b
j ψ

γ;c
k − ψα;a

i ψ
γ;c
j ψ

β;b
k ÞϵabcðCγ5Þαβ: (18)

The usual spin-1=2 baryon octet is embedded in Bijk for

i; j; k restricted to 1–3 as

MAGNETIC FORM FACTORS OF THE OCTET BARYONS … PHYSICAL REVIEW D 89, 074511 (2014)
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Bijk ¼
1
ffiffiffi

6
p ðϵijlBl

k þ ϵiklB
l
jÞ; (19)

where

B ¼

0

B

B

@

1
ffiffi

6
p Λþ 1

ffiffi

2
p Σ

0
Σ
þ p

Σ
− 1

ffiffi

6
p Λ − 1

ffiffi

2
p Σ

0 n

Ξ− Ξ0 − 2
ffiffi

6
p Λ

1

C

C

A

. (20)

Similarly, the spin-3=2 decuplet baryons may be con-

structed as

Tα;μ
ijk ∼ ðψα;a

i ψ
β;b
j ψ

γ;c
k þ ψ

β;b
i ψ

γ;c
j ψα;a

k

þ ψ
γ;c
i ψα;a

j ψ
β;b
k ÞϵabcðCγμÞβ;γ; (21)

where, for i; j; k ¼ 1–3, Tijk is simply the usual totally

symmetric tensor containing the decuplet of valence baryon

resonances.

The covariant derivative takes the same form for both the

octet and decuplet baryons:

ðDμBÞijk ¼ ∂μBijk þ ðVμÞilBljk

þ ð−1ÞηiðηjþηmÞðVμÞjmBimk

þ ð−1ÞðηiþηjÞðηkþηnÞðVμÞknBijn: (22)

Here the grading factor ηk tracks the statistics of the bosonic

ghost quark sector:

ηk ¼
�

1 for k ¼ 1–6

0 for k ¼ 7–9;
(23)

and the vector field Vμ is defined in analogy with that in QCD:

Vμ ¼ 1

2
ðξ∂μξ† þ ξ†∂μξÞ: (24)

The coupling of the 80 pseudo-Goldstone mesons to the

baryons is described by

L ¼ 2αðB̄SμBAμÞ þ 2βðB̄SμAμBÞ
þ 2γðB̄SμBÞStrðAμÞ þ 2HðT̄νSμAμTνÞ

þ
ffiffiffi

3

2

r

C½ðT̄νAνBÞ þ ðB̄AνT
νÞ� þ 2γ0ðT̄νSμTνÞStrðAμÞ;

(25)

where, again in analogy with QCD,

Aμ ¼ i

2
ðξ∂μξ† − ξ†∂μξÞ; (26)

Sμ is the covariant spin vector and the brackets are a

shorthand for field bilinear invariants employed in

Ref. [46], as summarized in Appendix B. By matching

to the usual QCD Lagrangian for i; j; k restricted to 1–3, we
make the identification

α ¼ 2

3
Dþ 2F; β ¼ −

5

3
Dþ F; (27)

while C and H map directly to their QCD values.

The heavy-baryon propagators for the octet baryon,

decuplet baryon and meson are [45]

i

v · kþ iϵ
;

iPμν

v · k− δþ iϵ
; and

i

k2 −M2 þ iϵ
;

(28)

respectively. Here Pμν ¼ vμvν − gμν − ð4=3ÞSμSν is

a spin-polarization projector that projects out the

positive spin-1=2 solutions to the equation of motion,

and δ denotes the average octet-baryon–decuplet-baryon

mass splitting.

B. Electromagnetic form factors

In the heavy-baryon formalism, the electromagnetic

form factors GE and GM are defined by

hBðp0ÞjJμjBðpÞi

¼ ūðp0Þ
�

vμGEðQ2Þ þ iϵμναβv
αSβqν

mN

GMðQ2Þ
�

uðpÞ;

(29)

where q ¼ p0 − p and Q2 ¼ −q2. Here we focus exclu-

sively on the magnetic form factor GM, at fixed finite Q2.

In the familiar formulation of chiral perturbation theory,

the magnetic moments of the octet baryons in the chiral

limit are encoded in the coefficients of the “magnetic

Lagrangian density” [45]:

L ¼ e

4mN

Fμνσ
μν½μαðB̄BQÞ þ μβðB̄QBÞþμγðB̄BÞStrðQÞ�:

(30)

By comparison with the standard QCD Lagrangian, we

make the identification

μα ¼
2

3
μD þ 2μF; μβ ¼ −

5

3
μD þ μF: (31)

The μγ term contributes only when the quark charge matrix

Q is defined such that StrðQÞ ≠ 0, for example when

considering individual quark contributions to the magnetic

moments.

Terms describing the explicit symmetry breaking at

leading order in the quark masses are generated by
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Llin ¼ B
e

2mN

½c1ðB̄mψBÞStrðQÞ þ c2ðB̄BmψÞStrðQÞ þ c3ðB̄QBÞStrðmψ Þ þ c4ðB̄BQÞStrðmψ Þ þ c5ðB̄QmψBÞ

þ c6ðB̄BQmψÞ þ c7ðB̄BÞStrðQmψÞ þ c8ðB̄BÞStrðQÞStrðmψÞ þ c9ð−1ÞηlðηjþηmÞðB̄kjiðmψ ÞliQm
j BlmkÞ

þ c10ð−1Þηjηmþ1ðB̄kjiðmψÞmi Ql
jBlmkÞ þ c11ð−1ÞηlðηjþηmÞðB̄kjiQl

iðmψ Þmj BlmkÞ
þ c12ð−1Þηjηmþ1ðB̄kjiQm

i ðmψÞljBlmkÞ�Fμνσ
μν; (32)

where B ¼ 4λ=f2 [see Eq. (16)], the shorthand for field

bilinear invariants is summarized in Appendix B, and the

one-loop diagrams in Fig. 5 give rise to the leading chiral

nonanalyticities of the quark mass expansion.

For small momentum transfer, the standard perturbative

approach would be to generate extensions of Eqs. (32)

and (32), with additional derivatives, to form a series

expansion in Q2. In the present work we are interested

in the form factors over a much larger range of Q2 than can

be explored with a perturbative expansion. For this reason

we consider independent chiral extrapolations at fixed

values of Q2.

