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Abstract—In order to increase the penetration of electric
vehicles, a network of fast charging stations that can provide
drivers with a certain level of quality of service (QoS) is needed.
However, given the strain that such a network can exert on the
power grid, and the mobility of loads represented by electric
vehicles, operating it efficiently is a challenging and complex
problem. In this paper, we examine a network of charging stations
equipped with an energy storage device and propose a scheme
that allocates power to them from the grid, as well as routes
customers. We examine three scenarios, gradually increasing
their complexity. In the first one, all stations have identical
charging capabilities and energy storage devices, draw constant
power from the grid and no routing decisions of customers
are considered. It represents the current state of affairs and
serves as a baseline for evaluating the performance of the
proposed scheme. In the second scenario, power to the stations is
allocated in an optimal manner from the grid and in addition a
certain percentage of customers can be routed to nearby stations.
In the final scenario, optimal allocation of both power from
the grid and customers to stations is considered. The three
scenarios are evaluated using real traffic traces corresponding
to weekday rush hour from a large metropolitan area in the US.
The results indicate that the proposed scheme offers substantial
improvements of performance compared to the current mode of
operation; namely, more customers can be served with the same
amount of power, thus enabling the station operators to increase
their profitability. Further, the scheme provides guarantees to
customers in terms of the probability of being blocked (and
hence not served) by the closest charging station to their location.
Overall, the paper addresses key issues related to the efficient
operation, both from the perspective of the power grid and the
drivers satisfaction, of a network of charging stations.

Index Terms—Electric Vehicles, Stochastic Charging Station
Model, Performance Evaluation

I. INTRODUCTION

Over the last few years a strong push is occurring to

reduce the use of hydrocarbons in transportation. This trend

is supported by the latest advances in battery and converter

technology, along with government mandates on energy inde-

pendence and resilience and is enabled by the introduction of
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electric vehicles (EVs) and their close relatives Plug-in Hybrid

Electric Vehicles (PHEVs) by major car manufacturers that

have drastically increased consumer choices [2], [3]. Although

there are diverging forecasts about the growth rate of the EV

population [4], there is consensus that it is going to represent

a sizable portion of the US fleet by 2025 - 30. Obviously,

penetration rates could be significantly higher than these esti-

mates depending on battery costs, gasoline prices, government

policies, and the availability of charging infrastructure.

Indeed, such infrastructure is mostly needed in metropolitan

areas, primarily characterized by higher population density,

and where residents living in multi-unit dwellings do not

have easy access to night-time charging capabilities. A recent

survey among EV drivers in California shows that 40% of

them travel daily farther than the range of their fully charged

battery [5], thus requiring a recharge during daytime operation

of the vehicle. A network of fast charging stations overcomes

this problem [4].

On the other hand, there is concern about the strain that a

rapid adoption of EVs would exert on the power grid, due to

the large load that they represent [6]. Obviously, the extent

of their impact will depend on the degree and local/regional

density of the EV penetration rate, charging requirement and

the time of the day they are charged. Nevertheless, deploying

large scale charging stations may lead to grid instabilities.

However, equipping each station with an energy storage device

can reduce the impact of EV charging as shown in [7], [8].

The previous discussion indicates that efficient operational

regimes for a network of charging stations need to be de-

veloped, so that they minimize the strain on the power grid,

while at the same time offering good quality of service to EV

drivers. The aim of this study is to address these issues in a

comprehensive manner. Specifically,

• We introduce an EV fast DC charging station architecture,

introduce a stochastic model to capture its operational

characteristics and evaluate its performance (defined as

the percentage of served customers). The charging station

is equipped with a local energy storage device that aids

smoothing the stochastic customer demand.

• We propose a resource allocation framework that meets

QoS targets at each station and minimizes the amount of

power employed. This framework is evaluated under three

different scenarios motivated by examining actual traffic

traces from the Seattle area that exhibit a non-uniform

spatial distribution of vehicles trips. The three scenarios

in increased complexity are: (i) no power or customer

allocation to station occurs, the stations are identical
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in nature and act as inert service points; (ii) power

resources are allocated to each station; and (iii) optimal

power resource allocation is complemented by customer

rerouting to neighboring stations.

• To achieve allocation of customers, a two-way communi-

cations protocol is introduced that coordinates EV assign-

ments and reroutes if necessary. The latter represents an

essential element for increasing the number of EVs being

charged with the same amount of power drawn from the

grid.

The remainder of this paper is organized as follows: Sec-

tion II discusses related literature. In section III, we intro-

duce our single charging station stochastic model, while in

section IV, we introduce the network and present our power

resource allocation framework for the aforementioned cases.

In section V, we analyze the Seattle traffic traces to estimate

traffic arrival rates for different stations in the area under

consideration. Further, we employ ideas from response surface

methodology to estimate a model of the performance metric

of interest -probability of an EV arriving to a charging station

and being blocked from receiving service- as a function of

the station’s charging capacity, speed of battery charging and

vehicles arrival rate. The resulting model is used to solve the

various allocation problems introduced in section IV and their

results are compared.

II. RELATED WORK

There has been increased interest on devising schemes that

efficiently schedule EV chargings, on developing architectures

for charging station, and for organizing and operating a net-

work of charging stations. The following paragraphs provide

a brief overview of related literature.

