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ABSTRACT The smart electricity grids have been evolving to a more complex cyber-physical ecosystem

of infrastructures with integrated communication networks, new carbon-free sources of power generation,

advancedmonitoring and control systems, and amyriad of emergingmodern physical hardware technologies.

With the unprecedented complexity and heterogeneity in dynamic smart grid networks comes additional

vulnerability to emerging threats such as cyber attacks. Rapid development and deployment of advanced

network monitoring and communication systems on one hand, and the growing interdependence of the

electric power grids to a multitude of lifeline critical infrastructures on the other, calls for holistic defense

strategies to safeguard the power grids against cyber adversaries. In order to improve the resilience of the

power grid against adversarial attacks and cyber intrusions, advancements should be sought on detection

techniques, protection plans, and mitigation practices in all electricity generation, transmission, and distri-

bution sectors. This survey discusses such major directions and recent advancements from a lens of different

detection techniques, equipment protection plans, and mitigation strategies to enhance the energy delivery

infrastructure resilience and operational endurance against cyber attacks. This undertaking is essential since

even modest improvements in resilience of the power grid against cyber threats could lead to sizeable

monetary savings and an enriched overall social welfare.

INDEX TERMS Cyber physical systems (CPS), cyber attack, intrusion detection system (IDS), false data

injection attack (FDIA), energy management system (EMS), power grid resilience.

I. INTRODUCTION

SMART GRIDS have transformed the monitoring, control,

and operation of bulk power grids via modern communi-

cation, signal processing and control technologies. While

the smart grids allow for power networks to be effortlessly

and wide-area monitored, the widespread deployment of

modern information and communication technologies (ICTs)

engenders a significant security concern and vulnerability

to malicious cyber attacks: adversaries which may alter the

underlying physical systems and processes, thereby poten-

tially compromising the national security [1]–[3]. With the

extensive integration of cyber infrastructure in smart grids is

formed an expanded attack surface characterized by intensi-
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fied complexity, heterogeneity and number of resources [4]

(see Figure 1). This is evidenced by the frequency, complex-

ity, and severity of cyber attacks targeting several key power

system operational functions such as automatic generation

control (AGC), state estimation (SE), and energy manage-

ment systems (EMS) which have been globally observed to

be on the rise in recent years [5]. Cyber attacks are mali-

cious intrusions triggered by disrupting the cyber layers of

the communication systems in the power grid. There are

generally four types of attacks that the power grid may be vul-

nerable to: physical-only, cyber-only, cyber-enabled physical

and physical-enabled cyber attacks [6]. Disruptions appear

when either the system operator makes a detrimental error

based on compromised sensor measurements or the power

grid is remotely or directly controlled by a malicious intruder

[7]. An intruder may be motivated to initiate a cyber attack
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FIGURE 1. General view of the power grid cyber vulnerabilities.

for many reasons including financial benefits, large black-

outs, or a combination of both [8]. The gravity of the attack

is dependent on the resources the attacker has access to and

the knowledge he/she possesses on the system topology. The

more accurate model the attacker has access to, the larger the

deception attack that can be executed undetected [9]. Attack-

ers may take advantage of their knowledge of the grid and

launch coordinated attacks to critical substations in the net-

work which may eventually cause brownouts/blackouts with

significant techno-economic consequences [10]. From a real-

ization perspective, a cyber attack can be consideredmeasure-

based or control-based. Ameasure-based cyber attack targets

the tie-line flows and frequency measurements, i.e., the mea-

surements PL45, PL69 and the system frequency being sent

to the control center. A control-based cyber attack targets the

area control error (ACE) values once they are sent from the

AGC algorithm and before they arrive the designated sub-

stations. An attack can send the opposite-direction ramping

commands to the generating units. Modifications to the ACE

signals (e.g., a sign change of the ACE value) can lead to the

generation ramping-up for load reduction and vice-versa [11].

Historically, there were reported incidents in which power

systems and industrial control systems (ICS) had their sys-

tems cyber compromised. In the United States, the power grid

was penetrated in 2009 by cyber spies and a key infrastructure

was compromised by an undetected intrusion: Siemens super-

visory control and data acquisition (SCADA) systems were

attacked by computer worm Stuxnet. In 2010, Stuxnet was

able to infiltrate Iran’s Natanz nuclear fuel-enrichment facil-

ity which was a part of Iran’s nuclear development project

[12], [13]. In 2003, a cyber-attack penetrated a computer

network at the Davis-Besse nuclear power plant located in the

US [13]. There have also been reports that an experimental

cyber attack was launched by researchers which caused a

generator malfunction and self-destruct [14]. Energy theft

is another common cyber attack practice in which the elec-

tric power is misused or ‘‘stolen’’ by a malicious intruder.