We take a model that maintains the SU(3) flavor

structure of Eqs. (30) and (32). The parameters μα;β;γ
appearing in Eq. (30) are now interpreted as chiral limit

form factors at some fixed Q2; their numerical values may

be different at each Q2. Similarly, the terms of Eq. (32) are

associated with the symmetry breaking at fixed Q2.

The resulting expressions for the magnetic form factors,

at some fixed finite Q2, may be summarized as

GB;q
M ðQ2Þ ¼ αBq þ

X

q0
ᾱBqðq

0ÞBmq0

þ mN

16π3f2

X

ϕ

ðβBqðϕÞO IOðmϕ; Q
2Þ þ β

BqðϕÞ
D IDðmϕ; Q

2ÞÞ; (33)

where Bmq denotes the mass of the quark q, identified with
the meson masses via the appropriate Gell-Mann-Oakes-

Renner relation, e.g., Bml ¼ m2
π=2. The physical mass of

the nucleon is given by mN, and ϕ stands for any of the 80

pseudo-Goldstone mesons of our theory. The pion decay

constant is f ¼ 0.0871 GeV in the chiral limit [47]. We

note that this expression is defined in units of physical

nuclear magnetons μN . Here the contributions from

Figs. 5(a) and 5(b) depend on the integrals

IO ¼
Z

d~k
k2yuð~kþ ~q=2Þuð~k − ~q=2Þ

2ω2
þω

2
−

; (34)

ID ¼
Z

d~k
k2yðω− þ ωþ þ δÞuð~kþ ~q=2Þuð~k − ~q=2Þ
2ðωþ þ δÞðω− þ δÞωþω−ðωþ þ ω−Þ

;

(35)

where

ω� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð~k� ~q=2Þ2 þm2

q

; (36)

and uð~kÞ is the ultraviolet regulator used in the finite-range

regularization (FRR) scheme. This choice of regularization

procedure is discussed in detail in Refs. [48–50]. In short,

the inclusion of a finite cutoff in the loop integrands

effectively resums the chiral expansion in a way that

suppresses the loop contributions at large meson masses.

This enforces the physical expectation, based on the finite

size of the baryon, that meson emission and absorption

processes are suppressed for large momenta. For the case of

the octet baryon masses, FRR appears to offer markedly

improved convergence properties of the (traditionally

poorly convergent) SU(3) chiral expansion [48], and this

scheme consistently provides robust fits to lattice data at

leading or next-to-leading order. Nevertheless, one could

calculate the size of higher order corrections to confirm that

these contributions are small as expected.

For this analysis we choose a dipole regulator uðkÞ ¼
	

Λ2

Λ2þk2




2
with a regulator mass Λ ¼ 0.8� 0.1 GeV. The

dipole form is suggested by a comparison of the nucleon’s

axial and induced pseudoscalar form factors [51], and the

choice of Λ is informed by a lattice analysis of nucleon

magnetic moments [52]. We note that different regulator

forms (for example, monopole, Gaussian or sharp cutoff)

yield fit parameters (and extrapolated results) which are

(a) (b)

FIG. 5. Loop diagrams which contribute toGM at leading order.

Single, double, dashed and wavy lines represent octet baryons,

decuplet baryons, mesons and photons, respectively.
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consistent within the quoted uncertainties. Expressions

for the coefficients αBq, ᾱBqðq
0Þ, βBqðϕÞO and β

BqðϕÞ
D are given

explicitly in Appendix C.

IV. FITS TO LATTICE RESULTS

Before fitting chiral expressions to the lattice simulation

results, we perform several corrections to the raw lattice

data. First, we estimate corrections for small finite-volume

effects, using the leading one-loop results of the chiral

effective field theory (see Sec. IVA). As the chiral

extrapolation functions summarized in Sec. III are for

fixed, finite Q2, we analyze the lattice results in fixed

Q2 bins. As explained in Sec. IV B below, there are small

variations in Q2 with different pseudoscalar and baryon

masses. In order to facilitate the fixed-Q2 extrapolation, we

interpolate the form factors to common points in Q2.

All of the analysis is performed for the magnetic form

factors GM in physical nuclear magnetons. This choice

simplifies the extrapolation procedure, as there is no need

to consider a quark-mass–dependent magneton, although

an extrapolation using such units is possible and equivalent.

The conversion from lattice natural magnetons to physical

nuclear magnetons is performed at the bootstrap level.

A. Finite-volume corrections

Finite-volume corrections are performed using the differ-

ence between infinite-volume integrals and finite-volume

sums for the leading-order loop integral expressions from

Sec. III. The procedure used here follows Ref. [53]. We

note that before performing the finite-volume sums, the

expressions for the integrands in Eqs. (34) and (35) are

shifted from being symmetric (meson lines with momenta

k − q=2 and kþ q=2, as illustrated in Fig. 5) to what is

more natural for the lattice, namely, meson lines with

momenta k and kþ q. The purpose is to account for the fact
that momentum is quantized on the lattice.

The finite-volume corrections are small: they contribute

approximately 2%–4% of the nucleon form factor at the

lowest Q2 value (≈0.26 GeV2) and 0.03%–0.06% at the

largest (Q2 ≈ 1.35 GeV2), where the variation in each

range is a result of the different pion and kaon mass points

considered.

B. Binning in Q2

As the chiral extrapolations used here [Eq. (33)] are

applicable for fixed finite Q2, we bin the lattice simulation

results in Q2 before fitting. The bin groupings are illus-

trated in Fig. 6. Each bin corresponds to a single value of

the three-momentum transfer in lattice units. The corre-

sponding physical Q2 values vary slightly because of the

different baryon masses feeding into the dispersion relation.

The largest variation is 1.29–1.37 GeV2 for the highest

Q2 bin.

To account for the small variation in Q2 within each bin,

all simulation results are shifted to the average Q2 value

of their respective bin. This shift is performed using a

dipolelike fit to the (finite-volume–corrected) simulation

results. The functional form used is

Gfit
MðQ2Þ ¼ μ

1þ d1Q
2 þ d2Q

4
; (37)

where μ, d1 and d2 are free parameters. Several examples of

the fits are shown in Fig. 7. As the shifts are small,

particularly at low Q2 where the fit function has a larger

slope, there is no dependence, within uncertainties, on the

functional form chosen. The simulation results are shifted

by GfitðQ2
averageÞ −GfitðQ2

simulationÞ.

