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The electric power industry in many countries has been restructured in the hope of a 

more economically efficient system. In the restructured system, traditional operating 

and planning tools based on true marginal cost do not perform well since information 

required is strictly confidential. For developing a new tool, it is necessary to 

understand offer behavior. The main objective of this study is to create a new tool for 

power system planning. For the purpose, this dissertation develops models for a 

market and market participants.  

 

A new model is developed in this work for explaining a supply-side offer curve, and 

several variables are introduced to characterize the curve. Demand is estimated using a 

neural network, and a numerical optimization process is used to determine the values 

of the variables that maximize the profit of the agent. The amount of data required for 

the optimization is chosen with the aid of nonlinear dynamics. To suggest an optimal 

demand-side bidding function, two optimization problems are constructed and solved 

for maximizing consumer satisfaction based on the properties of two different types of 

demands: price-based demand and must-be-served demand. Several different 

simulations are performed to test how an agent reacts in various situations. The offer 

behavior depends on locational benefit as well as the offer strategies of competitors. 
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1 

CHAPTER ONE 

INTRODUCTION 

 

 

The traditional vertically integrated electricity power system has been defined as a 

natural monopoly. Under several constraints such as spinning reserve, thermal unit 

constraints and hydro constraints etc., operation and planning of the system was 

performed toward declining long-term costs, high threshold investment, and 

technological conditions that limit the number of potential entrants. In the vertically 

integrated environment, therefore, a utility would determine generation setpoints based 

on real costs of operation. Unified control of generation, transmission, and distribution 

was considered to be the most efficient way of providing service, and as a result, most 

people were served by a vertically integrated utility. However, as the electric utility 

industry has evolved, there has been a growing belief that the historic classification of 

electric utilities as natural monopolies has been overtaken. It has been believed that 

market forces might replace some of the traditional economic regulatory structure. For 

example, vertical integration has not been necessary for providing efficient electric 

service if utilities that do not own all of their generating facilities exist. Moreover, 

recent changes in electric utility regulation and improved technologies have allowed 

additional generating capacity to be provided by independent firms rather than utilities.  

 

Over several decades, there has been a major change in direction concerning 

generation. Improved technologies have reduced the cost of generating electricity as 

well as the size of generating facilities. Prior preference for large-scale generators has 

been supplanted by a preference for small-scale ones that can be brought online more 

quickly and cheaply with fewer regulatory impediments. Consequently, the entry 
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barrier to electricity generation has been lowered to permit non-utility entities to build 

profitable facilities. Recent changes in electric utility regulation and improved 

technologies have allowed additional generating capacity to be provided by 

independent firms rather than utilities. Therefore, it was hoped that the transition to the 

restructured markets would make the efficiency of the system increase. With the hope 

for a more efficient system, the electric power industry has been restructuring in many 

countries. 

 

In all restructured markets, auctions play a major role in determining both the price 

of electricity and the quantity of electricity dispatched by individual generating units. 

In the new regime, generation setpoints are determined by market forces rather than by 

engineering design. Consequently, it is necessary to create new tools for planning and 

operating that take account the nature of the market environment. In a traditional 

system setting, a generator’s setpoint is determined by current demand and its 

marginal cost1 to produce the next megawatt under several constraints listed above. In 

the case, all participating agents selected by a unit commitment process are guaranteed 

to get dispatched. However, it is unlikely that true operating costs will be revealed 

because of the hedging needed to accommodate uncertainty and opportunities offered 

by the interconnecting network for exercising market power. A generators’ setpoint 

can be found from the result of an optimization process minimizing total system cost. 

In the new market setting, each agent representing a generating firm submits price and 

quantity offer at which it is willing to sell its electric power. For an independent 

system operator (ISO) who does not have access to the true cost of each generator in 

the setting, the offer replaces each unit’s true marginal cost in the process of 

                                                 
1 marginal cost is the cost of the additional inputs needed to produce that output, i.e., 
the cost of producing one more MW 
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determining a setpoint. Because participating generators can change their offers in 

each period, the tools used for operation and planning in the traditional markets are no 

longer useful for the new markets. Therefore, it is important to understand the offer 

behavior of human agents if we are to be successful in designing new tools.  

 

The objective of each generator in the market is to maximize its own profit. An 

agent can find its optimal offer if actual demand is given and if the competitors’ offer 

strategies are known. When there is a change in the offer strategies of competitors, the 

optimal offer of the agent will change. Therefore, it is possible to find an optimal offer 

with proper information, and to figure out when to change the behavior of the agent if 

needed. However, the information listed above is strictly confidential to an agent.  

 

The main goal of this study is to develop a theory and examples for new 

agent-based components as an approach to creating new tools for power system 

planning and operation. Specifically, we seek to develop a planning tool that relies on 

software agents as a replacement for the human agents that exist in the real world to 

submit offer energy price and quantity into a market.  Well-designed software agents 

can be used to emulate the offer behavior of human agents provided that it can be 

shown that, in some sense, their behavior is roughly identical. At a given market 

environment, there are several types of offer/bid strategies of a human agent. A 

software agent needs to show a similar behavior at the identical environment. When 

the environment changes such as the change in the offer/bid strategies of the 

competitors, a software agent should react to optimize the profit.  

 

In this dissertation, there are six chapters including the introduction. Chapter 2 

describes modeling for offer/bid behaviors. Chapter 3 deals with constructing a 
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mapping function from offer to earning. In the chapter, a theoretical model for an 

electricity power market in a steady state is developed. Chapter 4 describes tools i) to 

detect if there is any change in the market due to various reasons such as strategies of 

the competitors and/or network, and ii) to find whether the change results in another 

steady state or a chaotic state. Chapter 5 shows several results from different 

simulations performed with the agents developed in this study. Conclusions and future 

works are presented in Chapter 6. Several related topics are described in Appendix 1 

to 5. Appendix 1 deals with constructing a generation sensitivity matrix by using 

network parameters. In Appendix 2, a method for an error minimization is described. 

Trust region method for a numerical function is presented in Appendix 3. In Appendix 

4, a method to evaluate dimension and Liapunov exponent presented. Appendix 5 

describes a nonlinear time series analysis performed for stock markets. 
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CHAPTER TWO 

MODELING FOR AN OFFER AND A BID 

 

 

2.1. Literature Review 

 

A human agent will update his/her offer behavior based on experience and available 

information. If competitors do not change their strategies, the auction is similar to a 

repeated game in game theory. For such a game, the competitors’ strategies can be 

revealed from the result and his/her strategy used during previous play. In the case, a 

player can update the strategy based on the result of previous play. If competitors do 

not change their strategies, and all other conditions such as demand do not change, 

then an agent can find an optimal strategy for the circumstance. However, since the 

strategies of competitors and other conditions are subject to change in a real market, it 

is important to have an agent find out hidden information quickly from publicly 

available data such as the history of the market clearing result. It is easier in studying 

dynamics to simulate markets with known types of competitors. However, an agent 

only explores relatively restricted area defined by the types in the market in such a 

case. 

 

Usually human agents update offer strategies to determine price and quantity 

according to some process they believe to be profit maximizing. To mimic the ability, 

several different learning algorithms have been studied. Reinforcement algorithms [1-

3] and genetic algorithms [4-6] are most widely studied. Hill climbing is one of the 

most commonly used reinforcement algorithms. In it, one moves along the direction to 

which the value of an objective function increases in the previous step. They are 
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relatively easy to implement since they require small computational cost in terms of 

computation time and data storage.  In any reinforcement algorithm, trial-error 

experience will contribute differently to any future strategy based on the previous 

results.  A genetic algorithm has a similar property, but it is a little more complicated 

due to the choice of fitness function and selection mechanism [7]. It is difficult to 

assess which parameters are most sensitive to the performance index. In other words, 

mapping prices and quantities of multiple blocks to earning is difficult. For example, 

consider a non-discriminatory auction which is the most commonly used pricing rule 

in electricity power markets. In such markets, only marginal blocks set the price. 

Consequently, the offer prices of other blocks are not relevant to profits.  

 

By its nature, demand is stochastic and any demand forecast will be in error. 

Typically, load is forecasted by using weather data on an hourly basis as an input such 

as temperature, humidity, cloud cover and wind. The uncertain and stochastic nature 

of the demand brings another difficulty in an agent design for electricity markets. In 

the method discussed above, the nature of the demand is not considered. 

 

Sheble et al [4-6] designed an agent using a genetic algorithm that operates in a 

significantly simplified market and with zero demand forecast error. In the market, 

each agent, including suppliers and consumers, can submit price and quantity for only 

one block of energy. Independent system operator (ISO) clears the market, then, and 

the agents are paid according to the rules of a discriminatory auction2. In such a setup, 

one can construct a relationship between the offer price to and the price to be paid. 

                                                 
2 All the units dispatched are paid according to their offer price; therefore, they might 
be paid differently. Unlike discriminatory auction, in a uniform auction, they are paid 
at a same price 
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From the procedure, it is possible to connect the offer to the profit, which allows the 

agent to update the offer in a future period. However, the assumptions of one block 

offers, no forecast error and discriminative auction are not valid in any real markets in 

operation today.  

 

An “autonomous” agent designed by Bunn et al [8-10] has been applied in a market 

which is a little closer to a real one. Like in the work of Sheble et al, a lossless 

network, no line constraints, no error in demand forecast and discriminatory auction 

were used, but the agent can offer several blocks. Two points on an offer space 

comprised of offer price and quantity define a linear offer curve. It is possible to 

evaluate prices and quantities of multiple blocks if quantity of each block is identical. 

By using a simple reinforcement algorithm, the agent updates the end points based on 

the result of market clearing. The market is assumed to be a Markov chain, i.e., current 

state contains all the relevant information so that the future state can be estimated by 

using the current state and relevant forecast. Consequently, the reinforcement 

algorithm is used to create the parameters that determine offer price and quantity of 

the blocks. Once all the offers are submitted, ISO clears the market. The simple nature 

of reinforcement algorithm allows the agent to work in a non-discriminatory auction. 

However, an agent characterized by a linear offer curve may not emulate the real 

market successfully since widely observed shape of an offer is a hockey-stick. Another 

problem in the study is that the period of Markov chain is arbitrarily assigned to one 

day with no reason.  

 

There is another agent developed by Oh [11] which works well in a relatively more 

realistic market. Like other agents discussed above, a lossless network with no line 

constraints is used, but it can operate in a market with non-negligible forecast error 
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and stochastic demand containing. It submits an optimal offer based on initial guess on 

the strategies of its competitors. Then, as periods go on, it updates the guess and 

correspondingly its offer strategy based on previous market clearing results. The 

process minimizes the difference between the estimated and actual earning, i.e., the 

performance of the agent has an initial value dependence. The difference depends on 

the arbitrarily assigned initial value for a certain period. Furthermore, it is difficult to 

assign which parts of data are relevant for estimating a future state if competitors 

change their strategies during simulation. Due to this difficulty, inappropriate part of 

data can be used, which results in a high computational cost and inaccuracies of future 

estimates. 