Reports reveal that the United States loses ∼ $6 billion due

to energy theft alone while it accounts for ∼ $25 billion

loss by the electric companies globally [15]. Even advanced

metering infrastructure (AMI) platforms, which are used to

moderate the power flows in the grid, have been compromised

and abused for energy theft. In 2009, the FBI reported a

wide and organized energy theft scheme which may cost a

utility company up to $400 million annually following the

deployment of AMIs [16], [17]. One major known attack was

the cyber attack that occurred on the Ukrainian power grid,

happened on December 23rd, 2015, where a third party from

Russian security services illegally entered the SCADA sys-

tems and computers, and ultimately caused a blackout with

massive consequences: a service outage that left 225,000 cus-

tomers without electricity for 2-6 hours [18]. Such black-

outs are detrimental in that they cause financial losses and

disruptions in all aspects of our everyday life [19]. Hence,
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FIGURE 2. General architecture of a CPS with multiple layers.

characterization, modeling, and assessment of the power grid

cyber vulnerability and designing solutions to protect the

grid and enhance its resilience against cyber adversaries

is essential. This is because even modest improvements in

resilience of the power grid against cyber threats (through

advanced monitoring, efficient threat detection, and recovery

algorithms) could lead to sizeable monetary savings and an

enriched overall social welfare. More critically, it could help

reduce undesirable social, psychological, and physical out-

comes associated with the prolonged power outages resulting

from cyber intrusions, e.g., premature death, injury, social

unrest, etc.

Various studies have investigated the impact of cyber

attacks against different day-to-day operation and control

mechanisms in power grids, including but not limited to state

estimation (SE), electricity markets, power system protec-

tion, renewable forecasts, and power system dynamics and

control [1], [2], [20]–[31], among many others. A cyber-

resilient power grid entails fault tolerance, fast response,

recovery and reliability. Ensured resilience of the power

grids against extremes does not only reduce the volume of

outages, but also ensures that the grid timely responds to

a variety of cyber catastrophes and man-made faults [32].

In the case of power transmission systems, difficulty in main-

taining system security arises in that intelligence is only

applied and available locally by protection systems and by

central control through SCADA systems. In some cases,

the central control system is slow to respond to cyber attacks

and the protection systems are limited to a few local com-

ponents [33]. There are many methods to model a cyber

attack: an Unmanned Aerial Vehicle (UAV) trajectory plot

can model the different paths it can take based on the type

of the cyber attack and the impact the attack imposes on

the power grid [34]. Attack trees can be devised to model

many types of cyber attack scenarios encompassing all pos-

sible approaches an attacker may take [15], [35] or other

methods such as Markov decision process (MDP) to enu-

merate all possible attack scenarios [36]. In order to model a

control system, however, a graph-based topological network

model or graph theory is proposed for a target control system.

Integrated with logical connection information, it permits the

implementation of a simple Prolog-based expert system to

represent a device visibility path and allows assessment of the

device vulnerability [37]. A classical mathematical model to

describe the power transmission grid is commonly referred to

as the structure-preserving power network model. It consists

of dynamic swing equations for generator rotor dynamics

and algebraic load-flow equations for power flow through

network buses [22].

Aiming at reporting the existing state of knowledge on

the topic, this paper is structured as follows: a background

on cyber attacks including definitions, potential attack sur-

faces, and the impacts on bulk power grids are presented in

Section II. Section III discusses the power grid resilience to

cyber attacks and how the smart grid cyber layer should be

characterized to resist cyber threats, ensuring the operational

endurance and resilience. Section IV reviews some protec-

tion mechanisms in power systems against cyber adversaries

to prevent failures, followed by Section V where mitiga-

tion solutions are reviewed. The paper will be concluded in

Section VI with several concluding remarks.

II. CYBER ATTACKS: MODELING AND CLASSIFICATION

In this section, the root causes of cyber attacks and the attack

surfaces are firstly reviewed to overview where in power grid

such threats would emerge. The impacts of cyber attacks on

power systems are next discussed, considering the technical

failures and the consequent effects of triggering events.

A. CYBER ATTACK ROOT CAUSES AND SURFACES

The smart grid is a hybrid of power and communication

systems, the latter of which renders vulnerabilities which can

be compromised during a cyber attack; these vulnerabilities

are confidentiality, integrity and availability (CIA) [38].

In today’s standards, the power grid is characterized as

a cyber-physical system (CPS) shown in Figure 2, which

contains physical, sensor/actuator, network, control, and

information layers. Manipulation of each layer is possible

but does not necessarily mean an intrusion detection com-

ponent or system needs to be applied in all layers. Infor-

mation flows in between all layers as they operate only in

tandem [39].
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TABLE 1. Potential attack surfaces in power grids.

Cyber attacks appear in many different forms, where its

most basic definition is man-made manipulation of the power

grid and redirecting power flow to where it is unassigned by

the network operator (see Table 1). As different interoper-

ability layers of smart grids including physical, function, and

business layers are interconnected through communication

layer to exchange information, attack surfaces are wider than

those listed in Table 1. However, in this table, the most com-

mon surfaces which have potential to be attacked in existing

modern power systems are reviewed as a basis to identify the

domain and the type of common attacks.

Some of the main common attacks are denial of service

(DoS), false data injection attack (FDIA), energy theft [17],

insertion of malware or worms, as well as physical damage

of the power grid such as causing equipment to self destruct

[14], [35], [40].

• DoS attacks are often realizedwhen the attacker jams the

communication channels, compromises the electronic

devices, and attacks the routing protocols which ulti-

mately lead to delays and congestion in the commu-

nication channels. Generally, a DoS attack restricts a

legitimate user’s access to the services and resources by

flooding the communication network with unnecessary

traffic [12], [41].

• FDIA scenarios are realized when an attacker injects

false data, usually on a communication line between

the field sensors and the control center, with the intent

to deceive the network operator and even disturb the

SE processes [8], [13]. FDIAs may result in a wide

variety of outcomes depending on the intruder’s inten-

tion, some of which include energy theft, miscalcu-

lation of locational marginal prices (LMP) for illegal

market profits, and physical damage upon the network.