C. Fits to lattice results

After the lattice simulation results have been finite-

volume corrected and binned in Q2, we perform an

independent bootstrap-level fit, using Eq. (33), to the

variation with mπ for the results in each Q2 bin. An

advantage of this approach [29,54] is that it allows the

fit parameters, which are the undetermined chiral coeffi-

cients, to vary with Q2 without the need to impose some

phenomenological expectation on the shape of their

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Q2 GeV2

FIG. 6 (color online). Q2 distribution for the lattice simulation

results. Colors indicate theQ2 bin groupings; each bin corresponds

to a single value of the three-momentum transfer in lattice units.

0.0 0.5 1.0 1.5

1.0

1.5

2.0

2.5

3.0

3.5

Q2 GeV2
G

Mp
,u

FIG. 7 (color online). Generalized dipole fits [Eq. (37)] upon

which the binning corrections are based. The three fits shown

correspond to the three different pseudoscalar mass points along

the primary simulation trajectory (simulations 1–3 in Table I).

Quarks have unit charge.
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variation. Values of these fit parameters are shown in

Appendix D. The quality of fit at each Q2 is good, with

χ2=d:o:f: ≈ 0.5–1.4 for every fit. An illustration of the fit

quality for the lowest Q2 bin (Q2 ≈ 0.26 GeV2) is given in

Fig. 8. That figure shows the ratio of the fit function to the

lattice simulation result for each data point; the 24 data

points include six at each set of pseudoscalar masses where

mπ ≠ mK (i.e., Gp;u
M , Gp;d

M , GΣ;u
M , GΣ;s

M , GΞ;s
M and GΞ;u

M ) and

two at each SU(3)-symmetric point. We recall that while

each Q2 set is treated as independent, the various octet

baryon form factors are fit simultaneously.

Using these fits, the baryon magnetic form factors may

be extrapolated to the physical pseudoscalar masses at each

simulation Q2. For example, Fig. 9 shows results for the up

quark contribution to the proton magnetic form factor,

plotted along a trajectory which holds the singlet pseudo-

scalar mass (m2
K þm2

π=2) fixed to its physical value. The

results display the expected qualitative behavior; as Q2

increases (moving down the figure), the extrapolation inm2
π

decreases in curvature. This implies that the magnetic

radius of the proton increases in magnitude as we approach

the physical pion mass from above. Magnetic radii are

discussed further in Sec. V C.

We note that uncertainty in the value of the lattice scale a
affects the values of both the form factors and Q2 in

physical units. At low Q2 the shift in the form factors, and

at high Q2 the shift in Q2 itself, is not negligible when

varying a ¼ 0.074ð2Þ within the quoted uncertainties.

Nevertheless, repeating the analysis presented in the

following sections for a values at the extremities of the

quoted range yields fits which are almost indistinguishable

from those presented for the central value—essentially, the

points are shifted a short distance along the Q2 fit lines—

and give entirely consistent results for each quantity, even

when extrapolated to Q2 ¼ 0.

V. ANALYSIS OF RESULTS

In this section we summarize the results of the chiral

extrapolations. In particular, we focus on isovector quan-

tities which do not suffer from corrections associated

with disconnected quark loops (Sec. VA), connected octet

baryon magnetic moments (Sec. V B) and magnetic radii

(Sec. V C). Comparison of the results with experimental

determinations of these quantities gives some insight into

the size of disconnected contributions to the magnetic form

factors.

A. Isovector quantities

Isovector quantities are of particular interest as they

have the advantage that contributions from disconnected

quark loops, omitted in the lattice simulations, cancel. It is

therefore these isovector quantities which we can determine

with the smallest systematic uncertainty.

The agreement of the extrapolated isovector baryon form

factors with experimental results is impressive. In particu-

lar, Fig. 10 compares the isovector nucleon form factor

extracted from this analysis with the experimental deter-

mination as parametrized by Kelly [55]. While there is a

tendency for the extrapolated values to be slightly high

overall, the agreement, across the entire range of Q2 values

considered, is remarkable. We note that the uncertainties

shown for the Kelly parametrization may be overestimated,

as we were unable to take into account the effect of

correlations between the fit parameters.

The isovector combinations of sigma and cascade baryon

magnetic form factors are shown in Figs. 11(a) and 11(b).

As no experimental results are available for these form

factors apart from Q2 ¼ 0, dipolelike fits [Eq. (37)] to the

extrapolated simulation results, as well as the experimental

isovector baryon magnetic moments, are shown. Again, we

find fair agreement with the experimentally measured
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FIG. 8 (color online). Illustration of the quality fit for the data

set atQ2 ≈ 0.26GeV2, the lowestQ2 bin. Each point denotes one

of the lattice simulation results, e.g., Gp;u
M , Gp;d

M …, at one of the

sets of pseudoscalar masses.
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0.5

1.0
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G
M
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m 2

FIG. 9 (color online). Up quark (connected) contribution to the

proton magnetic form factor for quarks with unit charge. Each set

of results (top to bottom) represents the fit at a different

(increasing) Q2 value. The lines show these fits evaluated

along the trajectory which holds the singlet pseudoscalar mass

ðm2
K þm2

π=2Þ fixed to its physical value.
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baryon magnetic moments at Q2 ¼ 0, even with simple

phenomenological fits parametrizing the Q2 dependence of

the form factors. It is clear, however, that slightly greater

curvature in the Q2 fit functions would improve the

agreement with experiment. Isovector magnetic moments,

extracted using these fits, are given in Table II.

We emphasize that lattice simulation results away from

the primary simulation trajectory (see Fig. 1) are essential

to tightly constrain the chiral extrapolations to the physical

point. The effect of adding the additional off-trajectory
points to the fit—a factor of ≈6 reduction in statistical

uncertainty—is shown in Fig. 10. This illustrates the

importance for chiral extrapolations of performing lattice

simulations which map out the ml-ms plane, rather than

simply following a single trajectory in this space.

B. Connected quantities

In addition to the isovector quantities presented in the

previous section, we can determine the “connected part” of

all individual baryon form factors. Comparison of these

quantities with experimental determinations is of particular

interest—significant disconnected contributions to the form

factors would cause a systematic discrepancy between the

lattice and experimental results.