Most works on scheduling EV chargings, assume station-

ary vehicles located at customer premises or large parking

lots. The proposed charging strategies can be classified into

the following two categories. In the first one, there is a

central authority (dispatcher) that to a large extent controls

and mandates charging rates, start times, etc. [9], [10], [11],

[12]. System level decisions involve selecting the desired

state of charge, charging intervals, etc. are taken so as to

finish all charging requests by a prespecified deadline (e.g.

7 am). The main advantage of a centrally controlled charging

schedule is that it leads to higher utilization of grid resources,

together with real time monitoring of operational conditions

across the entire power system. The second category examines

decentralized decision making by EV owners. Specifically,

they select individual charging patterns based on the prevailing

price of electricity or on self-imposed deadlines. It eliminates

the need for a third party controller (dispatcher) and complex

monitoring techniques. Since decisions are taken individually,

game theoretic models, such as mean field games, potential

games, and network routing games are used in these studies

[13], [14], [15], [16].

As will be seen in section V, we consider spatially dis-

tributed, our study uses a centralized decision making mech-

anism for a subset of EVs.

Currently there are only a handful of studies on charging

station design. From a pure power engineering perspective [17]

proposes a fast charging station architecture with a DC bus

distribution system. The station is equipped with an energy

storage unit to minimize the strain on the grid, and the sizing

problem was determined by Monte Carlo simulations accord-

ing to average load. A similar station architecture was used

in [18], [19], but two different energy storage devices were

considered; a flywheel and a supercapacitor. A mechanism

that simultaneously draws power from the grid and the storage

devices was introduced to decrease the EVs charging duration.

However, there is a multitude of storage technologies in the

market and the choice of the most appropriate one is mostly

station dependent (e.g. a low energy density, large size but

inexpensive storage device may not be suitable for a station

located at or near city centers, due to real-estate costs) [1],

[20]. Thus, in our station architecture we examine different

storage technologies, characterized by their efficiencies and

power ratings.

III. CHARGING STATION ARCHITECTURE

The design of a network of charging stations is ultimately

linked to the current power grid operations. At present, cus-

tomer demand -household, commercial and industrial- can be

assigned to three categories based on service costs. The first

represents the base load that is supplied by large, low cost (per

kWh) generation assets, such as nuclear, coal and hydro. Large

size industrial customers with fairly steady demand, together

with an aggregate estimate of households and commercial

users belong to this category. The second category represents

the difference between base load generation and expected ag-

gregate demand and is primarily met by gas/liquid fuel power

stations. Finally, the third category represents peak demand

that is met by fast start generators, which are characterized by

their high cost (per kWh).

EVs represent sizable, mobile electric loads. Level-1 charg-

ing represents a load comparable to a household, while Level-

2 charging a load twice as large to a household. Thus, large

number of EVs, geographically concentrated, would impose

huge strains not only on power generation, but also on the grid

distribution system [6], [21], [22]. In some studies [23], [24]

it is argued that if just 5% of all EVs charge simultaneously at

fast charging stations, 5 GW of extra power would be needed

by year 2018 in the VACAR region (Virginia - North Carolina

- South Carolina). For these reasons, charging station designs

that do not stress the power grid and eliminate the need for

adding significant extra generation capacity become important.

The four key components of our design that try to address

these issues are: (I) each station draws constant power from the

grid; (II) local energy storage is employed to meet stochastic

customer demand; (III) the station supports different classes of

charging requests (fast service vs slow service); and (IV) the

QoS metric employed is the long-term blocking probability of

incoming customers. The overview of the proposed charging

station is depicted in Figure 1. Next, we explain the system

dynamics in detail.

(I) Charging stations of any significant size represent com-

mercial size loads. Hence, it seems reasonable for station

operators to draw long-term contracts with the utility where
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Fig. 1: Single Charging Station Architecture

a power level is agreed in return for a lower price. This

enables the utility to better anticipate its demand, and the

station operator to benefit from a lower price; as argued in

[25], [26],such contracts leads to lower contract, as well as

average spot prices, and more efficient market equilibria.

(II) Energy storage represents a critical component in the

proposed system architecture, since it aids in smoothing cus-

tomers’ stochastic demand. During rush hour, stored energy

can be used to serve more customers. Similarly, when the

power that the station can draw from the grid is not fully

utilized, the extra power can recharge the storage device. An

overview of candidate technologies for storage devices and

their efficiencies are presented in Figure 2. Their details will

be further explained in the next section. (III-A).

(III) We consider that the charging station provides service

to multiple customer classes at different charging rates. This

allows the station to accommodate customers with different

charging needs and preferences, as well as EVs with different

technological constraints.

(IV) As discussed in the introduction, charging times depend

on the level used, but on average they are about 30 minutes.

Hence, it is reasonable to assume that incoming customers

would not be willing to wait and thus in our model (discussed

next) a “bufferless” system was adopted. For such a system,

the blocking probability becomes a natural performance met-

ric.