FDIAs can affect the LMPs by misleading the SE which

then adversely affects the contingency analysis proce-

dures [42].

• Insertion of malware or worms can range in different

types from malicious software which runs in back-

grounds to slow down the operations of the electric

utility computers to insertion of Trojan software to steal

practical security certificates [40].

Cyber intrusion does not necessarily have to occur in

the power system itself since it can originate from separate

systems that interact frequently with the grid such as elec-

tric vehicle supply equipment (EVSE) [43]. In [40], a mal-

ware attack model is able to attack the electric vehicle (EV)

infrastructure and its communication systems when EVs are

plugged in for charging. In some instances, attacks can be

undetectable such asmalicious data injection attacks that alter

the values of measurements without being detected, which

may result in serious consequences [44].

From an engineering perspective, there is an opportunity

for cyber attacks in smart power grids due to the prolifer-

ation and reliance on distributed advanced metering infras-

tructure (AMI) [45], intelligent electronic devices (IEDs)

[46]–[56], and wireless and/or off-the-shelf communications

components and systems across the power network. Such

cyber infrastructure increases the system connectivity and

autonomous decision-making by employing standardized

information protocols that often have (or will have in the

future) publicly documented vulnerabilities. Motivations for

cyber attacks also abound. Market deregulation and priva-

tization of the energy industry has increased the competi-

tion among energy providers to enhance consumer-centricity.

Threats also exist in the form of dissatisfied utility insiders,

electricity consumers, and cyber terrorists.

B. IMPACTS OF CYBER ATTACKS ON POWER GRID

Control systems are becoming more vulnerable as they get

overwhelmingly coupled with modern information and com-

munication technologies and the physical controllers in a

CPS [57]. The critical equipment and systems which can

be mainly affected or exploited during an attack are in the

energy management systems (EMS) in transmission net-

works or distribution management systems (DMS) in distri-

bution networks. Such platforms collect data from remote and

distributed meters and sensors across the network and gener-

ate estimates of the system states at the intervals of roughly

15 minutes [46]–[51], [53], [55]. When false meter data is

injected through a cyber attack, the EMS or DMS functions

at the control center will be misled by the state estimators

which may potentially make erroneous decisions on contin-
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FIGURE 3. System view of advance metering infrastructures.

gency analysis, power dispatch, and even billing actions [14].

The smart grid offers synchrophasor-based cyber security,

which entails a CPS system that provides real-time data to

the EMS in order to manage (monitor and control) the phys-

ical network [58]–[61]. However, the latest synchrophasor

devices, e.g., phasor measurement units (PMUs), as well as

digital fault records (DFRs) and protective relays with PMU

functionality are susceptible to a wide range of errors [53],

[60] including cyber attacks; this is even further challenging

considering the fact that such equipment are intertwined with

a large number of legacy devices that have little or no pro-

tection against cyber attacks [62]. In [34], the CPS security

is analyzed where a deception attack compromises sensors,

actuators and both sensors and actuators. The probability

of FDIA to be launched successfully usually depends on

two assumptions: (i) the attacker has control over some sen-

sor nodes and (ii) the attacker has complete knowledge of

the system or its exact topology at all moments during the

attack [63]. Generally, the highest impact of an attack is

realized when an intruder gains access to the supervisory

control access points of SCADA systems and launches con-

trol actions [64]. The attacker may compromise raw data

measurements which causes undetected errors to factor into

estimates of state variables such as bus voltage angles and

magnitudes. This can occurwhen the attacker takes advantage

of small errors tolerated by SE algorithms. Ultimately, this

severely threatens power system security [13]. Disturbances

in SE can lead to increases in state estimates mean square

errors (MSE) and changes in the real-time electricity market

prices. The effect of invalid MSE can lead to network oper-

ators making wrong decisions and the changes in real-time

electricity market prices can benefit only the attacker. [65].

With FDIAs, the power grid can suffer economic attacks,

load redistribution attack, or energy deceiving attack. An eco-

nomic attack is a type of FDIA which can affect operations

of the deregulated electricity market which is comprised of

two markets: the day-ahead market and the real-time mar-

ket. An attacker can manipulate market prices for power

and get monetary gains. A load redistribution attack is an

attack which can affect power grid operation by attacking the

security-constrained economic dispatch (SCED). The pur-

pose of SCED is to minimize the total system operation

cost; however, when the raw measurements are manipulated

by an attacker, the SCED will result in an overload of the

lines that will remain unnoticed by the system operator and

ultimately causes large physical damages to the power grid.

An energy deceiving attack affects the distributed energy

routing process; essentially this is a scheme to determine the

optimal energy routes for load demand or generation. When

measured data has been tampered, it can cause erroneous

energy demand or supply messages to initiate [13]. Overall,

cyber attacks can impact four main aspects of the bulk power

systems which are SE, AGC, voltage control, and energy

market. FDIAs deceive the system operators to believe that

the current operating conditions are secure both physically

and economically when they actually are not [42], injection

of false data can affect the stability and security of the system

[66]. Spatiotemporal cyber-state correlations can be used to

detect the FDIA. Potential anomalies can be detected bymon-

itoring the temporal consistencies of the spatial correlations

between state estimations [67].

