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Abstract: In this paper, the approach focused on the variables involved in assessing the quality of a

distributed generation system are reviewed in detail, for its investigation and research contribution.

The aim to minimize the electric power losses (unused power consumption) and optimize the voltage

profile for the power system under investigation. To provide this assessment, several experiments

have been made to the IEEE 34-bus test case and various actual test cases with the respect of multiple

Distribution Generation DG units. The possibility and effectiveness of the proposed algorithm

for optimal placement and sizing of DG in distribution systems have been verified. Finally, four

algorithms were trailed: simulated annealing (SA), hybrid genetic algorithm (HGA), genetic algorithm

(GA), and variable neighbourhood search. The HGA algorithm was found to produce the best solution

at a cost of a longer processing time.

Keywords: optimization; simulated annealing; genetic algorithm; power losses; power consumption

1. Introduction

In the past decade, increased distributed generation (DG) has led to profound changes in electricity

distribution networks. Several factors have driven DG (defined as production of electricity close to

consumption centers) including new technological advances in the production of electricity on a small

scale, a preference for the use of renewable resources, difficulties in network expansion, and a growing

interest in incorporating demand and active agents in the electricity markets [1]. DG can contribute

to reducing losses, improving voltage profile, improving reliability, and postponing investments [2].

However, as noted in [3], harnessing the benefits of DG depends largely on its location, sizing, and

network features. That is why the past decade's alternative methodologies for proper location and

sizing have been explored [4].

In [5] a literature review of techniques used for the location and optimal sizing of DG in

distribution networks is presented. The authors classify the techniques according to analytical methods,

metaheuristics, and mathematical programming [6]. It should be noted that for the problem under

study metaheuristics techniques have significant advantages over classical mathematical programming

because of the nonlinear and non-convex relationships in the location and sizing of DG. On the other

hand, the main weakness of metaheuristics is that they do not guarantee obtaining a global optimum.

However, metaheuristics may provide a solution, or set of high quality solutions. Another advantage

that lies with metaheuristics techniques is that they allow the use of more detailed models of network

operation than the analytical model. To apply mathematical programming techniques to the problem

of optimal location and sizing of DG, it is necessary to use linearization or approximations to the

equations in the balance of power [7].
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Metaheuristic optimization techniques have been widely used in the location and design of the

DG. These techniques include genetic algorithms, tabu search, and colonies of particles. In [8], a model

of multi-objective optimization was presented to determine the location and optimal sizing of DG

using the technique of simulated annealing. The elements were modelled power losses, the number

of generators, the voltage profile and power injected by the DG. The method sought a solution that

would improve the voltage profile and reduce losses to the minimum DG units in the system. In [9],

the authors presented a population-based metaheuristic based on the parasitic reproductive behavior

of some species of cuckoos (cuckoo search algorithm) for the location and optimal sizing of DG. The

advantage of this algorithm was that it required a few parameters to calibrate. The aim of the study

was the reduction of active power losses.

Hybrid methods combine two or more search techniques in order to exploit their potential and

compensate for their deficiencies. The most common methods combine population hybrid techniques

with methods that enhance some kind of local search or alternatively, heuristic methods with classical

mathematical programming. In [10], a combination of simulated annealing and genetic algorithms for

optimal location of DG comes with network distribution. The objective was to minimize losses. This

shows that the combination of a genetic algorithm (GA) with simulated annealing was more effective

than using only a GA. In [11], a method to maximize the benefit to network operators and owners of

distributed generation in a deregulated electricity market hybrid algorithm was presented. As well as

simultaneously optimizing the benefits to the distribution company, and to the owner of the DG, their

method also considered the uncertainty of demand and energy prices [12].

In [13], a hybrid algorithm was presented that improved stress profiles and reduced emissions

using a particles’ gravitational colony search to determine the proper location and sizing of the DG that

minimized loss. The aim of this article is to contribute to the discussion on the effectiveness of heuristic

and metaheuristic methods for optimal dimensioning and location of DG. Four different techniques

were implemented and compared, namely (i) simulated annealing; (ii) variable search environment;

(iii) genetic algorithm; and (iv) a hybrid method that combines variable search environment with

a genetic algorithm. To test the efficiency of these methods, they were applied to various tests in a

distribution system (34 bars) that is widely used in the technical literature.

2. Background Mathematical Formulation

The objective function of the proposed problem is to improve the voltage profile and reduce

system losses. To this end, the indexes defined in [14] described below are taken. The rate of voltage

profile, denoted as IPT, is defined by Equation (1). This index takes into account the voltage, bars, and

load expressed as Power of the system as a load factor. This makes it more important to maintain

proper high-voltage in bars under higher demand.