Figures 12(a) and 12(b) show extrapolated results for the

connected parts of the proton and neutron magnetic form

factors, compared with the Kelly experimental parametri-

zation [55]. The level of agreement between the lattice and

experimental results across the entire range of Q2 values

supports the conclusion of Ref. [9] that the omitted

disconnected contributions are relatively small.

Figures displaying connected form factors for each of the

octet baryons, including dipolelike fits in Q2, are given in

Appendix E. The magnetic moments extracted from these

fits, given in Table III, are close to the experimental values,

although we note once again that greater curvature in theQ2

functional form would improve agreement with experiment.

C. Magnetic radii

The magnetic radii of the octet baryons are defined by

hr2MiB ¼ −
6

GB
Mð0Þ

d

dQ2
GB

MðQ2Þ
�

�

�

�

Q2¼0

: (38)
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FIG. 11 (color online). (a) Isovector sigma baryon magnetic

form factor and (b) cascade baryon magnetic form factor with

dipolelike fits [Eq. (37)]. The red stars indicate the experimental

isovector magnetic moments.
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FIG. 10 (color online). Isovector nucleon magnetic form factor

compared to the Kelly parametrization of experimental results

[55]. The small (solid blue) points show the results including all

lattice simulations, while the large error bars (pale green) show

the results including only lattice simulations along the primary

simulation trajectory (see Table I).

TABLE II. Extrapolated results for the isovector magnetic

moments, based on the fit to the lattice simulation results.

A dipolelike parametrization [Eq. (37)] has been used for the

Q2 dependence.

μB (μN)

B p − n Σ
þ − Σ

− Ξ0 − Ξ−

Extrapolated 3.8(3) 3.0(2) −0.51ð8Þ
Experimental 4.706 3.62(3) −0.60ð1Þ
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To evaluate this expression from the lattice simulation

results, we use the dipolelike fits [Eq. (37)] shown in

Appendix E. Results, compared with available experimen-

tal data, are given in Table IV.

It is notable that we find consistently smaller values for

the magnetic radii than those determined experimentally

(for the nucleon) or predicted in chiral quark models (for

the octet baryons) [56,57]. This is perhaps not unexpected;

comparing Figs. 12(a) and 12(b) with Figs. 16(a) and 16(b)

shows that although our results are quite consistent with the

experimental parametrization of the nucleon form factors

where they are calculated, the best-fit dipole function has

slightly less curvature. As noted in the previous sections,

greater curvature in the Q2 fit forms would improve

consistency with the experimental magnetic moments for

all of the octet baryons.

To improve the extraction of the magnetic radii, we

consider a second functional form in Q2, inspired by the

Kelly-style parametrizations of experimental results with a

more general polynomial in the denominator:

GB
MðQ2Þ ¼ μB

1þ cQ2 þ dQ4 þ fQ6
: (39)

We now fix μB to the experimental magnetic moment, so

there are again three free parameters, c, d and f. As

illustrated for the proton in Fig. 13, the quality of fit using

this functional form is entirely comparable with that for the

dipolelike fit. The shift in the extracted value of the

magnetic radius, however, is significant, as shown in

Table IV. This example confirms that truly robust predic-

tions for the hyperon magnetic radii from lattice QCD will

require results at much lower Q2 values to eliminate the

significant dependence on the functional form chosen for

the Q2 extrapolation. Nevertheless, the level of agreement

of the extracted nucleon magnetic radii with experimental
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FIG. 12 (color online). Extrapolated (connected part of the)

(a) proton and (b) neutron magnetic form factors, compared with

Kelly parametrization [55] of experimental measurements.

TABLE III. Results for the connected contribution to the octet baryon magnetic moments, based on a dipolelike fit [Eq. (37)] to the

extrapolated lattice simulation results, compared with experimental values.

μB (μN)

B p n Σ
þ

Σ
− Ξ0 Ξ−

Extrapolated 2.3(3) −1.45ð17Þ 2.12(18) −0.85ð10Þ −1.07ð7Þ −0.57ð5Þ
Experimental 2.79 −1.913 2.458(10) −1.160ð25Þ −1.250ð14Þ −0.6507ð25Þ

TABLE IV. Extrapolated results for the octet baryon magnetic radii, based on our fit to the lattice simulation results, compared with

experimental values. Results labeled “free μB” result from a dipolelike fit function in Q2 [Eq. (37)], while those labeled “general” come

from the ansatz given in Eq. (39) with fixed μB.

hr2MiB (fm2)

p n Σ
þ

Σ
− Ξ0 Ξ−

Extrapolated (free μB) 0.35(11) 0.35(11) 0.39(9) 0.42(13) 0.27(8) 0.23(8)

Extrapolated (general) 0.71(8) 0.86(9) 0.66(5) 1.05(9) 0.53(5) 0.44(5)

Experimental 0.777(16) 0.862(9)
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values indicates that, by taking the experimental magnetic

moments as additional input, we have achieved the first

accurate calculation of the magnetic radii of the entire outer

ring of the baryon octet from lattice QCD, extrapolated to

the physical pseudoscalar masses.

D. Quark form factors

The chiral extrapolations discussed in previous sections

are in fact performed for the individual doubly and singly

represented quark contributions to the magnetic form

factors. Inspecting these contributions can give insight into

the environmental sensitivity of the distribution of quarks

inside a hadron.

Chiral extrapolations for the connected part of these

quark contributions, shown along the trajectory which

holds the singlet pseudoscalar mass ðm2
K þm2

π=2Þ fixed

to its physical value, are presented in Figs. 14(a) and 14(b).

The figures show the lowest Q2 result, at approximately

0.26 GeV2. Of course, the fits shown are simultaneously

constrained by the lattice simulation results for all of the

octet baryons at that Q2.

Comparison of the u quark contributions to the proton

and Σþ in Fig. 14(a) shows the relative suppression of GΣ;u
M

caused by the heavier spectator quark in the sigma. This

effect is replicated, and is more significant, when probing

the singly represented quark, as can be seen by the relative

suppression (in magnitude) of the u contribution to the

cascade baryon compared to the d in the proton in

Fig. 14(b). Changing the mass of the probed quark—

doubly represented in the proton compared with the

cascade, or singly represented in the proton compared

with the sigma—causes a similar effect.