Another way an intruder can affect the communication

network is by attempting to connect and dial up to a remote

terminal unit (RTU) or an IED which can allow them to

wiretap telecommunications, perform a local-area network

(LAN) or wide-area network (WAN) transmission shown

in Figure 3. They could also attack the corporate information

technology (IT) systems and gain backdoor access to the

interconnected EMS or SCADA systems; internet service

providers (ISP) and telecommunications are other sources

they can attack. Some electric utility providers are depen-

dent on corporate IT systems and this is how their intercon-

nected SCADA systems greatly intensify the vulnerability

of the electric power grid [37]. Similarly, AMI systems can

be attacked. AMI includes smart meters, customer gate-

ways, AMI communication network and head-end; AMI
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is considered a fundamental technology of smart grids for

making two-way communications along with various other

functions. However, there have been several potential vul-

nerabilities with AMI specifically the insertion of malicious

software and disabling of metering systems [38].

Cyber attacks and intrusions can occur multiple times

from a single origin and spread to different areas. A typ-

ical example is electric vehicle charge stations (EVCS)

[43], [68]–[72]: when a consumer charges its EV at mul-

tiple stations, it is likely that malware can spread due to

vehicle-to-infrastructure and EVSE communications. Essen-

tially, an attack on an EV may spread to the power grid

infrastructure starting from the EVSE and all the way up

to the utility systems [40]. The integration of transportation

and power systems may leave many open doors for hackers,

especially in the interconnected environment, i.e., the EV

infrastructure, including EVs, EVSE, meters and other road-

side infrastructures and when deeply integrated with critical

infrastructure systems [73]–[75].

III. POWER GRID RESILIENCE TO CYBER ATTACKS

The concept of resilience has become a well-researched

topic in recent years as it mainly drives the swift detec-

tion and effective mitigation of the power grid against high-

impact low-probability (HILP) events [76]–[78]. The word

‘‘resilience’’ is originated from the Latin word ‘‘resilire’’,

reflecting ‘‘the ability to rebound’’ [32]. Power system

resilience in the face of the devastating natural-driven HILP

events has been studied widely in the literature [76]–[97].

The past research defines, quantifies, and categorizes the

concept of resilience in many different ways. For instance,

the National Infrastructure Advisory Council (NIAC) pro-

posed a universal definition of infrastructure resilience

in 2010: ‘‘the ability to reduce the magnitude and/or dura-

tion of disruptive events. The effectiveness of a resilient

infrastructure depends on its ability to anticipate, absorb,

adapt to and/or rapidly recover from a potentially disruptive

event’’ [98]. In a similar attempt, [99] defines resilience as

the system’s ability to withstand the main interruption within

acceptable degradation parameters and to recover within an

acceptable time and composite risks and costs. An alternative

definition of resilience is the ability to prepare for and adapt

to changing conditions, featured with robustness and fast

recovery [100]. The last but not the least interpretation of

resilience could be the system’s ability to prepare and plan for,

absorb, recover from, and more successfully adapt to adverse

events [101].

The power grid is required to supply the electric power

continuously and reliably to end-users in general and criti-

cal lifeline infrastructures (e.g., water networks, oil and gas

systems, communication systems, transportation networks,

etc.) and mission-critical services (e.g., health sector, defense

bases, etc.). The electric sector’s approach to the protec-

tion of the grid critical infrastructure is generally known as

‘‘defense-in-depth’’, which contains prevention, preparation,

response, and recovery for an inclusive range of credible

FIGURE 4. Power system transition states following a critical HILP
disturbance: a proactive response and recovery strategy that can be
implemented in an automated manner can minimize or bypass the
preparation time when the event hits the power grid, thereby effectively
boosting its resilience.

hazards to electric grid operations. Resilience in power grids

entails accurate threat detection, infrastructure vulnerability

monitoring, and timely response and recovery (see Figure 4).

Both ‘‘long-term’’ and ‘‘short-term’’ strategies for enhanc-

ing the grid resilience against extreme conditions have been

addressed in the literature. In the former, enhancing the grid

structural resilience is primarily the focus of concern and

suggestions are toward deployment of the ‘‘grid hardening’’

plans through reinforcement, preventive maintenance of the

critical assets, vegetation management, efficient allocation of

flexible energy resources (e.g., storage units), etc. In the latter,

improving the operational resilience is targeted through fast

emergency response and remedial actions, defensive island-

ing, use of the micro-grids, etc.

The IT employed in industrial control systems (ICS) is

cyber-vulnerable in general and can potentially impose direct

impacts on the physical power grids. CPS will be the core

component of many critical infrastructures, yet vulnerable

to random failures and cyber attacks. Hence, it is critical to

design, develop, and implement ICS and CPS with resilient

cyber defense systems [12], i.e., integrating robust intrusion

detection systems (IDS) to ensure the power grid resilience

with countermeasures being taken effectively [39]. Energy

theft is an important concern relating to smart grid imple-

mentation; while the implementation of AMI is used to mit-

igate energy theft, penetration tests have uncovered several

vulnerabilities with smart meters [15], [17]. Deregulation of

the electric power industry has unbounded generation and

transmission systems which, in turn, allows for a broad range

of participants to make decisions in the power sector. This

is critical as an attack on the SCADA systems can disrupt

and damage critical infrastructural operations, contaminate

the ecological environment, cause major economic losses
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and, and even more dangerously, claim human lives [102].

In presence of all these challenges and vulnerabilities and

the intensified number of access points and functionalities to

tamper with [103] in highly-complex cyber-physical power

grids, new strategies are needed to secure the entire net-

work against malicious cyber intrusions [3], [59], [97], [104],

[105].