IPT =
N

∑
{i=1}

= ViLi
(1)

Variables: Vi: High-voltage in the bar i (p.u); Li: Load in bar i (p.u); and N: Total number of bars.

The rate of improvement of voltage profile, denoted as IMPT is given by the Equation (2).

IMPT =
IPT{wDG} − IPT{woDG}

IPT{woDG}
× 100 (2)

Variables: IPT{wDG} is the index of the system voltage profile with DG (p.u.) and IPT{woDG} is

the profile index stress the system without DG (p.u.). Note that the IMPT denotes the percentage
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improvement in IPT with DG. The second objective is to reduce active losses and compare losses with

the system with and without DG, given by Equation (3).

IPL{wDG} =
N

∑
{K=1}

I2
{K,wDG} Rk × Dk + LL{wDG} (3)

A similar expression can reflect woDG conditions. The equation variables are described as follows:

IPT{wDG} : Index line losses with DG; Rk: Resistance in line K (p.u/km); Dk: Length in line K (km);

I2
{K,wDG} : Current line K with DG (p.u); LL{wDG}: Index line losses with DG; LL{woDG}: Index line

losses without DG; I2
{K,woDG} : Online K stream without DG (p.u).

While the percentage reduction in losses in the line is income tax given by Equation (4):

IRPL =
IPL{wDG} − IPL{woDG}

IPL{woDG}
× 100 (4)

The objective function is to minimize the reduction rates of losses and to improve the voltage

profile. In this case, you should be using weighting factors W1 and W2 and dimensions for each

rate in order to assess their importance in the optimization process. To be noted, maximizing the

voltage profile can be achieved by Equation (2) and set by the objective function from an Equation (1).

Minimizing the voltage profile can be readily available from Equation (4) and it can be by the objective

function from an Equation (3). Both the voltage profile cases the objective function can be determined

from Equation (1) to Equation (3).

The optimization problem to solve is described by expressions form Equations (5) to (17).

f (x) = W1IRPL + W2IMPT (5)

where the subject of the previous equation is:

0 ≤ Wm ≤ 1; m = 1, 2 (6)

2

∑
{m=1}

Wm = 1 (7)

uiPGi − PDi − Vi

nb

∑
k=1

[Vk(gik cos θik + bik sin(θik))] = 0 (8)

uiQGi − QDi − Vi

nb

∑
k=1

[Vk(gik sin θik + bik cos(θik))] = 0 (9)

Pik = V2
igik

− ViVkgik
cos(θik)− ViVkBik

sin(θik) (10)

Qik = V2
ibik

− ViVkgik
cos(θik)− ViVkBik

sin(θik) (11)

S2
ik = P2

ik + Q2
ik (12)

Pmin
Gi ≤ Vi ≤ Pmax

Gj (13)

Vmin
i ≤ Vi ≤ Vmax

i (14)

Sik ≤ Smax
ik (15)

NDG ≤ Nmax
DG (16)

ui ∈ {0, 1} (17)
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where P{Gi} and Q{Gi} are the active and reactive power respectively, delivered by a unit of DG if

it is located in the bar i. Note that not all bars have DG. DG for each unit must be assigned to a

binary variable (called ui). For simplicity, it is not considered that the DG inject or take reactive

power from the network, so Q{gi} = 0. P{DI} and Q{DI} correspond to power demands active and

reactive bar i, respectively. Also nb is the number of bars, θ{ik} is the angular opening between the bars

and k; g{ik}, and B{ik} are the real and imaginary, respectively, of the nodal admittance matrix parts.

Constraints (8) and (9) represent the balance equations and reactive power, respectively. Restrictions

(10)–(12) represent the equations of active power flow, reactive and apparent power, respectively. The

restrictions (13)–(15) consider the power limits injected by the DG, limits voltage network, and load

flow limits, respectively. The constraint (16) indicates the maximum number of units DG needs to

consider and restriction (17) indicates the binary nature of the variables ui (1 if with DG and 0 if

without DG). The model described by Equations (5)–(17) corresponds to a problem in mixed integer

nonlinear programming which is highly dimensional and non-convex having multiple local optima,

which justified its solution using the search methods illustrated in this article.

3. Methodology on Hybrid Optimization Algorithm

To address the problem of optimal location and the sizing of DG described in the previous section

four techniques were used as combinatorial optimization: Simulated Annealing, Variable Descending

Search Environment, Genetic Algorithm and Hybrid Genetic Algorithm. A brief description of each

technical solution as adopted in this study is presented [15].