A. Stochastic Model for Station Dynamics

Based on the aforementioned specifications, the proposed

station architecture and the corresponding model for its behav-

ior over time, exhibit the following operation characteristics:

(i) the charging station draws a constant power from the grid;

(ii) upon exceeding the available grid power, the local energy

storage unit is used to meet additional demand; (iii) when-

ever there is idle grid power, it is used to charge the local

energy storage device, if it is not in a fully charged state;

(iv) depending on the amount of constantly drawn grid power

and the size of the local energy storage, a certain level of

QoS is provided; and (v) the station partitions its capacity

with respect to demand for each customer class. Such insights

can be obtained from profiling studies (e.g. customer surveys,

etc). The constantly drawn grid power is discretized to S equal

Technology Efficiency

Battery 60%-80%

Flywheel 93%

Sup-capacitors 95%

Hydrogen Fuel Cell 59%

Fig. 2: Candidate Energy Storage Systems Technology Land-

scape [27] [28]

slots, meaning that it can accommodate up to S vehicles at

the same time. In a similar way, the local energy storage can

charge R vehicles in a fully charged state. Since the charging

station can never serve more than S+R vehicles concurrently,

the very next EV arrival is going to be “blocked”. This strategy

insulates to a large extent the power grid from peak demand.

The details of the stochastic model are given next. Customers

arrive to the charging facility according to a Poisson process

with parameter λ. Currently, a variety of different EV models

with different battery sizes exist. Thus, the service time of

customers is assumed to be a exponentially distributed with

rate µ. Also, the charging duration of the energy storage device

so that it is able to accommodate one more EV is exponentially

distributed with rate ν which depends on the underlying energy

storage technology.

We proceed to explain the energy storage component in de-

tail. The power rating of an energy storage device determines

how fast it can be charged. Thus, energy stored in unit time

can be calculated by the product of the power rating and the

efficiency (ratio of stored energy and total amount of energy

spent to charge battery) of the energy storage unit. This means

that depending on these two parameters, different amounts

of energy can be stored. For instance, assume that our fast

charging station can charge an EV (battery with η = 0.9) in

30 minutes using maximum power rating, SPR = 1 (µ = 2).

Also, we employ an energy storage with the same efficiency,

but with a higher power rating SPR = 2 than the EV battery,

so that in the same amount of time, we can store up the energy

for the demand coming from 2 EVs in the local storage device

(ν = 4). Note that the charging rate is ν̃ = f(Ŝ, η), with

Ŝ ≤ SPR being the available power.

Given the assumptions above, the single charging sta-

tion model can be represented by continuous time Markov

chain with 2-dimensional finite state space. In Figure 3,

the state space of the Markov chain, along with its trans-

mission rates are depicted. The total number of states is

κ = (S+1)(R+1) +
R
∑

i=1

i. It is easy to see that a unique

steady state distribution would exist which can be calculated

by solving:

πQ = 0 and πe = 1 (1)

where e is a column vector whose elements are all equal to 1,

and Q is a κ× κ matrix containing the transition rates and π
a vector of length κ containing the steady state probabilities.
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Note that the elements of Q satisfy qab ≥ 0 for a 6= b and

qab = −
∑κ

a=1,b6=a qab for all a = 1, 2, . . . , κ. Then, the

model’s (station’s) blocking probability can be calculated from
S
∑

i=1

π( i(i+2S+1)
2 ), i = 1 . . . S.

Q =











−(λ+ ν) λ · · · 0
µ −(λ+ ν + µ) · · · 0
...

...
. . .

...

0 0 · · · −(S +R)µ











(2)

Next, we extend this model to the case where different

classes of customers are present; namely, c ∈ {1, · · · , C}.

Also, denote by ~ρ the percentage of customers that demand

class-c type of service. Then, the station operator partitions

the power drawn from the grid into C components by solving

the following optimization problem.

argmin
S(c)

∑

c∈C

B(c)(~ρλ, S(c), R(c))

s.t.
∑

c∈C

S(c) = S

~R(c), ~ρ, and λ are given

(3)

To illustrate how the characteristics of the energy storage

device improve performance of the station we use the follow-

ing example. We fix the size of two devices, but we vary their

efficiency and power rating parameters. There is a fast energy

storage with 95% efficiency and SPR=2, and a slow one with

efficiency of 85% and SPR=1. Storage size is set to R=5 and

the EV arrival rate varies between (λ = 1 − 7). To ease the

demonstration, a single customer class is assumed requesting

a charging rate of µ=2. As shown in Figure 4, the fast energy

storage device outperforms the slow one in terms of blocking

probabilities.

Next, we evaluate the system performance (percentage of

vehicles it can charge), under the following sets of parameters.

There are two customer classes; in class-1 EVs request fast

charging, while in class-2 request slower charging. A typical

charging duration takes 30 minutes, thus the charging rate µ(1)

is set to 2 and µ(2)=1. We assume that the station operator

picks the energy storage according to the following specifica-

tions (note that superscript denotes the customer class): storage

size R(1)=R(2)=5, efficiency η(1)=0.95 and η(2)=0.85 and

power ratings S
(1)
PR = 2 and S

(2)
PR=1. Based on an EV profiling

study, it is estimated that the total arrival rates varies between λ
= 1−7. We look at three different compositions of the EV pop-

ulation: (ρ1, ρ2) = {(75%, 25%), (50%, 50%), (25%, 75%)}.

Then, the station operator solves optimization problem 3 to

calculate the optimal ~S(c) given by [6, 4], [4, 6], and [2, 8] for

the given (ρ1, ρ2) pairs, respectively. The resulting blocking

probabilities are shown in Figure 5. It can be seen that the

system can serve more customers, in the presence of a larger

percentage of fast charging customers. This is expected, since

the overall “service rate” is faster in that case.

B. Profit Model

The previous performance assessment provides insight into

the gains captured by the posited QoS, namely the blocking

probability. Next, we present a charging station profit model

that relates the stochastic model to cost parameters. This model

provides guidance to choose the right values for the amount

of power drawn from the grid for different arrival rates.