 

It is rather difficult to update price and quantity of multiple blocks independently. If 

there is a good fitting curve and the curve contains fitting parameters, then it might be 

easier to update price and quantity accordingly. Like studies performed by Bunn et al, 

a linear curve is most widely used due to its simplicity. However, a hockey-stick type 

is a commonly observed shape for the supply-side offer curve, which is significantly 

different from a linear curve. Recently, Oh [11] proposed a continuously differentiable 

equation relating offers with the physical quantity such as total capacity of a generator. 

The equation fits relatively well with offer curves observed in the 

Pennsylvania-New Jersey-Massachusetts (PJM) market. A continuously differentiable 

equation predicts a smooth curve on entire offer space. However, due to a kink 

observed in real offer curves at the boundary between high-priced and low-priced 

offer, discontinuous offer curves are observed. Furthermore, the equation predicts that 

an offer price divulges at a very large quantity offered, but actual offer curves get flat. 

Therefore, it is important to find a better equation for implementing learning 

mechanism. 
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Most current markets have supply-side participation only, and a hockey-stick type 

offer is generally observed in those markets. In such a situation, price spikes have 

been observed frequently. Generally speaking, 10%3 reduced demand might prevent 

the appearance of most price spikes. Unless the 10% reduction cause bigger drop in 

profit, a demand-side agent has motivation to reduce its demand since the reduction 

may increase its profit by purchasing electricity at a lower price.  

 

 

2.2. Model for Supply-side Offer Behaviors 

  

Figure 2.1 shows different offer behaviors, i.e., one with low-priced offer only (D8) 

and the other with high-priced offer as well (Y6). It is difficult to classify the type of 

agents since the load forecast data is not provided. If the fairshare4 [12] of D8 were 

less than 1,500 MW and that of Y6 were larger than 6,100 MW, D8 and Y6 would be 

classified as a marginal cost offer agent and a speculator, respectively.  

 

As is shown in Figure 2. 1, there exist at least two different types of agents in a real 

market. There are two different blocks in the offer curve of Y6: one block with low 

priced offers with a flat curve and the other with high priced offers with a steep curve 

in offer price. In the offer curve of D8, only the first block showed up. To model these 

different types of agents consistently, one should consider the objects of two blocks. 

The first block is submitted at a low price in order to be dispatched while the second is 

done to attempt to raise the dispatched price. Due to these objectives, the very 

beginning of the first block (Block 1) is set to the minimum offer price, and the end of  

                                                 
3 private talk from Prof. T. Mount 
4 the faireshare of an agent is the market share of the agent if all the participating 
agents offer all the quantities at the same price  
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Figure 2. 1. Two commonly observed offer curves. Connecting lines are for visual 

guidance. These specific offer curves were found in the PJM market where D8 and Y6 

are the company code known only to PJM. 
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the second (Block 2) is done to the maximum price of which an agent might think. 

 

In comparing the two blocks, the second block is more sensitive to a change in 

market condition defined by the competitiveness of the market. Suppose there is no 

limitation such as maximum generator capacity and reservation price, i.e., all agents 

are allowed to submit any offer. In the situation, there would appear two blocks in an 

offer curve. However, an agent cannot submit an offer price higher than a reservation 

price, and quantity larger than its maximum capacity. With the limitation, an agent 

decides where to locate a window on an offer curve to maximize its profit. 

Furthermore, it can also partially close the window by withholding its capacity. 

Figure 2. 2 shows the procedure locating and partially closing window based on an 

optimization process of each agent. 

 

As the market condition changes, it is reasonable to assume that a change in an offer 

price depends on the first derivative of offer price with respect to the offer quantity. 

Note that there is no reason two blocks should be paid differently. Therefore, there 

exists tendency to flatten expected earning5, i.e., an agent expects the same earning 

from both blocks. By adding one small block with an infinitesimally small size dq, 

expected earnings increase by pdq where the block is offered at a price of p. The 

expected earning at q might be calculated from the prices of q – dq and q + dq. By the 

same argument, driving forces6 acting on expected earning at q + ½ dq exist.  

 

Figure 2. 3 illustrates the change in an expected earning across a line S. The offer 

prices at the two ends of the block are p1 and p2. Note that p2 is greater than p1.  

                                                 
5 earning from the block of interest if the block is dispatched 
6 the tendency to make two different expected earning at nearby blocks equal 
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Figure 2. 2. Schematic diagram modeling marginal cost offer as well as speculating 

offer. D denotes the flattening factor of the block representing how easily the price get 

flat as market condition changes, and q and p refer offer quantity and price, 

respectively. 
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Figure 2. 3. Schematic diagram showing movement of expectation of earning  
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Driving forces at q and q + dq affect the expected earnings at both left and right 

neighbor. However, the effect from the right side is more than that from the left side 

since the expected earning is higher at the right one. Consequently, there is a net 

change to the left, i.e., down the offer price gradient. 

 

For a more competitive market, price tends not to increase abruptly since the 

probability not to get dispatched increases significantly for a high-priced offer. 

Therefore, the affection rate to the left is given quantitatively by 

 

[ ] νν 12
2

1

2

1
/$ nnhmcJ −=            (1) 

where ν is a constant evaluating the effect from a unit of driving force in [mc-1] and 

mc is the unit of evaluating the market condition. 

 

The two terms on the right hand side give the affection rate starting from p1 end and 

p2 end to the middle block, respectively. Note that ½ came from the fact that the 

flattening effect from one ends to line S takes only half of the change from one end to 

the other end. The quantity n1 and n2 in [$/h] refer to the expected earning from the 

blocks offered at p1 and p2, respectively. Therefore, 
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If the offer price does not vary rapidly inside the dq block, the term in the 

parenthesis can be approximated by Taylor’s approximation: 
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When equations (2) and (3) are combined, one can find following equation: 
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where D [ ]mcMW /in 2 is the flattening factor of the block representing how easily the 

price gets flat as market condition changes. 

For the dual blocks, the offer price obeys the following equations: 
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          (5) 

 

where J represents an affection rate, and subscript 1 and 2 stand for the 1st and the 2nd 

block as shown in Figure 2. 2. 

 

Consider that there is a block with quantity coordinates q and q + dq as shown in 

Figure 2. 3. Let there be a change in the market condition with magnitude of dy, and 

let the affection rates from right to left be J(q + dq) and J(q) at q + dq and q, 

respectively. The total change in expected earning on plane S over the change in the 

market condition dy is: 
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Note that J(q) is the flow leaving the plane at q, i.e., the gain in the S plane from p 

plane is –J(p). 
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The effect in the expected earning by offering S block under a change in market 

condition dy is then obtained by applying the formula for a differential: 
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This quantity must equal the change of the integrated offer in the block such that 

setting the two expressions equal gives 
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Since the flattening factor, D, depends only on the property of the block, the value of 

D does not change with market condition and block size. Combining equations (4) and 

(8) gives: 
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Equation (9) applies to the dual blocks: 
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The first block is offered in order to get dispatched. The price can be determined by 

various parameters related to generators such as operating cost. The second block is 

offered in the attempt to increase the market clearing price. Since there is no limit in 

the quantity offered, the maximum price of the block approaches the maximum 

possible price. Therefore, the offers for the second block are related to the market 

situation more closely rather than parameters of a generator. The situation is similar to 

the following case in diffusion. Consider a cylindrical solid with an inner and outer 

layer exposed to a specific atmospheric condition for a long time. At some time, the 

outside atmosphere is abruptly changed to a different one, and maintained during some 

time. The state inside the cylinder is fixed in equilibrium with the initial atmosphere 

while the state outside is adjusted to the new one. The state from inside to outside 

smoothly changes from one equilibrium state to the other. By analogy, the situation for 

an agent is the following: a generator which has two blocks played a role in the 

traditional market, and then moves into a new market. Consequently, the price of the 

lowest offer by the generator should be same as a true marginal cost in the traditional 

market, and that of the highest offer should be the maximum possible offer. Therefore, 

the boundary conditions for equation (10) can be described by: 
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where y evaluates market condition. 

 

At the boundary between low-price and high-priced offers, offer price and 

affection rate must be continuous since adding an indefinitely small sized quantity 

does not change both abruptly. The situation defines a condition at the boundary; 
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With the given conditions, solving equation (10) gives an expression for offer price as 

a function of market condition, y, and quantity, q, for two blocks. Note that for the 1st 

block, q is less than qb where qb is the boundary quantity between two blocks) [13] 

 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

+

−
= bb

p
yD

qq
erfc

DD

pp
qyp 1

121

minmax

1
2/1

,      (13) 

 

where 

( ) ( )[ ]

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

−
+−=

2

1

1

1

11

1

1

2

111

1

and

2
exp,

D

D

D

k
h

yDh
yD

qq
erfcyDhqqhqyp b

b

b

    (14) 

 

and for the 2nd block where q is greater than qb  
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where the superscript b represents boundary effect, which comes from the different 

characteristics of two different blocks, and k stands for the boundary constant  

quantifying the boundary effect7. 

 

If a generator (or a firm) has only one decision maker submitting its offer, there 

should be no boundary effect, i.e., ∞→k . In such a case, both b
p1  and b

p2  approach  

zero, and the expressions for offer prices are 
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Offer curves could be fitted to the following equation: 
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where u is the unit step function; 

                                                 
7 if two blocks have different properties, boundary effects might be present, i.e., the 
offer curve might not be continuous 
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The data shown in Figure 2. 1 was used to fit equation (19), and the results are 

shown in Fig. 2. 4. The cutoff quantity, qc, can be defined as an agent’s maximum 

offer quantity. The cutoff quantities for D8 and Y6 were about 1,500 and 6,200 MW, 

respectively. The qc of D8 was larger than the quantity at the boundary, qb, while that 

of Y6 was smaller than qc. In order to characterize the behavior of an agent, it is useful 

to define the deviation quantity, { }bcd qqq ,min≡ . Then, the distance from the 

fareshare to the deviation quantity is a measure of the degree of speculation (DOS). 

DOS is an important factor to classify offer behavior. For example, even if an offer 

curve of an agent contains a high-priced offer as well as a low-priced one, the agent 

might make the market more competitive if the block containing fairshare is offered at 

a lower price. DOS is defined as the relative location of boundary from the fareshare: 
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To define DOS, it is crucial to calculate fairshare based on demand forecast. For a 

lossless system with no network, this is easy since fairshare can be the simply capacity 

ratio of an agent. For a real system, the simple ratio of capacity does not work since 

real systems always have loss, line constraints and distributed load. However, an agent 

could calculate fairshare by running an AC optimal power flow (OPF) with identical 

offer curves for all the participating generators once network is known to the agent. 
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Figure 2. 4. Fitting results of two offer curves in a same day to equation (19). Two 

blocks are visible only in b), but the same pmax was used for both fittings 

a) 

b) 
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The dispatched quantity from OPF gives approximate for the fairshare at given load 

forecast 

 

With this model, it is possible to submit a price according to a quantity. There are 

several factors that make use of the model quantitatively in designing an agent such as 

the flattening factor (D) and market condition (y). 