The potential for achieving power system resilience

depends highly on how preventive and corrective mainte-

nance strategies are planned and implemented component-

wise [106]–[111] and system-wide [112]–[126] as well as

where and how the security measures and systems are

deployed. Incorporating data and cyber infrastructure to

the power grid exposes the system to many cyber security

threats. The smart grids of the future with massive renewable

resources and an expanded uncertainty set [127]–[129] will

inherit not only the vulnerabilities of advanced communica-

tion systems but also the vulnerabilities of the legacy power

system. Security mechanisms should be designed into the

power grid with the goal of reducing vulnerabilities and

mitigating their consequences [130]. Anomaly detection and

root-cause analysis are essential for building resilient CPS

since the grid may not know how to counteract the damage

if it does not know what caused the damage. Accurately

detecting anomalies and isolating their causes is important

for applying appropriate proactive and preventive measures

[57], [41], [66].

IV. CYBER ATTACK PROTECTION

Most methods for detecting cyber intrusions rely on out-

dated techniques that are originated from the IT domain and

adopted in smart grids in an insufficient manner. Typically,

the inherited techniques from power experts mainly focus on

existing types of attacks, e.g., load redistribution [131], dis-

tributed DoS [132], etc. Real-time cyber vulnerability assess-

ment in power systems brings new challenges due to the fact

that the conventional techniques for cyber intrusion detection

in dynamic power systems are computationally demanding to

be applied in real-time.

Fundamentally, there are two types of attack detection and

identification strategies widely researched in the literature:

static and dynamic. Dynamic detection and identification

outperform its static counterpart while possibly using fewer

measurements. With a comprehensive assessment of the lim-

itations in both static and dynamic detection and identifi-

cation techniques, [22] proposes a provably-valid dynamic

detection and identification procedure borrowing tools from

the geometric control theory domains: the tools are com-

prised of geometrically designed residual filters. Cyber attack

detection can be performed using relevant and high-fidelity

data. Spotting slight anomalies in PMU data helps identify

unobservable cyber attacks which can not be detected by

existing technologies. In [133], a convex optimization-based

decomposition approach utilizes the low-ranking property of

PMU data to formulate an unobservable cyber attack identi-

fication problem as a matrix decomposition problem where

the observed data matrix is the sum of the low-ranking PMU

data and a linear projection of a column-spare matrix. The

majority of the existing attack detection methods use mea-

surements at one-time instance and only explore the spatial

correlations whereas the convex-optimization decomposition

method in [133] exploits the temporal correlations as well and

can identify unobservable cyber-data attacks even when the

system is dealing with the aftermath of disturbances.

Strategies to detect cyber intrusions are plentiful and end-

less since there is an expanded set of cyber attack surfaces

and vectors to be able to manipulate the grid towards an

intruder’s favor. In [19], a new network-based cyber intru-

sion detection system (NIDS) uses multi-cast messages in

substation automation systems (SASs) to monitor anomalies

and malicious activities of multi-cast messages which are

based on IEC 61850, generic object-oriented substation event

(GOOSE) and sample value (SV). NIDS detects discrepan-

cies and intrusions which violate the predefined security rules

by using a specification-based algorithm. To detect energy

theft, another common challenge in power systems, [17] uses

normal and malicious data of consumer consumption pat-

terns and a consumption pattern-based energy theft detector

(CPBETD). This tool combined with the application of a

Support Vector Machine (SVM) anomaly detector allows the

algorithm to use silhouette plots to identify different distri-

butions in the dataset and relies on distribution transformer

meters to detect nontechnical loss (NTL) at the transformer

level. In order to detect cyber intrusions in the system, it is

essential to classify it for identification. Effective techniques

to classify cyber attacks or anomalies are using SVMs and a

variety of machine learning algorithms.

Detecting intrusions through the entire sector of the power

network is challenging; in [134], a proposal of grouping

network buses and designing filters for detection and iso-

lation of faults addresses a feasible detection mechanism.

In addition to grouping network buses, [134] suggests using

the swing equation to model the power network which can

be used in tandem with grouping power buses. Investigating

system models and security requirements of AMIs to present

an attack tree based threat model for AMI has shown an

improvement in the detection accuracy and detection speed

of intrusions in [15].

While cyber attacks may become prominent in the future,

there are normal fault contingencies which occur in the sys-

tem on a daily basis driven by environmental stressors and

equipment failures. The system needs to be able to differenti-

ate the difference between an intrusion attack and a natural

discrepancy. In [135], a devised algorithm is implemented

to accurately detect and locate faults in power systems in

addition to identifying bad data using weighted least absolute

value (WLAV). WLAV has the ability to reject bad data

to reduce dimensionality. A Bayesian framework can also

be utilized to unify different approaches of network detec-

tion based on random diffusions and algorithms which are

based on network’s spectral properties [136]. This algorithm

detects threat networks using partial observations which can
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be optimal in the Neyman-Pearson sense and prepares the

system for cyber intrusion attacks should they are launched

in the future. A data-driven algorithm for online power grid

topology change identification with PMUs is suggested in

[58], where the proposed machine learning algorithm can

differentiate the various types of faults in power grids and

the topology switching actions initiated by the system opera-

tors or attackers.

A. FDIA DETECTION

The FDIA problem is viewed as a matrix separation problem

and two methods which are presently employed to solve this

problem are nuclear norm minimization and low rank matrix

factorization. These methods can recover lost or missing data

in addition to detecting malicious attacks in the power grid.