The principles of the profit model for C different customer

classes are as follows: the charging station earns differential
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revenue for each served EV according to its class (e.g. more

revenue from fast charging customers etc.). On the other

hand, a penalty is paid for each blocked EV because (1) it

leads to dissatisfied customers and degrades the reputation

of the station; (2) it enables to control the QoS to foster

EV adoption [4]; (3) it allows station operators to size its

capacity to maximize its profit. It is assumed that a higher

penalty is paid to customers charged more for service. Let

R
(c)
g and R

(c)
l be the revenue gained per EV class-c, when

served from the grid and the energy storage, respectively.

Further, let C
(c)
b denote the blocking cost of a single EV

in class-c. Finally, let C0 represent the fixed installation cost

and C
(c)
a R the acquisition cost, assumed to be proportional

to size, for customer class-c of the storage unit. In order to

calculate the net profit, for each customer class, we classify

the charging states in the Markov chain model to: the “grid

charging states” and the “storage unit charging states”. Let

ρ(g) = {(i, j) : 0 ≤ i ≤ S, 0 ≤ j ≤ R} denote ‘the grid charg-

ing states” and ρ(l) = {(i, j) : S+ j ≤ i ≤ S+R, 1 ≤ j ≤ R}
“the storage unit charging states”. Similarly, ρ(bl) represents

the “blocking states”, while i(s) denotes the number of EVs

at state s. Then, the proposed profit function can be written

as

P =
∑

c∈C

∑

s∈ρ(g)

R
(c)
g i(c)(s)π(c)(s) +

∑

c∈C

∑

s∈ρ(l)

R
(c)
l i(c)(s)π(c)(s)

−(C0 +
∑

c∈C

R(c)C
(c)
a )−

∑

c∈C

∑

s∈ρ(bl)

C
(c)
b i(c)(s)π(c)(s) (4)

We evaluate the profit model for the following set of

parameters in the presence of two customer classes (fast/slow):

R
(1)
g =R

(1)
l =3, R

(2)
g =R

(2)
l =1.5, C

(1)
b =3.5, C

(2)
b =2, C

(1)
a =0.25,
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Fig. 6: Multi Class Charging Station Net Profit

C
(2)
a =0.15 and C0=0.02. The results are shown in Figure 6. For

low arrival rates, the cost related to acquisition and installation

outweighs the revenue gained from charging EVs, and hence

a negative profit is earned. On the other hand, for high arrivals

rates, the cost of blocking customers becomes dominant and

the total net profit decreases. Moreover, since fast charging

lowers the blocking probability, the system means more profit

when the proportion of class-1 customers is higher.

IV. A NETWORK OF CHARGING STATIONS

A. Overview

Fast public charging stations are key to build confidence in

the early stages of EV adoption. At present, the number of fast

charging stations in the US is quite low, and deployment plans

in the short term are limited to selected highways only [29],

[30]. In order to compete against gas stations, deploying urban

charging facilities becomes necessary [31]. In this section,

the operation of a network of fast charging stations in an

urban environment is studied, where each individual station is

modeled according to the architecture introduced in section III.

In the real world, urban traffic movements are far from

being uniform. In fact, people drive between specific points of

interest, such as their home, school, workplace, etc. Driving

patterns vary according to the time of the day (weekday rush

hours, weekends etc.) and hence traffic density represents a

dominant factor in the utilization of each node in a charging

station network. As the power grid limitations prevent stations

from providing more capacity, grid operators have to consider

the fact of spatial and temporal demand to optimally allocate

their power resources.

B. Power Resource Allocation in a Charging Station Network

1) Case-I: No Allocation: In the first case, all charging

stations in the network are assumed to be identical. Let

l = 1, 2, ..., N be the index set of charging stations. Further

assume that each station serves c ∈ C types of customer

classes, so that S
(c)
1 =S

(c)
2 . . . S

(c)
N and R

(c)
1 = R

(c)
2 · · · = R

(c)
N .

The only parameter that differs in these stations is the arrival

rate λi and composition of the customer class populations ~ρ,

which comes from the traffic density (note that we consider

rational customers who always drive to the nearest station).
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2) Case-II: Optimal grid power-S allocation within a large

geographical urban areas: Similarly to the case above, there

are N charging stations deployed in a large urban environment.

However, customers also have access to charging station

location information provided by a central authority1. This

case is divided into two subcases. The first subcase assumes

that all drivers are selfish and similarly to Case I, they choose

the nearest charging station. The second subcase assumes

a hybrid population of selfish drivers and EV fleets. Note

that unlike selfish users, EV fleets adhere to the decisions

of the power utility to fulfill the requirements of customer

agreements. Hence, the arrival rate of each station can be

shaped within a [λmin, λmax] range.

Let Smax be the maximum level of generation capacity that

the grid can supply to the network in a metropolitan area. Also

each station serves c ∈ C types of customer classes. Using the

discretization assumption at each charging node, two resource

allocation problems are formulated as a mixed integer non-

linear programming problem in Equations 5 and 6. For both

subcases, the proposed scheme allocates more power resources

to the busier stations, while taking into account QoS targets.