 

 

2.2.1. Flattening factor 

 

Flattening factor (D) dictates the slope of the offer curve. D in an offer curve 

describes how fast a quantity offered at a same price changes as a market condition 

changes. Therefore, an agent with a higher D quickly responds to change in the market 

condition since it is easy for such an agent to change price for all the quantity in an 

offer space. 

 

There are several factors determining the magnitude of the tendency. The flattening 

is an activated process, which means that there are two competing forces to govern the 

tendency: a flattening force and an ordering force. More flat curves will be obtained as 

a flattening force increases and/or an ordering force decreases. 

 

Similar to solid state physics, for an activated process as was mentioned before, 

there exists an Arrehnius type equation to describe the process; 
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where D0, E and kT are the flattening factor with infinitely high disordering force, 

ordering and disordering forces, respectively. D0 may depend on the generator itself 

due to its operating cost since an operating cost itself has a slope. 

 

In this modeling, ordering force is a quantification of regulations, and disordering 

force is that of the tendency toward risk8. Regulations in existing markets apply to all 

the market participants equally, and make participants difficult to speculate, which 

results in a flat curve in offer space. For a given agent, the introduction can be 

implemented by adding Enew: 
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Therefore, in real markets, regulation is additive by nature. 

 

The tendency toward risk differs for each individual supplier statistically. The 

tendency might be changed in case of a change in ownership and/or in mind of a 

decision maker. A change in tendency toward risk alters offer curves completely, i.e., 

a new flattening factor must be re-evaluated. There are three categories in tendency to 

consider: risk-averse, risk-neutral and risk-seeking. To model these different 

tendencies, utility functions are introduced by Bernoulli [14]. Grayson found a good 

fit between Bernoulli’s logarithmic function and the actual utility function [15]. An 

agent having a utility function with concave shape like logarithmic function is referred 

                                                 
8  Each agent has different tendency toward risk; risk-averse, risk-neutral and 
risk-seeking. The tendency can be evaluated based on its utility function which maps 
benefit that the earning brought from earning 
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as risk-averse since its evaluation on uncertain earning is less than that on the same 

amount of actual earning. Other tendencies such as risk-neutral and risk-seeking have 

linear and convex curve for utility functions. The value of T in equation (22) increases 

as tendency changes from risk-averse to risk-seeking since a risk-seeking agent is 

willing to increase an offer price of a lower block, which results in a flat offer curve. 

 

 

2.2.2. Quantity evaluating the market condition 

 

Flattening phenomena considered here is a process connecting two different 

equilibrium states. For a given market condition y0, system stays in one state, and the 

state changes toward a new equilibrium state as the condition changes to different 

condition, y1. Suppose there is a sufficiently small change in a market condition. With 

the small change, the resulting price-quantity profile depends on a flattening factor of 

a block considered (D) and a market condition y. The profile built contains all the 

equilibria between two states. For example, if the price at one equilibrium state is 0 

and that at the other is 100, then the profile at the change in a market condition y 

contains all the values of price from 0 to 100.  

 

Market condition y is a term quantifying degree allowed for a price of a block to 

change from one state to another. As mentioned before, a block that was in one 

equilibrium state becomes another in a different state. For example, offer in a 

traditional market was a true marginal cost, but that in a totally deregulated market 

with no regulation should be different from marginal cost such as a speculative one. 

Market condition may allow an agent to exploit the market. For example, once an 
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agent finds its competitors are speculators, then it will submit a more flat offer in order 

to take advantage of the less competitive market environment. 

 

Publicly available information such as historical data of nodal price is chosen to 

determine the value of a market condition since price is considered most unbiased and 

relevant information. However, the price might be different according to the location 

of an agent. But, the change in y should be in common among all agents since all 

prices are correlated with each other9. If the agent of interest is the only agent which 

speculates in the market, y should not be high since the environment that the agent 

faces actually competitive in spite of high prices. To compensate this effect, 

dispatched quantity is also added to estimate y in this study: 

 

p

p
y recent

sharefair 

share
=         (24) 

where share , recentp  and p  stand for the quantity dispatched, mean of recent nodal 

prices and mean of nodal prices in the same state, respectively. In this study, recentp  is 

chosen as the mean price over most recent one week. It is noteworthy that an actual 

value for recentp  does not change significantly with the choice of the period. 

 

If the system evolves, all state properties including market condition cannot be 

invariant. Therefore, it is worthwhile to mention that both recentp  and p  must contain 

data only in the same state.  

 

 

                                                 
9  Relationship among price can be driven during the derivation of the generation 
sensitivity matrix with respect to price; for a detailed derivation, see Appendix A 
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2.2.3. Boundary effect 

 

Typical offer behaviors without boundary effect have been discussed. Note that k in 

such case approaches infinity in equations (14) and (16). However, it is possible for an 

offer to show such an effect. In the PJM market, Fig. 2. 5 shows a discontinuous offer 

curve found on July 26th by B5 after a first price spike observed on June 7th. Before 

the first price spike, the firm had submitted low-price offer only. The discontinuity can 

be modeled as a boundary effect which is resulted in by no perfect communication 

between two blocks. The fitting is performed by using equations (13), (15) and (19). 

 

 

2.3. Model for Demand-side Bid Behaviors 

 

As was described earlier, a boundary quantity is defined as non-differential points 

of an offer curve, i.e., the point where offer curve departs from a lower price. When 

fairshare is located higher than the boundary quantity, the agent is classified as a 

speculator. Approximately 10% reduced demand results in shifting fairshare far down 

to the boundary quantity at the given offer curve. Therefore, demand-side participation 

is suggested for potential efficiency improvement of a market. For practical reasons, a 

new method for demand-side participation might includes following features; 1) end 

consumers do not need to evaluate electricity all the times like 24 times in a day, 2) 

small discrepancy between dispatch and actual demand does not matter much for a 

consumer, 3) some consumers are willing to sacrifice reliability to reduce an electric 

bill to some degree, 4) some don’t mind paying a high price for a reliability such as 

hospital or synchrotron, etc. such demands are termed must-be-served demands while 

others are defined as price-based demands. 
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Figure 2. 5. An offer curve submitted by B5 in July 26th and fitting with 

equations (13) – (16) and (19). The curve shows a boundary effect at 2200 MW.  
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To develop a demand-side model, one must bear in mind that consumers sacrifice 

reliability marginally (e.g., 10 %) to reduce an electric bill, but too frequent serious 

price-response-load (PRL) must be avoided. As was mentioned in feature 1), the 

method reducing demand should be easily performed or another agent should take 

over the job for consumers. For a given market structure, a distributor (e.g., NYSEG) 

may submit bids for consumers, and buy electric power from generators, and then 

distribute electric power based on priorities to fulfill  elementary demands. After each 

period, the distributor checks the discrepancy between dispatch and actual demand. If 

the discrepancy does not exceed predetermined value, it can assume all the demand 

were successfully fulfilled. Otherwise, it declares a PRL. A predetermined value for 

PRL needs to be defined in a contract made between the distributor and end 

consumers. Every given period, it signs a new contract with consumers. For example, 

every year it makes a contract that fulfilling 90% of demand is acceptable, but 

fulfilling less than that is claimed as a PRL. Suppose no more than 10 times of PRL in 

a month is allowed. For 10 times, an agent does not need to satisfy all the demands. 

Consequently, the agent has freedom not to satisfy all demands proportional to the 

remaining allowed number of PRL. The freedom is inversely proportional to the 

number of remaining periods before current contract period ends since there is a 

non-negligible possibility of a PRL for more remaining periods. For a simple 

summary, an agent would have a contract with end consumers in the category of price-

based demand containing following terms; 1) it can have nPRL-times allowed PRL’s in 

a given period like a month, 2) where the term PRL is defined the case that only less 

than a predetermined percentage of forecast and/or actual demand is served, 3) after 

nPRL-times of PRL in the given period, the bid should be same as an inelastic demand 

curve, and finally 4) big penalty should be given if the agent does not serve electricity 
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properly more than nPRL-times while it can. An agent might offer several options for 

different values of nPRL to accommodate various needs of end consumers.  

 

If an end consumer does not want to sacrifice reliability, then it is also possible to 

have another type of contract such that a distributor always serve such a customer 

before serving any other demands if price is below a certain price, pc. Demands 

associated with such contracts are called must-be-served demands. Since the demand 

forecast is not always accurate and must-be-served demand prefers being served even 

in the situation of underestimated forecast, the contract should include another price 

for insurance. Note that the price for insurance is less than pc. For example, a contract 

defines ξ and pm in a way that the consumer agreed to pay for electricity to fulfill 

actual demand up to (1+ξ) times of forecasted demand if price is less than or equal to 

pm. 

 

Before developing a demand model, one needs to consider the characteristics of 

electricity as well as demand. There is a minimum quantity of energy to satisfy an 

individual demand. Consequently, elementary individual demand can be quantized and 

ranked in terms of priority which is evaluated in terms of bidding price. For example, 

one wants to turn on an electric bulb and a fan which need 150 Watts each. If only 150 

Watts is available, only one demand between turning on the bulb and on the fan can be 

fulfilled, not both. Since elementary demand has such a repelling property there exists 

an exclusion principle in case that available quantity is limited. When all the 

elementary needs are augmented according to their priorities, one can construct a 

bidding function, i.e., demand curve which represents a willingness to pay for 

electricity. Note that there is no limit in available quantity for must-be-served demands. 

Consequently, an exclusion principle  does not apply to such demands. 
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In general, prices are increasing with respect to quantity offered. With a given 

supply curve, quantities to fulfill demands occupy different state according to their 

prices offered. The state is called quantity state. For constructing problem, consider a 

system of demands with allowed quantity state qi to satisfy individual demand ni. Note 

that higher state corresponds to higher price. Let gi be the number of allowed demand 

at quantity state qi, and ni be the actual number of demand fulfilled. Note that the 

values of qi and gi are fixed, and the value of ni is random according to the particular 

demand arrangement. In this problem, both the number of all individual demands and 

that of total quantity state are fixed. From thermodynamic theory, a system is most 

stable when its entropy is maximized. Without external forces, configuration entropy 

is the largest portion of the total entropy. Configuration entropy is evaluated in terms 

of the number of possible configurations in a following way [16].  

 

WkS log=           (25) 

where S, k and W stand for system entropy, Boltzmann constant and the number of 

possible configurations, respectively. 