VI. CONCLUSION

We have presented the results of a 2þ 1-flavor lattice

QCD study of the electromagnetic form factors of the octet

baryons. Calculations are performed on one volume with a

single lattice spacing, six different sets of pseudoscalar

masses and six values of Q2 in the range 0.2 − 1.3 GeV2.

The Dirac and Pauli radii of the nucleon, extracted using

generalized dipole fits, are in line with other recent 2þ 1-

and 2þ 1þ 1-flavor lattice calculations with similar values

of the pion mass.

By performing lattice simulations on configurations

which “map out” the ml-ms plane, rather than following

a single trajectory in this space, we are able to robustly

constrain a chiral extrapolation of the magnetic Sachs form

factor GM to the physical pseudoscalar masses at each

simulation Q2. Systematic uncertainties are controlled

by performing finite-volume corrections. The uncertainties

inherent in the determination of the lattice scale a, the shape
of the ultraviolet cutoff and the value of the cutoff

parameter Λ in the finite-range regularization scheme are

found to be negligible.
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FIG. 13 (color online). Dipolelike [from Eq. (37), dashed red

band] and general [from Eq. (39), solid blue band] fits to the

proton magnetic form factor. The quality of fit is comparable for

both fits.
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FIG. 14 (color online). Connected part of the (a) doubly and

(b) singly represented quark contributions to the baryon magnetic

form factors for Q2 ≈ 0.26 GeV2. The charges of the relevant

quarks have been set to unity.
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As such, the single most significant limitation of this

calculation is that disconnected quark loops are omitted

from the lattice simulations. For this reason isovector

combinations, where contributions from disconnected

quark loops cancel, are of significant interest. The nucleon

isovector form factor extracted from this work compares

well with the experimental results over the entire range of

Q2 values considered. It is notable that the precision of

these results is such that it is foreseeable that this generation

of lattice QCD simulations will rival experiment in terms of

precision.

The proton and neutron magnetic form factors from

this work, which include only the “connected” quark loop

contributions, agree rather well with the experimental

determinations at all simulation Q2 values. The compari-

son with experiment is also favorable for the magnetic

moments and magnetic radii of the rest of the outer-ring

baryon octet, extracted using a dipolelike form in Q2.

This suggests that the omitted disconnected quark loop

contributions are small relative to the uncertainties of this

calculation.

We point out that a pure dipole form in Q2 does not, in

general, provide a good fit to the lattice simulation

results. A dipolelike function with a more general poly-

nomial in the denominator is significantly better, as

described above. A comparison of nucleon observables

extracted using both fit forms indicates that the dipole

yields significantly poorer predictions for the magnetic

moments and radii, despite the form factors matching the

experimental values at larger Q2. This suggests that

meaningful extractions of the magnetic moments and

radii from lattice QCD require a more careful analysis

than the standard procedure using a dipole fit in Q2,

unless simulations are performed for very smallQ2 values

much less than 0.2 GeV2. Analyses similar to that

performed here may reveal that other existing lattice

simulations are in fact more compatible with experiment

than the results of the standard calculations indicate.
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APPENDIX A: LATTICE

SIMULATION RESULTS

Tables VII-X present raw lattice simulation results for F1

and F2 for the simulation parameters described in Sec. II.

Results for the Dirac and Pauli mean-squared charge radii

hr2iB;q1;2 and anomalous magnetic moments κB;q, discussed

in Sec. II C, are shown in Tables V–VII.

TABLE V. Dirac mean-squared charge radii, extracted from generalized dipole fits—see Sec. II C.

mπ (MeV) mK (MeV) hr2ip;u1 (fm2) hr2ip;d1 hr2iΣ;u1 hr2iΣ;s1 hr2iΞ;s1 hr2iΞ;u1

465 465 0.334(16) 0.387(22) 0.334(16) 0.387(22) 0.334(16) 0.387(22)

360 505 0.368(11) 0.420(12) 0.3639(87) 0.3630(60) 0.3218(58) 0.4260(84)

310 520 0.376(20) 0.437(24) 0.399(13) 0.382(10) 0.3329(65) 0.459(11)

440 440 0.3601(96) 0.405(12) 0.3601(96) 0.405(12) 0.3601(96) 0.405(12)

400 400 0.378(10) 0.438(15) 0.378(10) 0.438(15) 0.378(10) 0.438(15)

330 435 0.396(13) 0.445(25) 0.400(10) 0.412(14) 0.3650(74) 0.465(13)

TABLE VI. Pauli mean-squared charge radii, extracted from generalized dipole fits—see Sec. II C.

mπ (MeV) mK (MeV) hr2ip;u2 (fm2) hr2ip;d2 hr2iΣ;u2 hr2iΣ;s2 hr2iΞ;s2 hr2iΞ;u2

465 465 0.337(18) 0.3434(79) 0.337(18) 0.3434(79) 0.337(18) 0.3434(79)

360 505 0.335(29) 0.405(18) 0.340(20) 0.3358(99) 0.292(15) 0.389(10)

310 520 0.364(59) 0.379(32) 0.331(29) 0.286(14) 0.282(15) 0.367(14)

440 440 0.491(51) 0.415(22) 0.491(51) 0.415(22) 0.491(51) 0.415(22)

400 400 0.377(48) 0.362(26) 0.377(48) 0.362(26) 0.377(48) 0.362(26)

330 435 0.429(51) 0.416(28) 0.413(37) 0.361(17) 0.369(26) 0.387(14)
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TABLE VIII. Raw lattice simulation results for the nucleon.

mπ (MeV) mK (MeV) Q2 (GeV2) Fp;u
1 Fp;d

1 Fp;u
2 Fp;d

2

465 465 0.26 1.434(24) 0.666(11) 0.932(20) −1:113ð11Þ
0.51 1.134(19) 0.4873(94) 0.722(18) −0:8298ð94Þ
0.73 0.936(17) 0.3744(88) 0.589(19) −0:6525ð88Þ
0.95 0.804(16) 0.3014(75) 0.474(21) −0:5547ð75Þ
1.15 0.697(15) 0.2491(72) 0.392(16) −0:4621ð72Þ
1.35 0.616(15) 0.2058(73) 0.328(15) −0:3956ð73Þ