If the total power required to satisfy the QoS requirements is

greater than Smax, then the charging station network provides

best-effort service with the maximum allowable grid power,

Smax.
a) :

min
S

∑

i∈l

∑

c∈C

Bi(~ρiλi, S
(c)
i , R

(c)
i )

s.t.
∑

i∈l

∑

c∈C

S
(c)
i = S

0 ≤ Bi(~ρλi, S
(c)
i , R

(c)
i ) ≤ ǫ

S
(c)
i ∈ Z

+

R
(c)
i , λi, and ~ρi, are given

∀i ∈ l, ∀c ∈ C

(5)

b) :

min
S,λ

∑

i∈l

∑

c∈C

Bi(~ρiλi, S
(c)
i , R

(c)
i )

s.t.
∑

i∈l

∑

c∈C

S
(c)
i = S

0 ≤ Bi(~ρλi, S
(c)
i , R

(c)
i ) ≤ ǫ

λ
(c)
min ≤ λ

(c)
i ≤ λ(c)

max

S
(c)
i ∈ Z

+

R
(c)
i , ~ρi , λ

(c)
min and λ(c)

max are given

∀i ∈ l, ∀c ∈ C

(6)

3) Case-III: Optimal S and λ allocation in small geo-

graphical areas: Let l∗ ⊂ l and 0 < n ≤ N . In this

case, a charging station network deployed over a relatively

well confined small geographical area with n stations is

considered. This case is different from the previous scenario in

the following aspect: the total population consists of EV fleets

and through agreements, customers can be assigned to any

1Via smart apps such as [32] or on board communication systems [33]

neighboring station. Since the considered distances between

stations are reasonably short (2−3 miles2), routing customers

to other stations would have negligible cost to drivers. Thus,

customers can be assigned to neighboring area stations to

minimize the total blocking probability. In all cases, the local

energy storage is assumed to have already been acquired by

the charging station(e.g. R = 5), thus its size is fixed. Finally,

each station serves c ∈ C classes of customers, and routed

customers get the same type of service. Then, the optimization

problem becomes:

min
S,λ

∑

i∈l

∑

c∈C

Bi(~ρiλi, S
(c)
i , R

(c)
i )

s.t.
∑

i∈l

∑

c∈C

S
(c)
i = S

∑

i∈l∗

λi = λ

0 ≤ Bi(~ρiλi, S
(c)
i , R

(c)
i ) ≤ ǫ

λ
(c)
i ≥ 0, ∀i ∈ l∗

S
(c)
i ∈ Z

+

Ri and ~ρi are given

∀i ∈ l∗, ∀c ∈ C

(7)

In addition to the system constraints presented for each alloca-

tion problem, there may be additional constraints, depending

on the existing power network, such as distribution network

limitations, etc. However, since the interaction of the charging

stations with the grid is limited to the constant power drawn

from it, these case-by-case varying constraints may only affect

the maximum power allocation for individual stations. Thus,

these constraints can easily be incorporated within the existing

formulation to address these allocation problems.

V. EVALUATION & RESULTS

A. Overview

Collecting vehicular traffic traces, especially in urban areas,

is a challenging and costly task. Hence, vehicles movements

are not well calibrated. However, in [34] bus movements from

the Seattle area were obtained. Due to the city’s physical

layout and extensive bus network3, it is claimed that these

movements resemble actual traffic patterns quite closely. In the

next subsection (V-A1), we use this publicly available data to

investigate the spatial distribution of vehicles, during weekday

rush hour (7am-9am and 5pm-7pm). The remainder of this

subsection is organized as follows. In subsection V-A2, we

explain our methodology in locating fast charging stations on

the city map. In subsection V-B1, we use the Response Surface

Methodology to approximate charging station blocking prob-

abilities into a second order regression metamodel. Finally, in

subsection V-C, we solve the optimization problems presented

in section IV-B using our metamodel.

2It would require 0.5 − 1kWh of stored energy and would cost 10-20
cents with the current rates.

3
1200 buses in a 5̃000 square kilometers area
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Fig. 7: Fast DC charging station map in Seattle, WA [34]

1) Input Analysis: According to [34], the location of each

bus was recorded frequently. We start by normalizing the x
and y coordinates of the input data. Subsequently, the ARENA

Input Analyzer [35] is used to fit a spatial distribution to the

data. The results indicated that with mean squared error of

0.6%, the spatial distribution of vehicles is a piecewise beta

distribution for weekday rush hours. The results are presented

in equations 8 and 9.

f(X) =

{

44×BETA(4.42, 0.763) 0 ≤ X ≤ 44

44 + 137×BETA(0.752, 4.7) 44 ≤ X ≤ 180

(8)

f(Y ) =

{

150×BETA(2.42, 0.799) 0 ≤ Y ≤ 150

150 + 121×BETA(1.07, 5.44) 150 ≤ Y ≤ 270

(9)

In addition, we analyze the correlation of x and y coordi-

nates, and calculate the correlation coefficient as 0.06.

2) Charging Station Placement: In [34], researchers placed

eight base station towers in such a way that base stations can

communicate with all mobile nodes. Since the charging station

layout problem is outside the scope of this paper, a similar

approach is used and the same number of charging stations

is deployed in the same locations given by the following

coordinates: {xi, yi} = {60, 45}, {60, 90}, {60, 135},
{60, 180}, {60, 225}, {100, 90}, {100, 160}, {100, 225}.