 

For a demand-side agent, most stable configuration is to distribute fulfilled demand 

that maximizes profit of demand-side. Therefore, the distribution is optimal. The 

bidding function describes the distribution. The optimal distribution must satisfy two 

constraints: total fulfilled demand should be no more than the total demand, and total 

quantity state for fulfilling demand should be no more than the quantity state defined 

by offered quantity. With given setup, one wants to optimize the distribution of 

fulfilled demand based on the preference: 
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where Ntot and Qtot denote the number of all individual demand and total quantity state. 

As was mentioned earlier, on the distributors’ point of view individual demand is 

equal entity.  Each individual demand cannot share elementary quantity and not 

distinguishable either. Therefore, for a demand fulfilling state ( ),...,, 321 nnnn =
r 10, the 

conditional probability that a state at a given quantity qi to be fulfilled is 

( ) iii gnnqf /| =
r

, and the distribution ( )iqf  is following; 
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where ( ) totWnW  and 
r

 denote the number of such fulfillment and that of total possible 

fulfillment, respectively. 

 

To calculate the distribution for fulfillment ( )nW
r

, count the number of combination 

to place ni fulfilled demand into gi offered quantity state  when gi > ni. Note that the 

number of total offered quantity state is total capacity to accommodate demand. Since 

the number of fulfilled demands at ith quantity state cannot exceed the capacity, there 

should be occupied and unoccupied demands at ith quantity state. The number of 

possible combinations to arrange those occupied and unoccupied sites is: 
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10 the demands in the parenthesis are fulfilled 
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Since each combination for ni in the distribution n
r

 is independent with each other, the 

overall distribution to have n
r

 state, ( )nW
r

 is 
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One can evaluate equation (29) by using Stirling approximation for a sufficiently large 

N: 
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Taking logarithm on both sides of equation (30) gives: 
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For a large value of N, a further approximation can be done for simplification in a 

following way  

 

NNNN −≅ log!log         (32) 

 

For simplicity, the Boltzmann constant in the original optimization problem shown in 

equation (26) can be dropped since it is a positive constant: 
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Lagrange method is a well known procedure to solve an optimization process like 

equation (33). A Lagrangian with undetermined multipliers can be formed; 
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By using equation (32), the Lagrangian can be approximated by: 
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From maximization, one finds Kuhn-Tucker multipliers (µ1 and µ2) as well as critical 

points for individual demand. Kuhn-Tucker condition11 [17] gives 

                                                 
11  Assume that f(x), gi(x) are differentiable functions satisfying certain regularity 
condition2. Then x* can be an optimal solution for the nonlinear programming 
problem only if there exist m numbers u1, u2, …, um such that all the following 
conditions are satisfied: 
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Since fulfilled demand ni is nonzero by definition, the first part in equation (36) allows 
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The distribution described in equation (37) optimizes the profile of fulfilled demand. 

 

From the knowledge of optimization, the Kuhn-Tucker multipliers are shadow 

prices of corresponding constraints. Fulfilling one additional demand increases 

demand-side profit while requiring more electricity might increase market clearing 

price. In other word, addition of one more demand increases Lagrangian by µ1 if the 

constraint is binding, but increase in demand reduces profit of demand-side by 

requiring more electricity. Consequently, µ1 takes a negative value. On the other hand, 

adding one additional quantity to the system increases profit of demand-side by µ2. 

This addition results in different satisfaction to individual demand since ith demand 

needs qi quantity to fulfill. In demand-side perspective, market clearing prices tend to 

be low when more electricity is available, which results in increasing demand-side 

profit. 

 

When a demand must be served such as in hospital, synchrotron etc., any quantity 

state can accommodate many demands. In such a case, there is no limit to the 

occupation number at each level, i.e., no exclusion principle exists. For finding 
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optimal fulfilling distribution for such demands, one calculates the number of ways to 

assign ni fulfilled demands in qi quantity states. Note that all the demands are 

indistinguishable to a demand-side agent. Since price is not important to fulfill such 

demands, all the quantity states are identical if the prices for the states are acceptable. 

Then all available state can be fulfilled regardless qi. After fulfilling, one can find the 

fulfillment configuration by finding which state is occupied. Therefore the problem is 

distributing identical demands on various sites where there is no limit. The situation is 

identical to putting ni identical balls into gi sites or to arranging ni identical balls and 

(gi – 1) identical barriers. For getting an analogy to the case described in the last 

sentence, suppose that there are (gi – 1) partitioned sites in a same quantity state and 

assign ni identical demands. This is identical to the number of combinations that there 

are (ni + gi – 1) white balls sitting on each site and one picks up ni balls and paints 

them with red color. Finally, there are (gi – 1) white balls remaining. In the case, the 

number of possible configurations to arrange red and white balls is: 
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Then one can construct an optimization problem with the same constraints used in the 

previous case. Thus, the Lagrange method for the problem gives: 
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Since ni and gi are sufficiently large, 1 in equation (39) can be ignored and applying 

equation (32) allows the Lagrangian approximated: 
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For maximization, one needs to find optimality conditions for individual demand as 

well as Lagrange multipliers: 
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As was mentioned earlier, ni cannot be zero. Then, the first part in equation (41) 

allows 
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Note that the Lagrange multipliers are associated with the same constraints as before. 

 

One can find an analogy in statistical physics similar to these distribution functions. 

The distribution, equation (37), for price-based demand has a similar form as Fermi-

Dirac distribution12 that a particle obeys following exclusion principle [18]: 

                                                 
12 a distribution that indistinguishable particles following Pauli’s exclusion principle 
obey 
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where (E – EF)/k and T are ordering and randomizing forces, respectively. 

 

In equation (43), EF is a reference energy state, called Fermi Energy. Loosely 

speaking, Fermi energy represents the energy state that a particle can occupy the state 

with probability of ½ for a given randomizing force. Since f(E) is the distribution 

function of a particle, f(E)dE stands for the probability that a particle can be found in 

an energy state between [ ]dEEE +,  . The probability is proportional to how many 

particles to accommodate by adding dE more energy state. One can derive following 

equation of differential accommodation 
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The change in accommodation decreases with increasing E, i.e., system wants to 

prevent higher energy state. 

 

One can define a priority function or a willingness to pay function, B(q), 

representing true evaluation to the electricity of individual needs. Then B(q)dq 

represents the amount of demands can be accommodated by dispatching more quantity 

by dq.  
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From this analogy, a bidding function can be defined as a similar way in the 

Fermi-Dirac distribution: 
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where fr stands for freedom of an agent for the period. 

 

One can find the similarity between equations (43) and (46).  The bidding function 

is the distribution function that optimizes demand-side satisfaction. By comparison, 

Kuhn-Tucker multipliers are identified in a following way; 

 

fr

fr

qF

1
2

1

=

−=

µ

µ
           (47) 

As was described earlier, the value of µ1 is negative with the magnitude of weighted 

reference quantity which individual demand has on average. µ2 is positive with a value 

of inverse of freedom that demand-side agent has. When a demand-side agent has 

more freedom, it does not add one more quantity, i.e., less value for µ2.  

 

For an agent, priority of an individual demand is important only because it reflects 

true evaluation in terms of bidding price, i.e., B = p/pmax where B, p and pmax represent 
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a priority of each demand, bidding price and the maximum possible bidding price for a 

current period, respectively. A distributor needs to get electric power to meet demand. 

For example, suppose NYSEG has five more remaining periods before contract 

expires, but it has six more allowed PRL’s  In such a case, NYSEG may not need to 

satisfy all the demands. Then freedom, fr, can be defined  
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where m is a positive constant, and n and N stands for the number of allowed PRL 

remained and remaining periods for next bid, respectively.  

 

One unaddressed subject is the reference quantity, qF. Every period, an agent is 

informed a demand forecast from ISO. By using a forecast qf, a bidding function can 

be written; 
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To evaluate r, consider two following extreme cases; 1) an agent has no freedom, 

i.e., the agent exhausted all allowed PRL’s before current contract expires, and 2) an 

agent has infinite freedom i.e., the number of unused PRL’s is greater than that of 

remaining periods. For the first case, ( ) 0  /m 
0 n 

==
=

Nnfr  which leads the following 
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equation, which explains the reason an agent must accept any price because it cannot 

afford any more PRL’s: 
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For the second case, an agent offers a reasonable price, pr, for all the quantities, i.e.: 
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which leads 
r

r

p

pp
r

−
= max . Therefore, a bidding function is written 
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For must-be-served demands, there exists a similar form in statistical physics, the 

Bose-Einstein distribution13 [18], which is shown in the following equation: 
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13 a distribution when there is no limit to the occupation number at each level of 
quantum state for indistinguishable particles 
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By the same analogy as before, a bidding function can be written for a given forecast 

qf 
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To evaluate h, consider the prices for the quantity at q = qf and at q = (1+ξ)qf, which 

was promised to the consumer by contract. For the first case, p = pc which leads to the 

following equation. 
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which leads to 
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For the second case, the offer price should be pm according to the contract, i.e.: 
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which leads to 
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Note that η > 0 since pc > pm. Consequently, a bidding function can be written as: 
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The shape of the bidding function, equation (60), is very steep curve similar to an 

inelastic demand curve. This can be understood since the demand is must-be-served. 

Fig. 2. 6 illustrates the shapes of two demand bidding curves. 

 

In statistical physics, the particles following equations (43) and (53) are called 

fermion and boson, respectively. When temperature approaches to zero, Bose-Einstein 

condensation14 occurs. A similar condensation occurs in this modeling also as the 

freedom fr approaches to zero. The values for bidding prices for both types of demand 

go to maximum price since the demand-side agent must fulfill all demands including 

price-based demand. 

 

The value for constant m can be obtained by fitting observed willingness to pay for 

an additional 1 MW for an hour. The willingness to pay depends on actual customers.  

                                                 
14 a phenomenon that occurs at low temperatures in systems consisted of large numbers 
of bosons whose total number is conserved in collisions 
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Figure 2.6. An optimal bidding curve for a) price-based demands and b) 

must-be-served demand 
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Consequently, the value is different among consumers, and furthermore it may vary 

with time even for an identical consumer. The basic idea of the algorithm is simply to 

capture the most important aspects of a real problem facing a learning agent 

interacting with its environment to maintain reliability in an economic way. Clearly 

the demand-side agent can sense the market state to some extent and take actions by 

adjusting its bid. In this study, an agent updates the value for m according to 

reinforcement algorithm15. The duration of contract and the number of allowed PRL 

are divided into N1 segments. After each segment, the number of PRL declared is 

checked, and then the agent adjusts the value of m in a following way: 

 

∆⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=+

1

1
N

n
nsignmm total

kkk        (61) 

where ∆ denotes a step size. 

 

There is no need for an agent to bid for a quantity more than needed. For a security 

purpose, an agent might bid up to a certain fraction of forecast than needed, and then 

bid price drops down to zero beyond the fraction. Figure 2. 7 shows different bidding 

curves for several cases. Blue line stands for the bid curve submitted at nth period. If 

there was no PRL at the period, freedom increases only slightly from n/N to n/(N-1). 