FDIA happens when an attacker injects false data, usually

on a communication line between sensors and the control

center with the intent to deceive the network operator and

even disturb the SE processes [8], [13]. Reference [137]

presents an approach using observer nodes to detect and

isolate cyber attacks on network nodes and those on the

communication links between the nodes. In order tominimize

the computational complexity, observer nodes are reduced,

while the observability of the system is not compromised.

A perturbation-based approach is employed in [44] for detect-

ing both fault-induced and maliciously-injected bad data in

the power grid. This method probes the system by applying

known perturbations and measuring the values elsewhere to

find unexpected responses in terms of measurement values.

[138] presents a mechanism for false data detection which

notices the intrinsic low dimensionality of temporal mea-

surements in power grids as well as the sparse nature of the

FDIAs. Several research efforts discussed methods of build-

ing and detecting such an attack. Successful implementation

of FDIAs commonly requires full knowledge of the network

topology. [139] proposed a form of an attack without having

complete information of the network topology. This can be

done by using the kernel-independent component analysis to

map the restricted data into a new Jacobian matrix, through

which the undetectable attack is modeled [139]. [140] pro-

posed an extreme learning machine (ELM) technique based

on one-class-one-network (OCON) framework to detect any

cyber threat on the AC state estimation. FDIA attacks are

detected using Kullback-Leibler Distance in [141], where the

accuracy of the detection mechanism is influenced by the

predefined thresholds. A novel false data detection technique

based on the separation of nominal power grid states and

anomalies is discussed in [138]. [142] used an algorithm to

ensure shorter decision time and a more promising FDIA

detection accuracy by tracking the unfamiliar parameters and

process multiple measurements at the same time.

Even though these techniques can prevent the system from

FDIAs to some extent, smart intruders may be still able to

damage the PMU (or RTU) measurements in power grids and

bypass the bad data detection (BDD) mechanisms in SCADA

systems and wide-area measurement system (WAMS) plat-

forms [14], [143]–[153] (see Figure 5). This can be accom-

plished through manipulated measurements and injecting

artificially generated data to the basic measurements in power

grids [154]–[157]. An FDIA detection mechanism in smart

meters is modeled in [158]. Correlation between the power

system components and detection methods against smart grid

intrusions is proposed in [67]. An efficient approach to pro-

tect the power system from FDIA is by implementing precau-

tions in advance [159]–[162]. Robust SE algorithms against

FDIA based on Markov chain theory and Euclidean distance

metric are introduced in [163]. [26] modeled the FDIAs with

multiple adversaries against one defender implemented in the

smart grid. A game theoretic approach is used in [30] to

study the interactions between the defender and the attacker

in CPS. DoS attacks, random attacks, and FDIA intrusions are

detected in [164] using Kalman filter by estimating the vari-

ables of the state processes and feeding them to either the χ2

detector or euclidean detector. In order to detect the injected

bad data by PMUs, [165] introduced a distributed host-based

collaborative detection method using a conjunctive rule based

majority voting algorithm to detect such an attack.

B. PHASOR MEASUREMENT UNIT PROTECTION

In order for protocols and measurements to be true, exact,

and valid at all times with robustness against any external

changes, they need to be protected in smart grids. Protecting

a set of basic key measurements and having PMU based

protection mechanisms or secure PMU equipment [7], [13],

[58], [133] can retain the fidelity of the measured data and

accurate state estimates in a wide variety of smart grid appli-

cations using such measurements. When a set of measure-

ments is protected, an attacker can not inject unobservable

attacks without hacking into the protected units [133] and

allowing themselves to be noticed. A distributed intrusion

detection system can be deployed for smart grids to pinpoint

cyber intrusions. This system contains an analyzing mod-

ule (AM) and an intelligent module which communicates

between three different cyber layers of home area network

(HAN), the neighborhood area network (NAN) and the wide-

area network (WAN) [38], [43].

It is estimated that in order to achieve a full power system

observability, one typically needs to install PMUs at around

one-third of the network buses; nevertheless, it is recognized

that this is difficult and costly to achieve in the near future

[166]. Therefore, one will have to estimate the state of the

system with a hybrid of both PMUs and conventional mea-

surements. This practice essentially leads to careful selections

of PMU placement strategies in the power grid in order to

minimize the SE errors. [166] optimizes PMU placement to

increase the SE accuracy using an algorithm that is related to

key property and submodularity which contributes to efficient

greedy algorithms. An optimal PMU placement problem is

interpreted as an optimal experiment design problem with

a class of optimality criteria. In particular, the greedy PMU

placement algorithm achieves at least 63 % of the optimal

total variance reduction for typical power systems. Perform-
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FIGURE 5. FDI attacks on state estimation in a power grids.

ing a vulnerability assessment is critical to ensure that power

infrastructure cyber security is systematically evaluated. This

proposed framework provides a measure to quantify system

vulnerability and a planning tool to assist system analysts to

identify bottlenecks in the system where improvements are

most effective [64]. Similarly, a novel vulnerability measure

is introduced in [154] to compare and prioritize different

grid topologies against FDIAs with incomplete information

of the grid’s topology. This measure can potentially help build

power grids that are less vulnerable against practical FDIAs

when the attacker has limited information and launches an

imperfect attack. In [3], discussions on how optimal place-

ment of PMUs throughout the power network may lead to

very accurate SE are provided. PMUs also provides advanced

mechanisms in detecting stealthy attacks. Rerouting the

topology of the power grid intensifies the complexity of the

grid topology and is used as a defense mechanism against

FDIAs which are undetectable via conventional means [63].