Figure 7 presents the map with the locations of the charging

stations. In order to calculate the traffic intensity at each

station, a discrete event simulation model is used. We present

its flowchart in Figure 8. The station parameters are given by

S = 5, R = 5, µ = 2, ν = 4 (assuming only fast charging

customers) for all stations. The simulation is terminated when

one million vehicles get serviced. It is run for a total of

30 times and 95% confidence intervals of the parameters of

interest are obtained. The traffic intensity for each station is

Initialize

Simulation

Next

Event

-Determine Charge 
Type

-Advance Clock
-Update Power 

Resources

n=0?

Schedule

Next

Departure

EV/PHEV Departure

NO

-Determine Charge 
Type

-Advance Clock
-Update Power 

Resources

Schedule 

Next Arrival

n=1?NO

EV/PHEV Arrival

YES

Enough Power 

Resources?

Local ESS Charge

NO

-Advance Clock

-Update Power 

Resources

-Schedule Local 

ESS ChargeEnd

Schedule

Next Local 

ESS Charge

YES

Fig. 8: Discrete Event Simulation Flow Chart

TABLE I: Traffic Intensity (T.I.) of Each Station

Sta. ID mean(T.I.) 95% CI Sta. ID mean(T.I.) 95% CI

1 3.56% 0.030% 2 9.68% 0.022%
3 36.99% 0.060% 4 36.68% 0.035%
5 1.85% 0.037% 6 1.65% 0.018%
7 8.6% 0.055% 8 0.98% 0.016%

shown in Table I. It can be seen from Table I that charging

stations three and four are used to meet most of the charging

demand, whereas other stations have relatively little demand.

For instance, letting the overall arrival rate be λ = 50, then the

blocking probabilities for the eight identical stations would be
~Bi = [0.019, 0.053, 0.58, 0.58, 0.0158, 0.0153, 0.043, 0.014]. It

can be concluded from this expository calculation that, without

any power allocation, there could be severe fluctuations in

terms of QoS among the charging facilities4.

B. Output Analysis

1) Metamodeling of Blocking Probabilities: In section III,

numerical methods are used to calculate EV blocking proba-

bilities. However, new calculations are needed for each set of

new input parameters S, R, ν, and λ to determine the block-

ing probability B. using the Response Surface Methodology

(RSM) we are able to calculate an approximate second order

polynomial model for the functional relationship between B
and the input parameters (B = f(S,R, ν, λ) [36]. As input

parameters we used those presented in Table II, keeping µ is

fixed to 2. The handicap of this approach is that the blocking

probabilities have to be in the [0, 1] interval, whereas the RSM

model can predict values outside it. For that reason, we fit the

4Some stations(e.g. station-3) will exhibit a very high blocking probability,
whereas overprovisioned stations (e.g. station-8) will exhibit a very low
blocking probability.
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TABLE II: RSM Input Parameters

Parameter Interval Increments Type

S [1,15] 1 Integer

R [1,15] 1 Integer

λ [0.25,30] 0.25 Float

ν [2,10] 1 Integer

RSM model to the logit transformation (y = log(x/(1− x)))
of B and then use the inverse-logit (x = 1/(1 + e−y))
transformation to obtain the final results. The regression model

where the response variable corresponds to logit(B) is given

in Equation 10.

B(S,R, λ, ν) = −3.990− 2.666S − 1.6152R− 0.1492ν

+3.840λ− 0.0645SR− 0.002Sν + 0.209Sλ− 0.0078Rν

+0.094Rλ+ 0.003νλ− 0.0175S2 + 0.055R2 + 0.0089ν2

−0.271λ2

(10)

Then, the blocking probability becomes,

Blocking Prob. =

{

B(·)
0

ifλ > 0
ifλ = 0

(11)

For the above regression model, the R-Square statistic is

88.06% and the mean square root error is 0.52%.













∂B
∂S
∂B
∂R
∂B
∂ν

∂B
∂λ













=











−0.035S − 0.0645R − 0.002ν + 0.21λ − 2.66

0.0014S + 0.11R − 0.008ν + 0.094λ − 1.62

−0.002S − 0.078R + 0.178ν + 0.025λ − 0.15

0.209S + 0.094R + 0.003ν − 0.54λ + 3.84











(12)

H =









−0.035 −0.0645 −0.002 0.21
0.0014 0.11 −0.008 0.094
−0.002 −0.078 0.178 0.025
0.209 0.094 0.003 −0.54









(13)

Some key quantities like the Jacobian (equation 12) and

the Hessian matrix (equaiton 13) are given to aid assessing

the sensitivity of B with respect to inputs S, R, ν and λ
variables is presented. It can be seen that grid power S has the

highest impact for decreasing the blocking probability. Note

that during periods of high arrival rates, there is going to be

little spare capacity left and hence the local storage device

would be frequently in an empty state, as indicated by these

results.

C. Comparison of three cases

Next, we compare the performance of the following three

scenarios: (i) all eight stations are identical (case-I); (ii) power

resource allocation for selfish EV population (case-IIA) and

mixed (selfish and EV fleets) population (case-IIB); and

(iii) power resource allocation for EV fleets only (case-III).
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Fig. 9: Minimum grid power required to meet ǫ QoS targets

Standard interior point methods are used to solve the optimiza-

tion problems introduced in section IV-B. Problems formulated

in case-II and case-III are non-linear integer programs and they

are solved by relaxing the integer constraint and ceiling to the

nearest integer. For case-IIA, suppose that the station operator

wants to provide ǫ-level QoS at all stations. One of the main

goals of this scheme is to use the minimum amount of power

grid resources (for illustration assume all customers demand

fast charging). Hence, the minimum required grid power Smin

to meet the QoS targets is calculated. As long as Smin ≤ Smax

where Smax is the total allocated generation capacity, this

target is going to be reached. A generic calculation is presented

in Figure 9.