Consequently, bid price is reduced in a very small amount. On the other hand, an 

occurrence of PRL significantly reduces the value of freedom, and then bid curve 

becomes much steeper.  

 

                                                 
15  reinforcement algorithm is learning how to map situations to actions so as to 
maximize a numerical reward signal; the agent is not told which actions to take, but 
instead must discover which actions yield the most reward by trying them 
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Figure 2. 7. Change in bidding after one period subject to the occurrence of an 

energy PRL 
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CHAPTER THREE 

EARNING ESTIMATION  

 

 

3.1. Mapping Offers to Earnings 

 

The objective of a supply-side agent is to maximize its earning by submitting an 

optimal offer. Finding an optimal solution is a maximization problem with several 

constraints such as generation limits and power balance equations16, etc if there is a 

way to estimate earnings for given offers. There are several algorithms to find an 

optimal solution for a given objective function and constraints, e.g., the Lagrangian 

relaxation method. Therefore, it is important to construct a mapping function from 

control variable to objective function value. As was shown in chapter two, the offer 

curve is highly nonlinear which leads to a nonlinear objective function. Even though 

competitors’ offers are required to construct an objective function, they are unknown 

to an agent. Residual demand approach is widely used because of its convenience to 

deal with unknown strategies of competitors in a firm-level optimization process [19-

23]. However, it is difficult to construct the realistic curve since both actual demand 

and the offers submitted by other firms are not known. In this chapter, it is discussed 

how to construct a numerical mapping function from offers to earnings, and then how 

to find an optimal solution. 

 

Another issue to construct a mapping function in a firm level is related to the size of 

the electric power system. There exist several tens of thousand generators for an ISO. 

Since the number of competitors is large, the number of possible combinations of their 

                                                 
16 Total generation is sum of total demand and loss 
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strategies is too enormous to compute the value of mapping function in a real time. A 

useful concept to deal with such a situation is cluster analysis17 . A transmission 

network might be decomposed into sub-regions based on the network topology, and 

then a group of firms located in the same sub-region can be clustered together. 

 

 

3.2. Market Modeling 

 

A mapping function from offers to earning can be constructed by analyzing the 

characteristics of the market in which an agent participates. Market is a combinatory 

sum of each market participant for a given transmission network and demand profile, 

etc. Therefore, it is possible to construct a mapping function if offer behaviors of 

market participants are known for a given network and demand profile. In this study, it 

was assumed that information related to transmission network is estimated with a good 

precision. In this section, behavior of market participants will be discussed and 

modeled in terms of their influence. 

 

 

 

 

                                                 
17 The term cluster analysis actually encompasses a number of different classification 
algorithms. A general question facing researchers in many areas of inquiry is how to 
organize observed data into meaningful structures, that is, to develop taxonomies. For 
example, biologists have to organize the different species of animals before a 
meaningful description of the differences between animals is possible. According to 
the modern system employed in biology, man belongs to the primates, the mammals, 
the amniotes, the vertebrates, and the animals. Note how in this classification, the 
higher the level of aggregation the less similar are the members in the respective class. 
Man has more in common with all other primates than it does with the more distant 
members of the mammals, etc. 
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3.2.1. Classification of offer strategies 

 

In a regulated electricity market, ISO decides each generator setpoint based on the 

costs of all participating generators. The marginal cost of different generators plays an 

important role in determining price. In a restructured market, offers based on marginal 

cost are often observed especially when the market is competitive. 

 

An agent offering marginal cost without withholding its capacity from the market is 

called a marginal cost agent (MC). This type of agent might withhold capacity when 

there is a strong possibility of not being dispatched if offered. When an agent 

withholds more capacity than necessary in an attempt to increase prices, it is classified 

as a “Cournot competitor”. Offer behavior of this type is similar to that of an MC in 

that all submitted offers are low-priced. However, the effect on the market is 

practically identical to that of a speculator to be discussed [12]. 

 

A third type of agent, called a speculator, is one whose offers are mixed between 

high-priced and low-priced offers. Usually, most of the quantities are offered at a 

lower price and only small quantities are at a high price. Because of the shape, its offer 

curve is sometimes called a “hockey-stick”. Speculators are willing to take the risk of 

not being dispatched in an attempt to raise the market clearing price.  

 

These three types of behavior are the most commonly observed offer behaviors in a 

real market. There have been several attempts to fit the offer curves. Figure 2. 1 of 

previous chapter shows a typical offer curve of a speculator (D8) observed in the PJM 

market. The most striking feature of the curve is the existence of a “kink point” 

between low-priced and high-priced offer.   
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3.2.2. Market modeling 

 

The three types of agents are commonly observed from all over the uniform price 

auction market. However, their effects vary with different market, which makes some 

markets more stable than others. For example, a Cournot-type agent helps a speculator 

to gain market power. In some scenarios, Oh et al. [12] classified the agent as a 

speculator according to the withheld quantity with respect to the fairshare. However, 

in a very competitive market the performance of the identical agent is similar to that of 

a marginal cost offer agent. Consequently, Oh et al. proposed that an agent must be 

classified based not on the shape of offer curves but on the performance in the market 

considered since the same offer strategy has different effect on a market according to 

the types of the competitors of the agent. The behavior of an unknown agent was 

classified by comparing the performance with those of standardized agent18.  

 

To explain experimental results performed on unknown complex system, one of the 

most powerful and commonly used techniques is to try and form a basis set that spans 

the unknown system. When there exists a basis set to span, a unknown system  φ  can 

be spanned in terms of the known set ϕ : 

 

∑=
j

jiji c ϕφ          (62) 

where c is a probability distribution. 

 

It is possible to identify an offer behavior for player i, iφ , in terms of a basis set. If 

the basis set is orthonormal, the probability, cij, is simply an inner product between ith 

                                                 
18 an agent offering all the quantity with no withholding at “standardized” price based 
on the degree of speculation 
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and jth states. However, the form of the basis set is unknown, which means that the 

form is not necessarily expressed in an offer curve. Suppose there is an offer basis set 

to express an offer behavior like weak speculator (WS), strong speculator (SS). Then 

elements in the offer basis set can be spanned in terms of the basis set. If the set is 

complete to span an offer space, there exists an inverse relation that allows inverse 

expansion which is projection of the basis set into the offer space: 

 

∑=
k

kjkj d φϕ          (63) 

 

Note that the offer basis set is not orthonormal, but it spans in an offer space. 

Consequently, one can find an expansion of a unknown offer behavior in terms of 

known offer set by combining equations. (62) and (63): 
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    (64) 

where V is a weight factor distribution which is not a probability distribution any 

more.  

 

Therefore, it is possible to classify an offer behavior as long as there are enough 

elements in the offer basis set. An insufficient offer basis set results in proper 

classification with large error instead of wrong classification. Inconsistent offer 

behavior will lead an overall offer behavior, but it might be classified properly if 

different behaviors are properly divided and analyzed. 
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Similarly, the state of a market is a cumulative sum of the effects of an individual 

agent in the market. It is easier to model an individual agent than an unknown market 

especially when network effects are considered. Suppose there is a system iΦ  with 

known offer behaviors of its m market participants. Then, the system can be expressed 

in terms of the offer basis set in a following way: 
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where iψ  is a cumulative offer behavior of competitors in the offer basis set, which 

is a scenario set. 

 

 

3.3. Mapping Function for Stationary Markets 

 

A system with unknown offer behavior can be spanned in terms of known offer 

behavior as follows: 

 

∑
=

=Ψ
N

i

iip
1

ψ          (66) 

where Ψ  represents an unknown system expressed in terms of iψ  which is ith 

elements in the scenario set, and pi stands for the probability that the unknown system 

is in the ith scenario. Then the experimental observations can be interpreted as: 
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where jφ  offer of the jth agent and a Hamiltonian H represents observation from 

participating in the unknown market.  

 

Suppose an interaction drove the system along the direction of the eigenvector of 

the system. Such an interaction is called an eigenvalue measurement. Then the 

interaction does not change the state of a system due to the interaction. For an 

eigenvalue measurement of the Hamiltonian H, consecutive experiments do not alter 

the system. The eigenvector can be calculated from the measurements with given sets. 

In general, orthonormal basis sets are commonly selected due to convenient 

calculation since the interaction between two bases set does not exist. For an unknown 

system with unknown basis sets, it is not possible to derive the eigenvector 

experimentally. Note that when a system is spanned in terms of an arbitrarily chosen 

set, equations (66) and (67) need modification, i.e., instead of probability, weight 

factor wi must be used since a scenario set, iψ , is not a complete basis set any more. 

One can write an expression to describe the experiments performed on a market 

measurement, H for measuring the earning of an agent: 
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where the elements in the square bracket in the left hand side, yx H ψφ , represent 

the earning of an agent when it submits an offer xφ  to the market under a specific 

scenario yψ , i.e., a simulated earning from the known scenario, and those in the 

right hand side ΨHxφ  are an actual earning for the same offer submitted into 

actual unknown market Ψ . A well defined weight factor distribution minimizes the 
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difference between the inner product in the left hand side and the vector in the right 

hand side. This question is widely known as a linear least square (LLS) problem. The 

method used to minimize the error for this study is described in Appendix B. 

 

By using equation (67) with estimated weight factor distribution obtained from 

error minimization process instead of probability distribution, an agent can construct a 

mapping function from offers to earnings if the competitors do not change their 

strategies. The offer function shown in equations (13), (15) and (19) has three types of 

variables; main (pmin and qb), short-term (y, market condition) and long-term (D, 

flattening factor) variables. Short- and long-term variables are determined not from 

optimization process. For maximizing its profit, an agent needs to find an optimal 

value for the main variables. For sake of simplicity, call the main variables x and y, 

and let the mapping function be F(x, y). Then the following optimization problem can 

be set up: 
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where ( ) ( )∑=
i

ii yxfwyxF ,, . 