360 505 0.26 1.3982(91) 0.6425(40) 0.822(28) −1:081ð18Þ
0.51 1.089(12) 0.4588(51) 0.651(23) −0:792ð12Þ
0.72 0.884(17) 0.3412(66) 0.535(26) −0:622ð13Þ
0.92 0.781(32) 0.284(11) 0.396(36) −0:527ð24Þ
1.12 0.656(26) 0.2219(81) 0.341(22) −0:426ð17Þ
1.3 0.551(26) 0.1719(81) 0.324(23) −0:339ð15Þ

310 520 0.26 1.382(18) 0.6253(75) 0.885(58) −1:034ð33Þ
0.49 1.075(20) 0.4433(82) 0.620(39) −0:792ð24Þ
0.71 0.883(29) 0.316(13) 0.528(41) −0:586ð34Þ
0.91 0.754(41) 0.268(15) 0.409(59) −0:519ð38Þ
1.1 0.633(29) 0.194(11) 0.346(34) −0:435ð25Þ
1.29 0.535(36) 0.158(17) 0.343(43) −0:342ð30Þ

440 440 0.26 1.3994(79) 0.6540(40) 0.823(38) −1:080ð24Þ
0.5 1.078(11) 0.4689(56) 0.590(31) −0:804ð20Þ
0.73 0.871(15) 0.3548(79) 0.451(31) −0:623ð21Þ
0.94 0.733(21) 0.2827(92) 0.336(32) −0:479ð20Þ
1.14 0.616(19) 0.2264(89) 0.270(24) −0:403ð17Þ
1.33 0.545(25) 0.189(11) 0.236(23) −0:349ð20Þ

400 400 0.26 1.3974(91) 0.6411(53) 0.854(56) −1:027ð29Þ
0.5 1.084(12) 0.4564(62) 0.692(38) −0:744ð24Þ
0.72 0.888(20) 0.3377(89) 0.506(33) −0:596ð25Þ
0.93 0.787(28) 0.286(12) 0.412(47) −0:533ð28Þ
1.13 0.668(20) 0.2299(85) 0.361(32) −0:411ð21Þ
1.32 0.585(27) 0.184(10) 0.296(26) −0:356ð26Þ

330 435 0.26 1.367(11) 0.6303(80) 0.819(46) −1:029ð28Þ
0.5 1.057(14) 0.437(10) 0.651(30) −0:773ð16Þ
0.72 0.875(17) 0.324(13) 0.511(31) −0:593ð20Þ
0.92 0.726(33) 0.267(16) 0.340(45) −0:473ð31Þ
1.12 0.614(26) 0.207(13) 0.296(27) −0:395ð21Þ
1.3 0.544(29) 0.170(13) 0.271(30) −0:319ð24Þ

TABLE VII. Anomalous magnetic moments in nuclear magnetons, extracted from generalized dipole fits—see Sec. II C.

mπ (MeV) mK (MeV) κp;u (μN) κp;d κΣ;u κΣ;s κΞ;s κΞ;u

465 465 0.0518(17) −0:06113ð95Þ 0.0518(17) −0:06113ð95Þ 0.0518(17) −0:06113ð95Þ
360 505 0.0456(24) −0:0632ð18Þ 0.0553(21) −0:0619ð10Þ 0.0500(14) −0:0652ð11Þ
310 520 0.0482(51) −0:0594ð31Þ 0.0576(32) −0:0572ð13Þ 0.0508(15) −0:0629ð14Þ
440 440 0.0526(42) −0:0643ð24Þ 0.0526(42) −0:0643ð24Þ 0.0526(42) −0:0643ð24Þ
400 400 0.0503(46) −0:0570ð26Þ 0.0503(46) −0:0570ð26Þ 0.0503(46) −0:0570ð26Þ
330 435 0.0513(44) −0:0616ð27Þ 0.0560(36) −0:0606ð16Þ 0.0514(24) −0:0622ð14Þ
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APPENDIX B: FIELD BILINEAR INVARIANTS

We summarize here a compact notation for the field

bilinear invariants, originally employed by Labrenz and

Sharpe in Ref. [46]. In the following expressions, A is an

operator with the transformation properties of the axial

current Aμ, while Γ is an arbitrary Dirac matrix, for

example, the spin operator Sμ.

ðB̄ΓBÞ≡ B̄α
kjiΓ

β
αBijk;β; (B1)

ðB̄ΓABÞ≡ B̄α
kjiΓ

β
αAii0Bi0jk;β; (B2)

ðB̄ΓBAÞ≡ B̄α
kjiΓ

β
αAkk0Bijk0;β × ð−1ÞðiþjÞðkþk0Þ; (B3)

ðB̄ΓAμTμÞ≡ B̄α
kjiΓ

β
αA

μ

ii0T
β

μ;i0jk; (B4)

ðT̄μ
ΓTμÞ≡ T̄μ

kji;αΓ
α
βT

β
μ;ijk; (B5)

ðT̄μ
ΓAνTμÞ≡ T̄μ

kji;αΓ
α
βA

ν
ii0T

β

μ;i0jk: (B6)

APPENDIX C: CHIRAL PERTURBATION

THEORY EXTRAPOLATIONS

This section gives expressions for the chiral coefficients

in Eq. (33). The labels “doubly,” “singly” and “other”

TABLE IX. Raw lattice simulation results for the sigma baryon.

mπ (MeV) mK (MeV) Q2 (GeV2) FΣ;u
1 FΣ;s

1 FΣ;u
2 FΣ;s

2

465 465 0.26 1.434(24) 0.666(11) 0.932(20) −1:113ð11Þ
0.51 1.134(19) 0.4873(94) 0.722(18) −0:8298ð94Þ
0.73 0.936(17) 0.3744(88) 0.589(19) −0:6525ð88Þ
0.95 0.804(16) 0.3014(75) 0.474(21) −0:5547ð75Þ
1.15 0.697(15) 0.2491(72) 0.392(16) −0:4621ð72Þ
1.35 0.616(15) 0.2058(73) 0.328(15) −0:3956ð73Þ