Next, let us compare cases-I and -IIA. Suppose that the

charging station operator wants to ensure that each station

can meet 90% of the customer demand at all times (ǫ=0.10).

For the eight stations, the arrival rate is assumed to be λ =

27. Since the majority of the population resides near Stations

2, 3 and 4, we assume that these two stations serve two

types of customers; class-1 (fast charging µ=2) and class-2
(slow charging µ=1). The same set of parameters from

section III-A are used for the efficiency and the power rating

of the local energy storage units. Since these regions are

close to downtown we further assume that ~ρ=(75%, 25%).
The remainder of the stations serve customer class-1. Solving

equation 5 results in ~S=[1, 2, 9, 9, 1, 1, 2, 1]. With the

allocated grid power, blocking probabilities for each station are
~B=[0.0094, 0.028, 0.099, 0.087, 0.0004, 0.0023, 0.016, 0.0001].
In order to compare the performance of the whole network, we

calculate the weighted sum of stations’ blocking probabilities;

∑

i∈l

wiBi, where wi =
λi

∑

i∈l

λi

(14)

Then, the weighted sum of blocking becomes
∑

i∈l

wiBi=0.0440. To compare these results with case I,

assume that each station has Si = 3 (except S3 = S4 = 4)

and R = 5. Arrival rates are the same as case II. For this case,

the weighted sum of blocking becomes
∑

i∈l

wiBi=0.4365. This
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TABLE III: Results for Case IIB (Mixed Population of Selfish EVs and Fleets)

∑

i∈l

λi Station1 Station2 Station3 Station4

S1 λ1 B1 S2 λ2 B2 S3 λ3 B3 S4 λ4 B4

ǫ=
0
.0

5 20 1 0.77 0.0037 2 2.656 0.015 5 7.3 0.0347 5 6.984 0.032
25 1 0.9625 0.0153 3 2.832 0.0125 6 8.98 0.047 6 8.90 0.041
30 1 1.155 0.032 3 3.3984 0.031 7 10.767 0.05 7 10.4760 0.046

ǫ=
0
.1

0 20 1 0.77 0.057 1 2.2656 0.0317 4 7.178 0.10 4 6.98 0.0932
25 1 0.9625 0.0153 1 2.832 0.03491 5 8.9725 0.10 5 8.73 0.0936
30 1 1.155 0.032 2 3.3984 0.031 6 10.76 0.10 6 10.476 0.0934

∑

i∈l

λi Station5 Station6 Station7 Station8

S5 λ5 B5 S6 λ6 B6 S7 λ7 B7 S8 λ8 B8

ǫ=
0
.0

5 20 1 0.3960 0.00122 1 0.3663 0.0007 2 1.892 0.0087 1 0.022 0
25 1 0.495 0.0007 1 0.4538 0.0004 2 2.365 0.0379 1 0.0275 0
30 1 0.5940 0.0017 1 0.7445 0.0011 3 2.84 0.0127 1 0.033 0

ǫ=
0
.1

0 20 1 0.396 0.0002 1 0.3630 0.0001 2 1.892 0.014 1 0.022 0
25 1 0.795 0.0007 1 0.4538 0.0004 2 2.365 0.0379 1 0.1875 0
30 1 0.594 0.0017 1 05445 0.0011 2 2.883 0.0764 1 0.651 0.001

TABLE IV: Results for Case-IIA (Selfish EVs)

∑

i∈l

λi Station1 Station2 Station3 Station4

ǫ=
0
.0

5

S1 B1 S2 B2 S3 B3 S4 B4

20 1 0.0023 2 0.0094 6 0.025 6 0.0214
25 1 0.0067 2 0.0269 7 0.0348 7 0.0299
30 1 0.0148 3 0.0082 8 0.0436 8 0.0376

ǫ=
0
.1

0 20 1 0.023 2 0.0094 5 0.0641 5 0.0568
25 1 0.0067 2 0.0269 6 0.0754 6 0.0669
30 1 0.0148 2 0.0568 7 0.0842 7 0.0748
∑

i∈l

λi Station5 Station6 Station7 Station8

ǫ=
0
.0

5 S5 B5 S6 B6 S7 B7 S8 B8

20 1 0.0001 1 0 2 0.0054 1 0
25 1 0.0002 1 0.0002 2 0.063 1 0
30 1 0.0006 1 0.0004 2 0.0367 1 0

ǫ=
0
.1

0 20 1 0.0001 1 0 2 0.0911 1 0
25 1 0.0002 1 0.0002 2 0.0163 1 0
30 1 0.0006 1 0.0004 2 0.0367 1 0

TABLE V: Comparison of Case-IIA (Selfish EVs) and Case-

IIB (Mixed Population)

∑

i∈l

λi SCase IIA
i

SCase IIB
i

Savings

ǫ=
0
.0

5 20 20 18 10%
25 22 21 4.55%
30 25 24 4%

ǫ=
0
.1

0 20 18 15 18.75%
25 20 17 15%
30 22 20 9%

TABLE VI: Results for Case III (EV Fleets)
∑

i∈l∗

Si

∑

i∈l∗

λi Station2 Station3 Station4

S2 λ2 B2 S3 λ3 B3 S4 λ4 B4

18 16.67 6 5.56 0.004 6 5.56 0.004 6 5.56 0.004
24 20.83 8 6.94 0.0327 8 6.94 0.0327 8 6.94 0.0327
30 24.9 10 8.3 0.005 10 8.3 0.005 10 8.3 0.005
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Fig. 10: Evaluation of Equation 7

sample calculation shows that with power resource allocation,

more vehicles can receive service with the same amount of

grid power.