3.1. Simulated Annealing

Simulated Annealing (SA) emulates the annealing process in steel and ceramics, which involves

heating and then slowly cooling the material to vary its physical properties. This procedure was

introduced in [16]. In each iteration of the SA some neighbours of the current status are evaluated

and probabilistic decision made between making the transition to a new state or remaining in the

current state. If the neighbour solution enhances the value of the objective function is accepted with

probability 1, otherwise the probability of accepting by the Metropolis criterion given by Equation (18)

where the parameter c corresponds to the temperature.

Prob
(

accept x′
)

=







1 , f (x′ ) < f (x)

exp
(

− f (x′ )− f (x)
c

)

, f (x′ ) ≥ f (x)
(18)

SA assesses unattractive solutions in the early stages, then as the temperature parameter is

reduced, the search becomes more selective, lessening the declines in the objective function.

3.2. Variable Search Environment Descendin

Environment Variable Search (EVS) is a metaheuristic based on a local search in a changing

neighbourhood (also known as environment structure) [17]. Variations in EVS are given the names

down, reduced, basic or general EVS. This paper considered an extension of EVS known as Variable

Search Environment Descending (VSED) in which the current solution obtained from the change in

a local search is implemented; as long as this one has found a better solution. VSED is illustrated

below [4] as the following:

• Initialization: Select the set of environments, structures Nk, k = 1, . . . , kmax to be used in the

descent. Find an initial solution x;

• Iterations: Repeat until no improvement is obtained (until there is no more optimization that we

can get).
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In the following sequence:

(1) Make k → 1 .

(2) Repeat until k = kmax the following:

(a) Exploration of the environment: Find the best solution x′ of the kth neighborhood

of x(x′ ∈ Nk(x))

(b) Move or not: If the obtained solution x′ is better than x, do x → x′, k → 1 ;

otherwise do → k + 1 .

In the study presented in this article, environments or neighbourhoods were defined as the size

(increase or decrease the capacity of the DG) and location (DG move to a neighbouring node).

3.3. Genetic Algorithm

Genetic Algorithms (GA) solve optimization problems by simulating natural selection or “survival

of the fittest” [18]. The general routine of a GA is to generate an initial population of random or

pseudo-random solutions. Each individual in the population is defined by a string of bits. In this case,

the objective function is to evaluate the power flow as a consequence of the location and sizing of the

DG [19]. For a given tournament a number of individuals are selected. The number of tournaments

is equal to the size of the population. Recombination is made at one randomly selected point. The

mutation is created by changing a bit (zero to one) randomly with a given probability of occurrence.

Individuals generated in the process of recombination and mutation replace existing individuals if

they are better than their predecessors. Two stopping criteria are considered; the maximum number of

iterations or the maximum number of iterations without improvement of the objective functions.

3.4. Hybrid Genetic Algorithm

Hybrid methods (HGA) seek to combine the advantages of two or more metaheuristics for high

quality solutions [20]. The most common hybrid methods combine population methods (e.g., Genetic

Algorithms) with local search methods (Simulated Annealing and Variable Search Environment) or

exact methods (linear programming and nonlinear) [21]. In this paper, a method population (GA)

combined with a local search method (VSED) was implemented. The flowchart of the implemented

algorithm is illustrated in Figure 1 below. The HGA structure retains essentially the GA structure

described in the previous section; however, after mutation and before replacing the individuals of

the next generation it performs a local search in order to find better quality individuals in the current

generation [22,23]. As already described in the GA, only individuals exhibiting improvement in the

objective function are included in the new generation [24].
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Figure 1. Diagram of the hybrid genetic algorithm (HGA) Algorithm.

4. Numerical Simulation Test and Investigation Results

In Figure 2, a distribution system of IEEE standard 34 bars is illustrated. The maximum network

demand is 15.8 MW with a power factor of 0.95 lag. It may include up to 4 DG units, each one

represented with a maximum power of 2.0 MW. Candidate solutions with DG units are penalized in

the objective function (to minimize the loss in power) in order to make them less attractive. Note that

according to the formulation (Equation (17)) the algorithm may select other number DG units up to

the maximum.

 

Figure 2. Distribution System of 34 bars.

The distribution of demand in each of the network nodes is shown in Figure 3. It can be seen that

a significant part of the demand is in the first bars.
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Figure 3. Distribution of demand in the system of 34 bars.