 

In equation (69), fi and w stand for mapping function for ith scenario set and 

corresponding weight factor, respectively. One can solve the optimization problem in 

an analytic way. At the optimal point (x*, y*), the first-order necessary condition 

should be met; 
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From equation (70), two unknown variables x and y can be found from an optimal 

solution. For this purpose, one needs to evaluate the first derivative from scenario 

shown inside cusp brackets.  To evaluate them, one needs to run AC OPF for multiple 

times for each i. It might be computationally expensive to evaluate all individual 

derivatives. Therefore, if there is other ways for finding optimum solution with less 

computational effort, computational cost would be saved significantly. It is reasonable 

to assume that the numerical function is continuously differentiable since it is unlikely 

for earning to change abruptly due to a small change in offer. In this study, it is not 

guaranteed to get a global optimizer. Instead, the goal is to find a local optimizer since 

many applied problems are well-solved by locating a local optimizer. However, it is 

possible to tell whether the optimizer found is global or not. Among many numerical 

optimization algorithms, a trust region method is used in this study since it does not 

need many function evaluations. Appendix C presents a detail description for the 

method. For a better estimate of earning with respect to a given offer, more precise 

prediction for demand profile is required. To achieve a better precision of the demand 

forecast, a neural network is used [24-26]. 
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CHAPTER FOUR 

MARKET DYNAMICS 

 

 

In the previous chapter, a mapping function was constructed for a stationary market 

in which competitors do not change their strategies. However, the strategies are 

subject to change due to a fluctuation in demand or various reasons such as ownership 

changes of competing generators. In a current market, there are several market 

monitoring systems based on a snap-shot approach19. However, inconsistent change in 

offer strategies or stochastically driven change might get caught by the approach while 

they do not affect the earning of an agent on average. On the other hand, small and 

slow but consistent change affects the earning significantly, but the monitoring 

systems do not capture such a change. Furthermore, sudden and consistent change in 

the strategies of other competitors might not affect the earning of an agent if the 

change is not effective to alter the market state. Therefore, it is desirable to construct a 

toolbox to capture only consistent and effective changes, which affects the earning of 

the agent of interest. 

 

 

4.1. Current Market Monitoring Tool 

 

California ISO provides a web site20 explaining its market monitoring system. The 

easy-to-calculate snap-shot approach gives a quick check on the market. When 

                                                 
19 an approach to analyze a system at a fixed time 
20 California Independent System Operator, “ISO Market Monitoring & Information 
Protocol”, on http://www.caiso.com/docs/2002/02/12/2002021215391318952.pdf (2002)  



 

 

56

anomalous market behavior21 is observed, it will take further action. According to the 

web site “… The evidence of such behavior may be derived from a number of 

circumstances, including; withholding of Generation capacity under circumstances in 

which it would normally be offered in a competitive market; unexplained or unusual 

re-declarations of availability by generators; unusual trades or transactions; pricing 

and bidding patterns that are inconsistent with prevailing supply and demand 

conditions; unusual activity or circumstances relating to imports from or exports to 

other markets or exchanges…”. This means that to analyze market properly ISO 

should have correct and up-to-date knowledge about other economic situation such as 

gas price. Proper knowledge is also important when ISO takes a further action since 

market participants may claim the information that ISO has is not correct. Even with 

proper information, there are other problems associated with the snap shot approach. 

Suppose there is a market operating at the situation when a little more withholding 

results in a price spike. Suppose an agent in the market slowly changes its strategy 

from a marginal cost offer to Cournot-type offer. At a certain point, the market has 

price spikes, but ISO cannot figure out what causes the price spikes with a snap-shot 

approach. This might be a shortcoming in the usage of the tool since a current tool 

requires for ISO to identify causes responsible for the occurrence of price spikes. 

Another problem is a false alarm, i.e., even if some price spikes are inevitable due to 

load profile and network constraints, the current market monitoring possibly requires a 

further investigation. To monitor a change in the market state, a proper tool must be 

sensitive enough only for a consistent and successful change.  

 

                                                 
21 according to its web site [27], behavior that departs significantly from the normal 
behavior in competitive markets that do not require continuing regulation or behavior  
leading to unusual or unexplained market outcomes 
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II. Chaos and Fractals 

 

As was mentioned in chapter two, market clearing price is a good measure to 

analyze a change in the market state. Figure 4. 1. shows several nodal prices observed 

in the NY ISO over a month during summer in 2003. During the summer, demands for 

electricity increase due to hot weather, which gives more chance for an agent to get a 

higher price. Consequently, speculators change their strategies early in summer to take 

the chance. 

 

Nodal price is greatly dependent on the offers from the generators located at the 

bus. Therefore, a nodal price is an indicator to check if there is any change in 

strategies of the agents located at the bus. Visual inspection of Fig. 4. 1 gives that 

there were about 25 times of price spikes for both generators. Background prices also 

increased about two times in comparison to those at early in June. One can claim that 

there are changes in both systems during the time period. 

 

Figure 4. 2 illustrates how an agent interacts through price signal. The top graph 

shows data flow in an electricity market. Agents get information from ISO on demand 

forecast and historical market clearing data, and submit offers into ISO. Then, ISO 

collects the offers to clear the market and declares the results. The bottom graph 

illustrates the translation of the market operation into a signal processing point of view. 

An observer sends an input signal to the system and receives an output signal, i.e., an 

agent submits offers and then receives market clearing results.  

 

Game theory has dealt with an auction and bidding strategies, which are closely 

related to the deregulated electricity market. In game theory, the most commonly  
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Figure 4. 1. Nodal prices of various generators – data obtained from NYISO web 

site on http://mis.nyiso.com/public/P-24Blist.htm during summer 2003 
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Schematic diagram showing electricity market 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Electricity market as a signal processing where input and output signal 

are offer and dispatch result and demand forecast, respectively 
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discussed type of equilibrium for this market is Nash equilibrium22 [28-29] for a very 

simplified situation. Game theory is not practical for a very complicated system like a 

deregulated electricity market due to the multi-dimensional strategic space and the 

uncertainty associated with a market. For a real market, it is not even clear if the 

system moves toward any equilibrium state. It seems that the system exhibits aperiodic 

behavior that depends on the initial condition sensitively. Consequently, it is 

impossible to perform a long-term prediction. This type of behavior of a system is 

called chaos [30-31], which is a term describing aperiodic long-term behavior23 in a 

deterministic24 system that exhibits sensitive dependence on initial conditions25. It 

would be better to monitor; i) any change in the market state, ii) forecasting a future 

state, e.g., a new equilibrium or a chaos if there is any change and iii) assigning how 

recent data are relevant for estimating a future state. 

 

 

4.3. Nonlinear Time Series Analysis 

 

Self-similarity is one of characteristics in describing a chaotic behavior, so called 

fractal. Dimension is defined the minimum number of independent variables to 

describe fractal. Two different fractals may have a same value of dimension, but two 

fractals with different values of dimension are guaranteed to be different. 

Consequently, the value of dimension is a signature of a change in the system state. 

                                                 
22 Nash equilibrium is a term used in the game theory – a state after playing a game for 
a long time when all the players in a game follow the way described below; each 
player looks at the behavior of opponents, and determines the best response to the 
behaviors of the opponents’. 
23 there are trajectories which does not settle down to fixed points, periodic orbits or 
quasi-periodic orbits as time diverges 
24 the system has no random or noisy inputs or parameters 
25 nearby trajectories separates exponentially – positive Liapunov exponent 
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Therefore, monitoring the value of dimension would give an answer for i). ii) and iii) 

can be assigned by monitoring time response after a change. There is a quantity to 

measure for a fractal such a time response, so called the Liapunov exponent26.  

 

It has been shown that dimension can be defined in several ways for describing 

fractals as is described in Appendix D. However, it is not clear where the definitions 

are useful for analyzing experimental data. Most frequently used technique for 

analyzing consecutive data set is a linear time series analysis due to its simplicity. The 

basic assumption underlying linear methods is linear correlations, i.e., the intrinsic 

dynamics of the system are governed by the linear paradigm that small causes lead to 

small effects. Furthermore, only exponential change or periodic oscillation can be 

obtained from linear equations, and then all aperiodic behavior needs to be assigned to 

the results of an external force. Some idea of the system or failure on using linear 

model have brought people consider nonlinear dynamics which is greatly related to 

chaos. Deterministic chaos provides a striking explanation for irregular behavior and 

anomalies in systems which do not seem to be inherently stochastic.  

 

Similar to a stock market [32] discussed in Appendix E, the electricity market also 

shows nonlinear behavior since there exists highly nonlinear relationship between 

offers submitted by suppliers and the market clearing price. However, in comparison 

to Hurst exponent [33] used for a stock market, the quantities like Liapunov exponent 

and the dimension of a fractal are much less affected by error due to the ordered 

structure of electricity markets. Therefore, it is possible to evaluate values of the 

parameters reflecting the state of the market without the “filter process” as described 

in Appendix E, and to characterize market based on the values of the parameters.  

                                                 
26 an index showing how fast neighboring trajectories separate exponentially 
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In practical applications where the geometric object has to be reconstructed from a 

finite sample of data points with errors, correlation dimension is most widely used. As 

a system evolves for a long time, one can obtain a set of many points {xi, i = 1,…,n} 

on a phase space. The dimension of experimentally measured data can be evaluated 

with the knowledge of nonlinear dynamics by using equations (A.69) and (A.70) in 

Appendix D. However, the measured quantity is not a phase space object but a time 

series that is a sequence of scalar measurements of some quantity depending on the 

current state of the system. In this study, a measurable scalar quantity such as market 

clearing price is chosen. Therefore, it is necessary to convert the observations into 

state vectors by reconstructing a phase space. It is important that components in one 

vector must be independent with each other. One way to solve this problem is the 

method of delay.  Suppose, there is a sequence of measurements sn; ( )[ ] nn tnxss δ+∆=  

where sn is nth observation with noise of δn measured at every ∆t. Forming an 

m-dimensional vector r by using s allows a delay reconstruction; 

( ) ( )( )nnmnmnn ssssr ,,...,, 21 ννν −−−−−=  where ν stands for number of samples in a 

reconstructed space. The term of delay time, τ, refers the time difference in number of 

sample between adjacent components of the delayed vectors. In general, the attractor 

formed by the vector rn’s is equivalent to the attractor in the unknown space which the 

original system is on if the embedded dimension, m, is sufficiently large enough for 

components in one vector to be independent with each other. The equivalency is 

guaranteed when m is larger than twice the number of actual degrees of freedom, 

dd em 2>  where dem stands for an embedded dimension. Therefore, embedded 

dimensionality is not a problem as long as the vectors are reconstructed in a dimension 

higher than twice of the “true” attractor. Wolf et al. [34] suggested a relationship to 

estimate delay time and embedding dimension in a following way: 
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Qm =×τ           (71) 

where Q stands for mean orbital period27.  

 

A reasonable rule of thumb to choose Q is the time where the autocorrelation 

function decays to 1/e. [35] In this study, correlation dimension of a fractal can be 

evaluated by using the following equation: 
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where nmin is the minimum number of measurement satisfying ttn ∆= /minmin ; tmin and 

∆t represent autocorrelation time28 and time delay of measurement, respectively. 