For the allocation problem in cases II-B and III, a two-

way communication infrastructure is used to offer customers

incentives to charge from other stations. In the first case, a

central authority can route a certain percentage of customers

in the [λmin, λmax] range. In the latter one, any customer can

be assigned to any station in the same neighboring area. Thus,

for the first case suppose that the arrival rate of each station is

in the λ±10% range. For instance, if station-3 the arrival rate

is λ3 = 10 arrival rate will be assigned in [9,11] interval. Next,

two allocation problems 5 and 6 are solved for six different

combinations: ǫ = 0.05, 0.10 and
∑

i∈l

λi = 20, 25, and 30.

We proceed to compare three cases for all stations in detail.

Table IV presents the results for a population of selfish EV

users. The utility can only allocate optimal power (problem 5).

On the other hand, for a mixed population of EVs (selfish and

Fleets) allocation problem 6 is solved. We present detailed

results for each charging facility in Table III. Note that since

the central authority can partially affect the customer choices,

blocking probability targets can be achieved with less grid

power. For instance, customer routing can lead to 10% power

savings to provide ǫ=0.05 QoS. Detailed results are given in

Table V. Moreover, the comparison of these two cases and

associated savings are presented in Table V.
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Fig. 11: Comparison of three cases respect to stations 2, 3 and

4

Case-III assumes a population of pure EV fleets. Note

that the network map (Figure 7) is divided into smaller

geographic areas, and inside each region the cost of driving

between charging stations has a negligible cost. We assume

that charging stations 2, 3, and 4 constitute a charging network.

Similar to the previous case, a central authority through the

use of two-way communications, can assign customers to any

station in this subarea. To evaluate this case, assume that

stations 2, 3, and 4 are in a small well-confined neighborhood

and driving between these stations has a negligible cost. Then,

in optimization problem 7, minimum customer blocking prob-

abilities are obtained at Si=S/N and λ
(1)
i =λ(1)/N where N

is the number of charging stations (also R
(1)
1 = R

(1)
2 . . . R

(1)
N

and R
(2)
1 = R

(2)
2 . . . R

(2)
N )5. We present the results for ǫ = 0.05

and varying arrival rate parameters in Table VI. Moreover, we

run a sample calculation for two stations, with the following

parameters:
∑

i∈l

λi = 10,
∑

i∈l

Si = 10 and R1 = R2 = 5. The

results are shown in Figure 10.

Next, we compare the baseline scenario (no allocation of

any kind) and three allocation schemes for stations 2, 3, and 4
since they serve both fast and slow customer classes. For a fair

comparison, we fixed the total grid resources, and employ the

same type of energy storage devices. Results are depicted in

Figure 11 for three different arrival rates. In order to quantify

the effects of power allocation and customer routing on the

charging network, the profit model of section III-B is applied

to all stations. Previously presented results for all three cases

are used for ǫ = 0.05 and arrival rates λ = 20, 25, and 30.

The same set of parameters from section III-B is employed. In

Figure 12, average net profit per charging station is depicted,

which shows that the proposed framework improves both

the system (in terms of QoS) and its financial performance

significantly.

VI. TOWARDS A MORE REALISTIC MODEL: THE ROLE OF

COMMUNICATIONS AND INCENTIVES

In this study, we have presented the architecture and an

associated stochastic model for a network of charging stations

for allocating power and reroute customers in an optimal

5Note that customer profile ~ρ is approximately the same since stations are
physically close to each other
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Fig. 12: Net Profit Comparison

fashion. Deployment of such a network requires the necessary

communications infrastructure and protocols to ensure timely

information dissemination.

Hence, it is important to quantify the impact of communi-

cations on the network’s operations. For example, how com-

munication delays and losses between EVs, charging stations

and a network coordinator affect routing decisions and hence

QoS?

Wireless network technology such as 4G (LTE or WiMAX)

and 3G/UMTS, could play a critical role in EV/PHEV roaming

schemes. Moreover, in potential “handoff” circumstances, the

communication network should support inter-grid communica-

tions, so that drivers can retrieve up-to-date information about

nearest charging stations, available pricing, etc., through the

aforementioned smart apps or on-board energy management

systems [33]. In the latter case, charging stations will be

in constant communication with the network coordinator,

possibly using a mixture of standard wide area communication

protocols. In a recent real world application, charging stations

employed a 2.4 GHz, 802.15.4 full mesh radio protocol [37].

Moreover, depending on the volume and the criticality of op-

erations, IEC 60870-6 (inter-control center communications)

could be employed as well.

The major problem in information dissemination is related

to the network connectivity, that is, some vehicles could be

missing part of the information since they are temporarily

not connected to the network. Assuming that information

dissemination is provided by means of a specific network,

this aspect can be translated into the problem of evaluating

the degree of connectivity of the employed communication

network.

Another limitation of the proposed framework is that it

assumes that EVs strictly adhere to routing decisions taken by

the network coordinator. However, many drivers may deviate

from the proposed assignments by the network coordinator

and head towards the nearest station. Pricing incentives could

address this issues, as discussed in [38].
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