References [63], [152], [167]–[173] suggest that leveraging

defensive circuit breakers and simultaneously applying grid

re-configuration practices can enhance the overall network

efficiency, reliability, and security. This is achieved at min-

imum cost and by harnessing the network built-in flexibility

only. Nevertheless, additions of circuit breakers may not be

a viable security measure if the attacker has compromised a

large set of sensor nodes and knows a large portion of the grid

topology. In [58], advanced wavelet transform and machine

learning analytics are embedded in existing PMUs, devices

with PMU functionalities, or as a stand-alone sensor in

power grids that can detect the malicious changes in network

topology by an attacker (unwanted line switching operations).

The waveform features corresponding to different topology

changes are extracted as shown in Figure 6 which were used

to detect and classify the associated line switching actions

characterized through commutation jamming and/or FDIA

scenarios.

Implementing different techniques to reduce the number

of simulations and achieve a quicker SE allows for early

FIGURE 6. Simulation results in a IEEE 30-Bus system from [58], where (a)
Transmission Line 2-4 is switched-off at t = 30 ms only, (b) Transmission
Line 2-5 is switched-off at t = 30 ms only. Both features are extracted at
Bus 6.

event detection. This provides an opportunity for the network

operators to be prepared for the potential adversarial cyber

attacks since there will be additional time saved for the opti-

mal response to be deployed (see Figure 7). Using a Principal

Component Analysis (PCA) based dimensionality reduction

of PMU data allows for raw data blocks to be processed

quicker, thereby realizing an early detection of cyber dis-

ruptions [174], [175]. Similarly, [133] uses an unobservable

cyber attack identification as amatrix decomposition problem

which contains a sum of low-ranked matrices with a linear

projection of a column-sparse matrix. Since low-dimensional

structure of PMU data matrix is recently observed, the matrix

decomposition problem has attracted more attention and has

wide spread applications such as internet monitoring, medical
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FIGURE 7. Early event detection mechanisms in power grids.

imaging and image processing [133]. In [176], a similar

technique is proposed which reduces the simulation run-time

by incorporating Importance Sampling which is used to speed

up simulations several orders of magnitudes compared to the

standard simulation practices. This essentially increases the

efficiency of simulations associated with Markovian models

on highly dependable dynamic systems.

C. DETECTION USING MACHINE LEARNING

Machine learning and artificial intelligence techniques are

more recently proposed and applied in power systems to

identify disturbances and detect cyber attacks even through

deception [62]. Recent advancement in deep learning (DL),

a subcategory of machine learning that uses artificial neural

networks to extract accurate features from raw data, brings

about new solutions for data-driven attack detectors. In fact,

DL approaches use feature learning techniques to extract

novel features (aka signatures) in an unsupervised, self-

guided manner. Given a set of measurement data, with raw

features as the input, DL tries to crate and refine a set of

algorithms to reproduce the same data set as the output. The

generated algorithms try to minimize the difference between

the input and the output so that the original data can be

recovered directly from the generated features [97].

A machine-learned framework is created in [177] and

refined with unsupervised feature learning to detect dif-

ferent types of cyber attacks in power systems. Stacked

autoencoder-based unsupervised feature learning is proposed

to capture useful and rich patterns hidden in the data to rec-

ognize the cyber attack, and achieve competitive results com-

pared with detectors relying on detailed system information

and human expertise. In [41], research was done to combine

SVM with a variety of machine learning algorithms to find

the most promising algorithmwhich can detect an adversarial

intrusion. A robust spam filtering method is introduced in

[178] using a hybrid method for rule-based processing and

back-propagation neural network. In [179], different types

of deep learning mechanisms, e.g. ANN, decision trees, etc.,

are tested to assess the cyber security of a particular IEEE

test system. Reference [180] introduced a new model for

malicious code detection using a new hybrid DL model.

A decision support tool is proposed in [62] which enables

power system operators to classify various types of attacks.

In this paper, different types of classification algorithms are

considered, e.g., OneR in which the optimal feature and rule

is extracted based on the simplistic method [181], NNge

which is a nearest-neighbor-like algorithm that classifies

samples by comparing them to those which already have

been observed and comparing the new examples to their

surrounding data points [182], Random Forests which is an

ensemble of tree predictors where each tree casts a vote for

the most popular class on the input of a new instance [183].

In [184], an extended version of deep belief network (DBN)

called conditional DBN (CDBN) was proposed to analyze the

sequential PMU data in real-time and detect the existence of

information corruption using auto-regressive (AR) data mod-

eling scheme. In [185], the efficiency of the DL-based cyber-

physical approach for FDIA detection is demonstrated. The

proposed approach addresses both cyber (e.g., information

corruption) and physical disruptions. Reference [186] used

a scenario-based sparse cyber-attack model with incomplete

network information to detect the possibility of data manip-

ulation. In this paper, the results demonstrated that the pro-

posed approach not only requires less assumption on system

topologies and attack types, but also verifies the high detec-

tion accuracy of the adopted DL. Reference [187] compared

the performance of three different DL approaches: (i) gradi-

ent boosting machines (GBM), (ii) generalized linear mod-

elings (GLM), and (iii) distributed random forests (DRF).

The numerical results justified that DL-based approaches

can accurately detect FDIA scenarios against SE algorithms.