360 505 0.26 1.4008(72) 0.6829(21) 0.996(24) −1:126ð10Þ
0.5 1.0839(97) 0.5058(31) 0.770(21) −0:8620ð89Þ
0.73 0.871(13) 0.3882(43) 0.615(20) −0:680ð10Þ
0.95 0.774(23) 0.3301(73) 0.479(27) −0:587ð15Þ
1.15 0.646(20) 0.2611(60) 0.414(19) −0:479ð13Þ
1.34 0.545(21) 0.2092(68) 0.367(18) −0:393ð13Þ

310 520 0.26 1.372(12) 0.6776(36) 1.062(38) −1:095ð14Þ
0.51 1.055(14) 0.5074(56) 0.796(25) −0:855ð17Þ
0.73 0.855(20) 0.3937(82) 0.657(29) −0:681ð24Þ
0.95 0.731(24) 0.327(10) 0.507(35) −0:592ð21Þ
1.15 0.641(22) 0.2667(94) 0.439(25) −0:515ð20Þ
1.35 0.563(30) 0.222(14) 0.419(33) −0:442ð27Þ

440 440 0.26 1.3994(79) 0.6540(40) 0.823(38) −1:080ð24Þ
0.5 1.078(11) 0.4689(56) 0.590(31) −0:804ð20Þ
0.73 0.871(15) 0.3548(79) 0.451(31) −0:623ð21Þ
0.94 0.733(21) 0.2827(92) 0.336(32) −0:479ð20Þ
1.14 0.616(19) 0.2264(89) 0.270(24) −0:403ð17Þ
1.33 0.545(25) 0.189(11) 0.236(23) −0:349ð20Þ

400 400 0.26 1.3974(91) 0.6411(53) 0.854(56) −1:027ð29Þ
0.5 1.084(12) 0.4564(62) 0.692(38) −0:744ð24Þ
0.72 0.888(20) 0.3377(89) 0.506(33) −0:596ð25Þ
0.93 0.787(28) 0.286(12) 0.412(47) −0:533ð28Þ
1.13 0.668(20) 0.2299(85) 0.361(32) −0:411ð21Þ
1.32 0.585(27) 0.184(10) 0.296(26) −0:356ð26Þ

330 435 0.26 1.3678(86) 0.6557(48) 0.915(41) −1:076ð16Þ
0.5 1.053(11) 0.4731(66) 0.714(24) −0:815ð13Þ
0.73 0.864(13) 0.3598(81) 0.555(27) −0:633ð17Þ
0.94 0.734(24) 0.297(11) 0.414(34) −0:529ð20Þ
1.14 0.624(22) 0.238(10) 0.343(23) −0:442ð17Þ
1.33 0.554(27) 0.198(11) 0.296(24) −0:368ð21Þ
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indicate whether the quark q0 or q is doubly represented,

singly represented or not at all represented in the baryon B.

αBq

q
Doubly Singly

2μF μF − μD

αBq

q
B u d s

Λ μF −
2μD
3

μF −
2μD
3

μD
3
þ μF

Σ
0 μF μF μF − μD

ᾱBqðq
0Þ

q

mq0 Doubly

mdoubly
1
6
ðc10 þ c11 þ c12 þ 18c3 þ 45c4 þ 2c5 þ 5c6 þ c9Þ

msingly
1
6
ð−2c10 þ c11 − 2c12 þ 18c3 þ 45c4 þ 4c9Þ

mother 3c3 þ 15c4
2

Singly

mdoubly
1
6
ð−2c10 þ 4c11 − 2c12 þ 36c3 þ 9c4 þ c9Þ

msingly
1
6
ð36c3 þ 9c4 þ 4c5 þ c6Þ

mother
3
2
ð4c3 þ c4Þ

TABLE X. Raw lattice simulation results for the cascade baryon.

mπ (MeV) mK (MeV) Q2 (GeV2) FΞ;s
1 FΞ;u

1 FΞ;s
2 FΞ;u

2

465 465 0.26 1.434(24) 0.666(11) 0.932(20) −1:113ð11Þ
0.51 1.134(19) 0.4873(94) 0.722(18) −0:8298ð94Þ
0.73 0.936(17) 0.3744(88) 0.589(19) −0:6525ð88Þ
0.95 0.804(16) 0.3014(75) 0.474(21) −0:5547ð75Þ
1.15 0.697(15) 0.2491(72) 0.392(16) −0:4621ð72Þ
1.35 0.616(15) 0.2058(73) 0.328(15) −0:3956ð73Þ

360 505 0.26 1.4537(51) 0.6457(27) 0.940(18) −1:129ð10Þ
0.51 1.1536(76) 0.4607(35) 0.747(15) −0:8270ð78Þ
0.74 0.948(10) 0.3437(45) 0.616(14) −0:6411ð82Þ
0.96 0.841(20) 0.2909(69) 0.481(18) −0:531ð13Þ
1.17 0.712(19) 0.2278(58) 0.422(16) −0:436ð11Þ
1.36 0.608(20) 0.1789(65) 0.376(16) −0:354ð11Þ

310 520 0.26 1.4475(58) 0.6317(38) 0.974(18) −1:114ð13Þ
0.51 1.1557(86) 0.4468(51) 0.762(16) −0:825ð11Þ
0.74 0.960(13) 0.3347(78) 0.630(18) −0:640ð14Þ
0.96 0.834(17) 0.2742(66) 0.513(18) −0:524ð16Þ
1.17 0.728(18) 0.2169(61) 0.442(17) −0:449ð17Þ
1.37 0.647(26) 0.179(10) 0.403(21) −0:376ð20Þ

440 440 0.26 1.3994(79) 0.6540(40) 0.823(38) −1:080ð24Þ
0.5 1.078(11) 0.4689(56) 0.590(31) −0:804ð20Þ
0.73 0.871(15) 0.3548(79) 0.451(31) −0:623ð21Þ
0.94 0.733(21) 0.2827(92) 0.336(32) −0:479ð20Þ
1.14 0.616(19) 0.2264(89) 0.270(24) −0:403ð17Þ
1.33 0.545(25) 0.189(11) 0.236(23) −0:349ð20Þ

400 400 0.26 1.3974(91) 0.6411(53) 0.854(56) −1:027ð29Þ
0.5 1.084(12) 0.4564(62) 0.692(38) −0:744ð24Þ
0.72 0.888(20) 0.3377(89) 0.506(33) −0:596ð25Þ
0.93 0.787(28) 0.286(12) 0.412(47) −0:533ð28Þ
1.13 0.668(20) 0.2299(85) 0.361(32) −0:411ð21Þ
1.32 0.585(27) 0.184(10) 0.296(26) −0:356ð26Þ