 

Another important term for analyzing a fractal and estimating for future events is the 

Liapunov exponent. The Liapunov exponent shows how far two initially adjacent 

trajectories stay near. Consequently, two trajectories starting very close with each 

other are somewhat near within the Liapunov exponent. When a current state is 

properly analyzed, an estimate to near future within Liapunov exponent is valid since 

real and estimated state are close. Suppose there is a trajectory on an attractor, and x(t) 

is a point on the attractor and x(t) + δ(t) is located close to x(t) with an initial 

separation length ||δ0||. For the Lorenz attractor, one finds that: 

 

( ) ( )tt λδδ exp0∝          (73) 

                                                 
27 Suppose the situation that the pairs entering the sum are not statistically independent. 
For time series data with nonzero autocorrelations, independence cannot be assumed; 
embedding vectors at successive times are often close in phase space – see Figure 4. 3 
28 the time where the autocorrelation function decays to 1/e 
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Figure 4.3. Schematic diagram showing how to calculate C(ε) for a flow. Some 

neighboring points lying on dynamically uncorrelated parts of the data exist for point 

A, but point B has only direct images and pre-images of B resulting in dimension of 1. 

To avoid the incorrect calculation of C(ε) for estimating dimension, all neighbors over 

time where |i – j| is less than nmin need to be ignored. 

A
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where λ represents inverse time constant, so-called Liapunov exponent. Note that the 

value of λ can be positive or negative. 

 

The Liapunov exponent carries the unit of an inverse time, and takes a positive 

value for the divergence or a negative value for convergence of neighboring 

trajectories. Since the Liapunov exponent is invariant under any transformation, one 

can rescale and/or shift the measurements. For a negative Liapunov exponent, all the 

data in the same state are relevant for future estimate since all the trajectories converge 

together. For a computational reason, only several recent data can be used without loss 

of precision in expectation. For a positive Liapunov exponent, trajectories diverge as 

is shown in Figure 4. 4.  

 

Since there exist [d]29 + 1 independent variables, there are [d] + 1 independent 

variables needed to describe all the points on the trajectories. They have different 

evolution characteristics in general for the variables are independent with each other. 

Consequently, there are [d] + 1 Liapunov exponents associated with a fractal. 

Consider the evolution of an infinitesimal sphere of perturbed initial conditions. Initial 

system analysis contains an error, which results in a small sphere whose radius is the 

magnitude of system estimate error, then actual system must exist within the sphere. In 

evolution, the sphere becomes distorted into an ellipsoid according to Liapunov 

exponents associated with [d] + 1 axis. Let λk denote the Liapunov exponent along kth 

principal axis of the ellipsoid, and then the length of the ellipsoid along the axis, δk(t) 

after time t is δk(t) which is δk(0) exp(λkt). After a sufficiently long time, the most 

positive λ  controls the diameter of the ellipsoid. Therefore the largest one 

                                                 
29 [x] is a Gauss function – largest integer that is less than or equal to x, i.e., [x]  = n 

where n ≤ x < n + 1 for an integer n 
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Figure 4. 4. A schematic diagram showing evolution of two trajectories of a system 

with a positive Liapunov exponent. At the beginning, both trajectories were close with 

each other, but after some time their trajectories are far apart. 
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among Liapunov exponents is most important to estimate a state in near future. As was 

shown in Fig. 4. 4, prediction breaks down after inverse largest Liapunov exponent.  

 

As was mentioned earlier, an attractor does not shrink/diverge at the same rate 

everywhere. The Liapunov exponent is an average of the local divergence rates over 

the whole data. Generally speaking, experimental data contain noise of which effect 

can be minimized by an appropriate averaging statistics. From experiments, only one 

trajectory can be obtained from the time series measurement from one initial point. 

 

However, a vector close to the point can be considered as a new initial point which 

shows different trajectory since the trajectory is equally valid if it started from the new 

initial point. Figure 4. 5 illustrates the evolution and replacement procedure used to 

estimate Liapunov exponent from experimental data. Let 
0ns be a point of the time 

series in the embedding space. Reference embedding vector after embedded dimension 

is determined by using equation (72). One can calculate the average distance of all 

neighbors to the reference part of the trajectory as a function of the relative time. The 

logarithm of the average distance at time t is effective expansion rate over the time 

span containing all the deterministic fluctuations due to projection and dynamics. 

Repeat this calculation for many values of n0, and then the fluctuation of the expansion 

rates will be average out. The Liapunov exponent λ can be obtained in the following 

equation [36-37]: 
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    (74) 

where u(
0ns ) stands for the neighborhood of 

0ns within ε, and 
0ns (t) and ns (t)  
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Figure 4. 5. A schematic diagram show how to calculate Liapunov exponent; a) at 

t = 0, several points, 
0ns , 

1ns  and 
2ns  were selected and trajectories starting from the 

points were tracked as the system evolves, b) many points inside ε-ellipsoid 

(
0su , 

1s
u and 

2su ) were selected and similar to the procedure described in a) was 

performed (picture taken from Ref [34]) 

a) 

b) 

t0 = 0 
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represent embedded vector after time t evolved from 
0ns  and ns , respectively. 

The size of neighborhood, ε, should be as small as possible, but large enough to 

contain enough points to calculate its neighborhood. Figure 4. 6 shows an example for 

estimation of the maximal Liapunov exponent from a data set. 

 

After calculating correlation dimension and largest Liapunov exponent, an agent 

decides how recent data are relevant for estimating a future state. For a negative 

Liapunov exponent, all the data obtained from the same state are useful, and then an 

agent is free to choose the amount of data for computation. For a positive Liapunov 

exponent, a system evolves with time, and then initial system analysis is valid within 

the exponent inverse. Consequently, an agent has a guideline how recent data need to 

be added. 



 

 

70

 

 

 

Figure 4. 6. Estimation of the Liapunov exponent of the NMR laser data in 

embedded dimension of 2 (upper plot) and 3 ~ 5 (lower plot). The linear parts of the 

curves are well described by an exponential with λ = 0.3. [37]. 
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CHAPTER FIVE 

SIMULATION RESULTS AND DISCUSSION 

 

 

5.1. Agent Classification Based on Its Performance 

 

To find proper number of elements in offer basis set, several different types of 

agents were simulated with known types of agent. For a large enough number of 

elements, the agents can be classified properly in terms of its performance. If a 

classification is properly performed, the agents classified in the same group must show 

similar performance, i.e., the actual earning of the agents must be highly correlated 

with expected earning based on the classification. 

 

 

5.1.1. Standardized agents 

 

To develop a simulation environment, five standardized agents are implemented 

consisting of one marginal cost offer agent and four speculators. That is, human or 

software agent with unknown behavior can be classified based on its play against 

known agent types.  Marginal cost offer agent is an agent that offers all of its blocks at 

marginal cost without withholding any of them. The speculator agents exhibit different 

degrees of price and quantity speculation. In order to be classified as a speculator, at 

least one block must be consistently offered at a high price. It is crucial that a 

speculator be able to consistently determine which block or blocks are to be offered at 

a high price and which blocks are to be withheld. Speculators are classified based on 

the amount of risk they are willing to take. For simplicity, any offer submitted at a 
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high price is made at the same price regardless of the type of speculation. A fairshare 

of the market is calculated based on a load forecast.  The block in which the fairshare 

quantity falls is termed the “fairshare block”.  If this were the last block chosen for the 

unit by the auction, then it would be the units’ marginal block.  Thus, the fairshare 

calculation is just a means for trying to predict a unit’s marginal block a period ahead 

and any calculation to accomplish that prediction is suitable for the purpose we have 

in mind. 

 

The strategies for offers of the standardized agents are shown in Table 5. 1. The 

standardized agent with the weakest degree of speculation, called a weak speculator 

(WS), was designed to speculate with the block that is adjacent to and more expensive 

than its fairshare block. If the load forecast had no significant error, the behavior of a 

WS agent was found to be similar to that of an MC agent with some withholding 

capacity. Since no speculator could speculate less than a WS, the agent is called weak 

speculator. The agent with a stronger DOS than a WS, termed a strong speculator 

(SS), offers a high price for its fairshare block. This agent is willing to take the risk of 

not being dispatched for the chance of a higher market clearing price. Two stronger 

speculators (SS2, SS3) were also implemented. SS3 speculates with all the blocks to 

the fairshare block while SS2 submits (j-1)th block at a high price where jth block is a 

faieshare block. 
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Table 5. 1. Block-by-block offer structure for standardized agents; The table shows 

the offer strategies of standardized agents when the fairshare block is the jth block out 

of n available blocks. MCO, S and W stand for a marginal cost offer, speculate on 

price and withhold the block, respectively 

 

 

 

 

 

 

 

 
j-k block; 

2 ≤ k ≤ j-1 

(j – 1)th 

block 

jth 

block 

(j+1)th 

block 

j+k block; 

2 ≤ k ≤ n-j 

MC MCO MCO MCO MCO MCO 

WS MCO MCO MCO S W 

SS MCO MCO S W W 

SS2 MCO S W W W 

SS3 S S S W W 
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5.1.2. Classification of an agent 

 

Suppose there are n identical agents normalized for size in a lossless and 

uncongested network. If all the agents behave identically, presumably they would each 

receive an equal share of the market. But suppose one behaved differently. Then, 

average earnings of others would be affected, which should lead to a change in the 

offers of all agents. A change in offer behavior is reflected in the earning which is 

typical of a feedback process. In such a case, the earning can be a measure of offer 

behaviors, i.e., if two agents consistently have the same earnings at various 

environments, the offer behaviors of the two agents are effectively identical.  

 

 

5.1.3. An example 

 

Consider a market simulation with five offer agents comprised of some mix of 

standardized agents and one agent of interest. Note that the agent of interest can be 

either a software or a human agent. A specific combination of the five standardized 

agents is one scenario for a simulation. If there are n standardized agents then there are 

M unique scenarios 30 . By running all scenarios with the agent of interest, all 

agent-of-interest behavior should be captured if the set of standardized agent is 

complete. It is theoretically important to determine the number of elementary bases to 

expand the market since the number is the dimension of a market. Since the various 

                                                 
30 construct a space in n-dimension with the boundaries naxnax

i

ii =≤≤ ∑ and 0 , 

where na is the number of agents in the simulation (in this example, na equals 5), then 
M is the number of points inside the space of which coordinates are all integers; note 
that all the agents are interchangeable since losses and line constraints are all ignored. 
If network effects are considered, the number of possible scenarios are nan
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set comprised of standardized agents is chosen for convenience rather than theoretic 

analysis, the expansion might be either redundant or insufficient.  

 

However, a market can be expressed in terms of a scenario set if the set contains all 

possible offer behaviors. For each scenario, the six agents competed for 200 periods 

and their earnings plotted as a function the earnings of the agent of interest for each 

period. Figure 5. 1 illustrates a possible plot of the earnings of the participating agents 

for one scenario. The six lines show how corresponding agents performed in each 

period. All lines have different slopes, which characterizes the type of agent. Among 

the lines, the y = x represents the earning of the agent of interest. If the y = x line is 

“close” to one of lines showing the earnings of a standardized agent, the agent of 

interest is classified as an agent whose behavior is similar to that of the standardized 

agent that produced that line. For example, the agent shown in Figure 5. 1 is classified 

as a strong speculator (SS).  