Reference [8] proposed two DL techniques for FDIA detec-

tion in smart grids. The first model uses the multivariate

Gaussian semi-supervised learning while the second model

uses a measurement-based deviation analysis algorithm. Both

models are used to identify anomalies in transmission net-

works. In [188], a new detection framework was proposed to

develop a density ratio estimation (DRE) technique: an effi-

cient countermeasure against cyber-attacks. Reference [189]

proposes a DL-based model for FDIA detection in smart

meter data utilizing a state vector estimator (SVE) and a DL-

based identification (DLBI) algorithm. The model uses the

historical data and tries to recognize a pattern to identify

FDIA scenarios in real-time.

V. IMPACT MITIGATION AND RESTORATION

In industrial applications, strengthening industrial control

systems (ICS) will protect different classes of infrastructure

such as utilities and oil and gas facilities. The ICS is strength-

ened by designing an intrusion detection system contained
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FIGURE 8. System architecture which supports EVSEs.

FIGURE 9. Precision results of various classifiers [62].

in the cyber layer with a controller at the physical layer

dynamic system [12]. Having a resilient smart grid entails

both accurate and swift attack detection and timely response

and recovery. This goal can be achieved by having distributed

control agents that facilitate both attack detection and sys-

tem recovery through iterative local processing and message

transmission. These control agents are distributed across the

grid, thereby characterizing distributed intelligence mecha-

nisms [46], [58], [59], [104], [190]. Limitations by a lack

of information about cyber attacks can be partially removed

by future research and development of the advanced testbeds

for comprehensive testing and evaluations. Test beds are

extremely useful tools for thorough evaluation of mitigation

and economic strategies in response to cyber vulnerabilities

[46], [53], [64].

Modeling vulnerabilities in power grids are critical for its

survival under adversarial attacks. In order to create a network

topology model of vulnerabilities, device visibility and device

vulnerability need to be defined and quantified. The concept

of device visibility path, with the use of a small Prolong

application to assess the vulnerability level of a hypothetical

target device, can help map the cyber vulnerabilities within a

system, thereby enabling opportunities to fortify the network

security where needed [37]. A model-based IDS for home

area networks (HAN) is suggested in [130] by identifying

the security challenges in HAN first and determining next

how a Bayesian network intrusion detection system can be

used in future HANs. In order to determine the IDS require-

ments for HAN, examination of the existing types of IDS

is needed; there are signature IDS, anomaly-based IDS, and

specification-based IDS, as in the following:

• Signature-based IDS usually has a database of predeter-

mined attack patterns, known as signatures, and detects

the intrusions by comparing the system behavior with

these signatures.

• Anomaly-based IDS detects malicious activities with

regards to deviations from statistically normal behavior

in the system.

• Specification-based IDS also recognizes intrusions with

regards to deviations from normal behaviors of the

system. However, instead of statistical measurements,

normal behaviors are characterized based on manually

extracted specifications of the system.

Characterization of irreducible attacks or observable

attacks with the compromise of two power injection meters is

performed in [7] with the use of an efficiently designed algo-

rithm to group all observable attacks. In addition, the deploy-

ment of secure PMUs is approached as a countermeasure

against unobservable attacks.When cyber attacks occur, parts

of the system will be compromised and it is important to iso-

late them quickly while ensuring a sufficient supply of power

(through available equipment) to the system load points and

mission-critical systems and services [40], [85], [88]. Refer-

ence [40] claims that EVs mobility contributes to attack prop-

agation. Therefore, when an attack spreads via EVs, a mixed-

integer linear programming (MILP) optimization problem is

suggested that minimizes the risk of attack propagation while

considering the EV loads, EV threat levels and demand pro-

file in power distribution system (see Figure 8). In such a CPS

ecosystem of EVs, isolating the compromised systems will

mitigate the effect of a malware or worm while continuing to

supply the services to the customers.

In order to mitigate the detrimental consequences of an

adversarial cyber attack, one first step is to identify the attack

itself. Classifying the attack and giving it an identity allows
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operators to understand what they are dealing with. In [62],

different machine learning classifying algorithms were tested

in order to determine the viability of using machine learn-

ing as a decision support for system operators; the results

demonstrated in Figure 9 show that it is a viable approach

but more research is needed for deployment in an operational

environment and practical settings.

VI. CONCLUSION

This paper offers a detailed and comprehensive description

of the links between the adversarial cyber attacks and power

grid resilience, off-the-shelf cyber intrusion detection tech-

niques, and what systems are or could be in place to protect

the smart power grids against malicious cyber attacks. The

mechanisms through which cyber attacks can impact the

bulk power grid are reviewed to understand where and how

to enhance and reinforce countermeasures to mitigate the

attack consequences. Although there is a variety of cyber

detection and protectionmethods already in place, this review

highlighted the importance of considering cyber attacks in

planning for resilience in power grids: strategies that entail

both grid hardening practices for structural resilience as well

as procedures for operational resilience; this is due to the

recently more-frequent realization of emerging threats with

no or very few similarities to those formerly-experienced

incidents. While there might be found additional methods

for detection, protection and mitigation against cyber attacks

than those listed in this review and there will certainly be new

schemes and measures in the future, this survey aimed to col-

lect the state-of-the-art already-investigated or implemented

solutions to provide a basis for future research and develop-

ments. Implementation of these various methods on testbeds

and real-world environments will finally allow for improve-

ments in monitoring, protection, mitigation, and resilience of

the smart power grids against the looming threats of cyber

adversaries.
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