330 435 0.26 1.4094(62) 0.6283(41) 0.892(28) −1:082ð14Þ
0.5 1.1030(87) 0.4418(56) 0.684(18) −0:795ð11Þ
0.73 0.911(11) 0.3313(63) 0.546(19) −0:623ð13Þ
0.95 0.792(19) 0.273(10) 0.430(25) −0:501ð16Þ
1.15 0.677(19) 0.2178(86) 0.352(18) −0:424ð13Þ
1.34 0.594(23) 0.1794(86) 0.306(20) −0:354ð17Þ
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ᾱΛqðq
0Þ

q
mq0 u

mu
1
4
ð18c3 þ 9c4 þ 2c5 þ c6Þ

md
1
4
ð−c12 − c10 þ c11 þ 18c3 þ 9c4 þ c9Þ

ms
1
4
ðc11 þ 9ð2c3 þ c4ÞÞ

d
mu

1
4
ð−c12 − c10 þ c11 þ 18c3 þ 9c4 þ c9Þ

md
1
4
ð18c3 þ 9c4 þ 2c5 þ c6Þ

ms
1
4
ðc11 þ 9ð2c3 þ c4ÞÞ

s
mu

1
4
ð18c4 þ c9Þ

md
1
4
ð18c4 þ c9Þ

ms
1
2
ð9c4 þ c6Þ

ᾱΣ
0qðq0Þ

q
mq0 u

mu
1
12
ð18c3 þ 45c4 þ 2c5 þ 5c6Þ

md
1
12
ðc10 þ c11 þ c12 þ 18c3 þ 45c4 þ c9Þ

ms
1
12
ð−2c10 þ c11 − 2c12 þ 18c3 þ 45c4 þ 4c9Þ

d
mu

1
12
ðc10 þ c11 þ c12 þ 18c3 þ 45c4 þ c9Þ

md
1
12
ð18c3 þ 45c4 þ 2c5 þ 5c6Þ

ms
1
12
ð−2c10 þ c11 − 2c12 þ 18c3 þ 45c4 þ 4c9Þ

s
mu

1
12
ð−2c10 þ 4c11 − 2c12 þ 72c3 þ 18c4 þ c9Þ

md
1
12
ð−2c10 þ 4c11 − 2c12 þ 72c3 þ 18c4 þ c9Þ

ms
1
6
ð36c3 þ 9c4 þ 4c5 þ c6Þ

β
BqðϕÞ
O

q
mϕ Doubly Singly

mdoubly þmsingly 4ðD2 þ F2Þ − 2
3
ðD2 þ 6DF − 3F2Þ

msingly þmother 0 2ðD − FÞ2
mdoubly þmother

4
3
ðD2 þ 3F2Þ 0

2mdoubly
4
3
ðD2 þ 3F2Þ 0

2msingly 0 2ðD − FÞ2

β
BqðϕÞ
D

q
mϕ Doubly Singly

mdoubly þmsingly
2C2

9
− 5C2

9

msingly þmother − 2C2

9

mdoubly þmother − C2

9

2mdoubly − C2

9

2msingly − 2C2

9

β
ΛqðϕÞ
O

q
mϕ u d

mu þmd
2
9
ð7D2 − 12DF þ 9F2Þ 2

9
ð7D2 − 12DF þ 9F2Þ

md þms
2
9
ðD2 − 12DF þ 9F2Þ

mu þms
2
9
ðD2 − 12DF þ 9F2Þ

2mu
2
9
ð7D2 − 12DF þ 9F2Þ

2md
2
9
ð7D2 − 12DF þ 9F2Þ

2ms

s
mu þmd

md þms
2
9
ð7D2 þ 6DF þ 9F2Þ

mu þms
2
9
ð7D2 þ 6DF þ 9F2Þ

2mu

2md

2ms
2
9
ðDþ 3FÞ2

β
Σ
0qðϕÞ

O
q

mϕ u d s

mu þmd
2
3
ðD2 þ 3F2Þ 2

3
ðD2 þ 3F2Þ

md þms 2ðD2 þ F2Þ 2
3
ðD2 − 6DF þ 3F2Þ

mu þms 2ðD2 þ F2Þ 2
3
ðD2 − 6DF þ 3F2Þ

2mu
2
3
ðD2 þ 3F2Þ

2md
2
3
ðD2 þ 3F2Þ

2ms 2ðD − FÞ2

β
ΛqðϕÞ
D

q
mϕ u d s

mu þmd − C2

6
− C2

6

md þms − C2

3
C2

6

mu þms − C2

3
C2

6

2mu − C2

6

2md − C2

6

2ms

β
Σ
0qðϕÞ

D

q
mϕ u d s

mu þmd − C2

18
− C2

18

md þms
C2

9
− 7C2

18

mu þms
C2

9
− 7C2

18

2mu − C2

18

2md − C2

18

2ms − 2C2

9
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APPENDIX D: FIT PARAMETERS

Figure 15 shows the values of the chiral parameters determined by our fits. The parameters μD and μF are defined in

Eq. (31), while the ci appear in Eq. (32). The di are relevant linear combinations of the ci:

d1 ¼ c5 −
1

4
c11; d2 ¼ c6 þ c11; (D1)

d3 ¼ c6 þ c11; d4 ¼ c10 −
5

2
c4 þ c12: (D2)

We note that the values of the parameters shown here are unrenormalized. They are included merely to illustrate the

approximately linear Q2 dependence of the parameters. Recall that the separate Q2 fits are independent.
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FIG. 15 (color online). Q2 dependence of unrenormalized fit parameters, defined in Eqs. (31) and (32).
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APPENDIX E: OCTET BARYON FORM FACTORS—FIGURES

Figure 16 shows the connected part of the octet baryon form factors, extrapolated to the physical pseudoscalar masses.

The fits shown are those used in Secs. V B and V C to extract the magnetic moments and radii.
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FIG. 16 (color online). Connected part of the octet baryon magnetic form factors. The red stars indicate the experimental magnetic

moments. The lines show dipolelike fits [Eq. (37), dashed green; Eq. (39), solid blue].
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