4.1. Coding Solutions

A chain of 4 binary bits was used to represent each used generator. The first bit represented the

state of the generator (generator 1, the generator does not exist 0); the remaining three bits represented

the power level of the generator. Thus, 1000 denoted minimum capacity (0.25 MW), while the chain

1111 represented a generator with maximum capacity (2.0 MW). Table 1 illustrates the equivalence.

Table 2 illustrates the code of a particular candidate solution comprising 4*nb bits, where nb was the

number of bars in the system. Bars 1, 2, 4 and nb-1 have no generator; while bars 3 and nb have

generating capacities of 1.0 and 2.0 MW, respectively.

Table 1. Codification of Distribution Generation (DG) size.

Code Size (MW) Code Size (MW)

1000 0.25 1100 1.25
1001 0.50 1101 1.50
1010 0.75 1110 1.75
1011 1.00 1111 2.00

Table 2. Solution candidates encoding.

Bus 1 Bus 2 Bus 3 Bus 4 . . . Bus nb-1 Bus nb

0100 0011 1011 0111 . . . 0011 1111

4.2. Weighted Factors Calibration

Before starting the optimization process weighting factors must be assigned to the two objectives

under study Improved Routine Protoco (IRPL) and intensity modulated proton therapy (IMPT) in

order to assess the relative fitness of particular solutions. This requires a diagnosis without DG base

case. This diagnosis was made by a load flow calculation with and without DG. The load flow analysis

was performed by software Matpower [25] with DG modelled as bars where active power could be

injected. In Table 3, Figures 4 and 5, the voltage profile and line losses, respectively, with and without

DG are illustrated.
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Table 3. Values of IRPL and IMPT for candidates with randomly generated solutions.

Simulation Trial IRPL IMPT IRPL/IMPT

1 41,884 1513 27,682
2 50,127 2806 17,864
3 43,297 2124 20,385
4 57,487 2478 23,199
5 34,329 1878 18,280
6 30,287 1079 26,070
7 44,238 2567 17,233
8 30,234 1969 15,355

 

Figure 4. Voltage profile system of 34 bars with and without DG.

 

Figure 5. Line losses of 34 bar system with and without DG.

4.3. Results Using Simulated Annealing

To start the SA, a base solution that meets the criterion of maximum number of generators

is generated. From there neighbouring solutions are explored according to the criteria stated in

Equation (18). This means that early in the process the probability of accepting poorer quality solutions
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is high, but as the process evolves that probability is restricted. Thus, the principle of seeking diversity

is privileged and at the end of the simulation it intensifies the search for better solutions. After

performing several trial runs with different SA algorithm parameters, initial and final temperature was

calibrated at 3.0 and 0.5, respectively, and at each iteration the temperature was reduced by 0.01. In

Table 4 and Figure 6 the best solution found (after 190 iterations) and the convergence of the algorithm

illustrated by the SA. In this case the time for calculation was 1.2 min. A computer Intel Core i3 2.4 GHz

with 4 GB of RAM was used in all simulations.

Table 4. Best result using simulated annealing (SA) .

Bar Size (MW) W1 IRPL W2 IMPL FO

8 1.5

29,578 43,747 73,325
17 1.75
22 2
29 1.5

 

Figure 6. Convergence process in SA.

4.4. Results Using Variable Search Environment Descending

The size and location of the DG defined the VSED environment. A base solution of individuals

was explored to better the environment by following the instructions as described in the methodology

section. The search continues until it either passes a certain number of iterations or until no

improvement is achieved over previous iterations. In Table 5, the best found VSED is illustrated.

Here 22 iterations were performed by evaluating the structure of eight individuals with a computation

time of 2.1 min.

Table 5. Best result using Variable Search Environment Descending (VSED).

Bar Size (MW) W1 IRPL W2 IMPL FO

5 2.0

39,274 38,313 77,857
10 2.0
21 1.5
31 1.5
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4.5. Results Using the Genetic Algorithm

The implemented GA solution used a coding chromosome structure as illustrated in Table 2. An

initial population of possible solutions was generated pseudo-randomly which led to new solutions

of better quality achieved by implementing a sequence of selection, recombination, and mutation

as described in the methodology section. The GA parameters of initial population size, mutation

rates, and recombination were calibrated through repeated runs. It was noted that with small initial

populations, poor quality responses were obtained. By increasing the number of individuals in the

initial population the quality of solutions improved, but the computing time increased. The best

solution was found with a population of 100 individuals and mutation and recombination rates of 10%

each. The computation time to find the best solution was 2.9 min after 90 iterations. The best result is

shown in Table 6, while Figure 7 shows the process of convergence for different tests. It can be seen

that even though the initial populations were of different quality, the tests converged to solutions of

similar quality.

Table 6. Best result using Genetic Algorithms (GA).

Bar Size (MW) W1 IRPL W2 IMPL FO

10 2.5

38,887 37,836 76,723
15 1.5
26 1.5
29 1.25

 

Figure 7. Process of convergence for 3 different GA tests.

4.6. Results Using the Hybrid Genetic Algorithm

As mentioned above the HGA implemented combined the GA described in the previous section

with VSED. That is, after applying the traditional operators of GA and prior to the population

replacement in each iteration, the fitness of individuals was increased using VSED. The same

parameters were calibrated as with traditional GA. Table 7 presents the best solution found. It

was observed for all tests that the computational time was considerably greater than that required by

the other algorithms implemented; however, the quality of the response was better. The best answer

was found after only six iterations in a computation time of 12.6 min.
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Table 7. Best result using Hybrid Genetic Algorithm (HGA).

Bar Size (MW) W1 IRPL W2 IMPL FO

12 1.7

40,573 39,201 79,774
13 2.0
22 1.0
30 1.25

5. Comparative Performance Index of Algorithms

The best result was obtained using HGA; however, this is the method that took longer to find a

high quality solution. The fastest converging test algorithm was the simulated annealing, but solutions

obtained with the other methodologies were of better quality. The VSED required less iteration to

converge compared to the SA, but it’s computing time per iteration was greater and to be evaluated in

terms of iteration, two structures of the neighborhood were needed. HGA generated the highest quality

solutions when using large initial populations of 100 individuals. Figure 8 compares the computation

time for the methods used, where the HGA stands out as relatively slow. The best solution found (see

Table 7) showed an 80.2% reduction in losses compared to the base case without DG.

 

Figure 8. Search time comparison.

6. Conclusions

In this study, four algorithms were compared to obtain the optimum location and sizing of DG

in distribution systems: SA, VSED, GA and HGA. The implemented methodologies based on these

optimization algorithms were all successful in finding high quality solutions. It was observed that

the optimum percentage of DG penetration of the test system varied between 6 and 7 MW installed

at the start bar and the end bar for substantial improvement using DG units of 1–2 MW. In addition,

the optimum location and sizing for DG allowed a substantial improvement of the voltage profile of

the network and reduced losses by 80.2 per cent in the test system. In conclusive agreement with the

presented research the results are dumped, which are emphasized by the three loss values:

(1) For the optimized solution 134.7321 kW is the power generated and target achieved by the

proposed hybrid genetic algorithm.

(2) Losses for setting opening closer to the optimal solution, which is 134.9930 kW on fluctuation.

(3) The value of a configuration that is not near the optimum and possibly a local optimum,

137.5293 kW. The ordinate represents the number of times it is achieved that value losses in five

runs and the abscissa represent the fraction of crossbreeding.
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It can be noted that the values determined by the range between 0.8 and 0.95 for the optimal

solution search time is found to acceptable for the expected optimization margin. Furthermore, stress

profiles were analyzed and found to have the lowest value of 0.9424 pu (31 bar), which implies a

voltage drop across the bar of 6%, which is less than the maximum value allowed by national law: 8%

in medium voltage. Contradictory to other countries, this value decreases to 5%. A new run was made

taking into account this restriction, finding that there is no configuration having a bar with a drop level

less than or equal to this voltage value. The configuration that approaches the performance of this

restriction corresponds to the opening of the switches 7, 9, 14, 28 and 32 with a value of 134.9930 kW

losses since the bar with less tension accumulated a voltage drop of 5.76% (31 bar).

Furthermore, the fastest algorithm in converging was the Simulated Annealing. Although, this

methodology is faster, the solutions obtained with the other methodologies were of better quality. The

VSED required fewer iterations to converge more than SA, but the computing time per iteration is

greater, and to be evaluated by iteration, two structures of the neighborhood regarding GA it was

found that the HGA is to find high quality solutions, large initial populations (100 individuals) must

be used. Comparisons of the computation time for each of the methods was done, where the HGA

had the best solution found, it was observed to have a reduction in losses of 80.2% compared to the

base case without DG. Finally, the fastest method was SA; however VSED and the HGA showed better

results as concluded in Table 8.

Table 8. Comprehensive obtained performance between optimization algorithm.

Optimization Algorithm Type Iterations Unit Time in Minutes

SA 190 1.2
VSED 22 2.1

GA 90 2.9
HGA 6 12.6
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