 

In the scenario that produced this plot, an MC earned the most while an SS3 earned 

the least.  Note that an SS3 is the speculator with the strongest degree of speculation. 

In simulations with software agents, this feature was found to be true in general.  As 

an agent gets less speculative, the market becomes more competitive and consequently 

everyone including the agent itself earns less. This might encourage an agent to 

speculate if it wants to maximize its own profit without concern for the earnings of 

others. 
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Figure 5. 1. Earnings of the standardized agents and the agent of interest 
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5.1.4. Expected earning 

 

To calculate the earnings of six different types of agents, an electricity market was 

simulated only with the standardized agents present. From the simulations, the actual 

earnings of participating agents were obtained for each scenario. Expected earnings of 

the software agents were calculated based on the actual distribution of the software 

agents once they were classified. After classification, one can calculate the earning of 

each agent from each scenario, and then multiply the earning by a weight factor. The 

weight factor is calculated based on the probability that the agent might be in the same 

group in agent competition as the competition where it earned the profit under 

consideration. For example, suppose that there are 24 agents. Suppose we had 

classified them as 5 speculators and 19 marginal cost offer agents.  Now, suppose we 

were interested in one of the speculators competing against five other agents from the 

group of 24.  The following enumerate the choices: Number of possible choices when 

selecting 5 agents without regard to type from the 23 agents left in the pool is:  

 

( ) ( ) 649,33
!1!11

!1

!5!523

!23
11523 =

−
×

−
=× CC       (75) 

 

The number of choices that have no speculator in a group is 11,628 

(= 1151904 CCC ×× ).  From similar calculations the possible number of choices can be 

calculated for other mixes of agents. The corresponding probabilities can also be 

calculated. For example, the probability that the agent of interest participates in a 

market with no speculator is 0.3456 (=11,628/33,649). The probabilities that the 

market has one, two, three and four speculators are 0.4608, 0.1728, 0.0203 and 

5.65×10-4, respectively. That is, the probability that all marginal agents are competing 
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with the chosen speculative agent is 0.3456. Note that there are no speculators in the 

competition other than the chosen speculative agent. If, for example, the agent of 

interest earns $100, $300, $700, $1,800 and $2,500 in each of 5 competitions where 

each has a different mix of competing agents as listed above, then the weighted 

earning of agent k, Ek, is about: 

 

∑
∈

≈×=

group
possiblei

k

i

k

i

k epE 332$        (76) 

where pi
k is the probability that agent k is in group i and ei

k is the earnings for agent k 

if the agent k competes against standardized agents in the group i, respectively. The 

expected earnings obtained in this way were used for a further comparison of the 

actual earnings. 

 

 

5.1.5. Simulation results and discussion 

 

In the fall of 2002, fourteen different software agents were submitted by the 

students taking the class ECE 551/AEM655 (Electricity Markets) at Cornell 

University.  These agents competed in a class competition and were subsequently used 

as early tests of the classification ideas. From experiments performed in the same class 

with the students, it was believed that MC, WS and SS were the most common types 

of agents. Therefore, only those types of standardized agents were used.  

 

After performing simulations in which all possible combinations of three 

standardized agents were used, the classifications of each agent of interest by certain 

of those simulations were found to be redundant, i.e., classifications using one 
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scenario and that using a different one were identical. If the agent of interest behaves 

consistently, the result from each scenario should indicate identical classification. By 

noting that human subject might be inconsistent, six scenarios were chosen to produce 

distinctive classifications: 4 WS + 1 MC, 3 WS + 2 MC, 4 SS + 1 MC, 3 SS + 2 MC, 

1 SS + 2 WS + 2 MC and 1 SS + 1 WS + 3 MC. One randomly selected set of 

forecasted and actual load was assigned for the scenario. Average load was 470 MW, 

and the maximum error between forecast and actual load was 20 MW. 

 

Each of the fourteen software agents and five standardized agents formed a group 

for the simulation, and corresponding plots were generated based on the results of the 

simulations. According to the plots, the fourteen agents were classified into three 

groups, which are 5 MC, 4 WS and 5 SS. It seemed that most agents tested were 

speculators to some extent with the degree of speculation somewhere between WS and 

SS. It is worthwhile noting that from the scenario the earnings of an agent were close 

to those of the standardized agents classified as the same type as the agent.  

 

Figure 5. 2 shows a plot of the earnings of a randomly selected software agent 

classified as SS for four scenarios. The classification of the software agents was 

straight forward since the strategy used was consistent for a given scenario. In other 

words, no learning algorithms were implemented. For most of the agents, strategies 

seemed not to change for different scenarios, i.e., different type of competitors. It was 

also found that no agents developed by the students used learning algorithms which 

would alter the results significantly. Since the agent code is available, it is possible to 

check the results. 
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a) 4WS + 1 MC         b) 3 WS + 2 MC 

 

 

 

 

 

 

 

c) 4 SS + 1 MC     d) 3 SS + 2 MC 

 

 

 

 

 

 

 

 

 

 

Figure 5. 2. Example of a performance of the software agents: in the plot, red 

square, green and blue circle stand for the earning in a period of MC, WS and SS, 

respectively 
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For a simulation with a human subject, twenty students were recruited from the 

class ECE 451, electric power systems, at Cornell University. Each of twenty students 

participated in the simulation with five standardized agents just like the software 

agents. The purpose of this experiment was to find out if the same technique that was 

successful for classifying software agents could be used to determine human 

strategies.  The same sets of forecast and actual load were used for the simulation. 

They learned from experience, and were consistent only in some scenarios. Therefore, 

the data obtained only after a period of learning was useful for classification of the 

scenarios. After examining earning data, ten periods were assigned to the learning 

period. It was also found that the offer behavior of one student was similar to that of 

an SS in some scenarios while the same student behaves like a WS in other scenarios, 

i.e. different strategies were used when competing against different types of 

competitors, which is logical behavior.  Strategies other than ones used by the 

standardized agents were also observed.  The conclusion was that the set of 

standardized agents was not rich enough and that it was possible to classify some of 

the different strategies by adding the speculating agents SS2 and SS3 to the mix.   A 

typical simulation result is shown in Figure 5. 3. 

 

In the case of a) and b), one was classified as SS2 and SS3 while the same one was 

classified WS and SS in the case of c) and d), respectively. When SS3, a standardized 

agent with the strongest degree of speculation, participated in the scenario described 

above, a common feature was shown in plot b). What SS3 did was effectively 

withhold its entire capacity from the market unless the market clearing price was high. 

Therefore the market clearing price was high even in the low demand period, which 

caused the earnings of all competitors to increase considerably. Even though this type 

of strategy seemed not to be reasonable, it was often observed, especially when the  
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a) 4 WS + 1 MC       b) 3 WS + 2 MC 

 

 

 

 

 

 

 

c) 4 SS + 1 MC       d) 3 SS + 2 MC 

 

 

 

 

 

 

 

 

 

Figure 5. 3. Example of a performance of the human agents: red square, green and 

blue circle stand for the earning in a period of MC, WS and SS, respectively 
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market was very competitive, i.e., for markets with an agent mix such as 

3 WS + 2 MC that is in aggregate not very speculative. In less competitive mixes, such 

as 4 WS + 1 MC or 3 SS + 2 MC, the strategy was rarely used. 

 

For the case in which it was possible to classify a human agent, the total earnings 

ofa human agent from the scenario was compared to that of the standardized agent of 

the same type from the same scenario. The comparison between the two earnings is 

shown in Figure 5. 4. The line corresponds a perfect correlation, which is y = x.  

 

The correlation between two earnings was checked for both a software agent and a 

human agent as long as it was possible to classify the agent of interest. It is critically 

important to include all the standardized agents with extreme offer behaviors in order 

to classify an agent of interest. Otherwise, some agent might not be properly classified. 

For example, the agent of which earning is plotted in Fig. 5. 3. b) is not classified 

properly since the agent of interest is far more speculative than WS and/or MC. 

Another difficulty in classification is consistency. If the offer behavior of the agent of 

interest is not consistent, the classification method described here would be judged not 

reliable. 

 

There was one interesting software agent worthy of special note. The agent offered 

some of its capacity into the market at marginal cost, but started to withhold some 

from its fairshare block. Therefore, its offer function was similar to that of SS except 

that it withheld capacity from the fairshare block instead of offering it at a high price. 

This offer behavior is termed a Cournot speculation. This agent was classified as SS as 

long as at least one speculator exists in the market regardless of type such as WS or 

SS.  
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Figure 5. 4. Actual earning vs. Expected earnings calculated from simulation 
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5.2. Evaluation of Dimension by Using Price 

 

Simulation results obtained from Ref. [12] were used for evaluating dimension of 

the data. Since the price is a measure of the market considered, the dimension 

evaluated is an estimate of the dimension of the market. The value for the mean of 

demand was 490, and the error of demand forecast was 50. Price data obtained from 

simulation of 300 to 1,000 periods were used for the dimension analysis. To estimate 

d, C(ε) and ε is plotted in log-log scale in the range of ε from 10-2 to 106 as is shown in 

Figure 5. 5, and power law is used. If the relation equation (72) were valid for all ε’s, 

there should be a straight line of slope d. In this case like other practical cases, the 

power law holds only over an intermediate range of ε. The curve saturates at large ε  

because the balls with radius of ε surround the whole attractor and therefore the 

number of neighborhood within ε cannot grow any further. On the other hand, the 

balls with extremely small radius ε contains x only. Therefore, the power law holds 

only in the intermediate scaling region. Data only in the intermediate region were 

chosen for evaluating dimension.  

 

From the analytical process, fractal dimension was obtained as a function of the 

embedded dimension as is shown in Figure 5. 6. The true dimension was determined 

about 2. Therefore, an embedded dimension of 5 should indicate a true dimension. 

Fig. 5. 6 shows that the true dimension at the embedded dimension is about 2 which is 

properly evaluated. The value for dimension depends on precision of demand forecast 

as well as the types of market participants. In other word, dimension is a quantity 

reflecting whole system under consideration. Once there is any change affecting the 

system, dimension analysis will identify the occurrence of the change even though it 

cannot tell what causes the change. The value of dimension is most sensitive to the  



 

 

86

 

 

 

 

 

 

 

Figure 5. 5. Correlation integral for the market clearing price data obtained from the 

simulation with 500 periods 
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Figure 5. 6. Correlation dimension for various price data obtained from n-period 

simulation 
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type of market participants. Besides, change in the precision of demand forecast or 

other changes can be captured by other statistical tools too. Therefore, given results of 

other analysis, it is possible to tell if the strategies of market participants have been 

changed. 

 

Figure 4. 1 shows several nodal price data obtained from the NY ISO’s web site. 

The data were analyzed to estimate the value of correlation dimension and the 

Liapunov exponent. When summer came, some agents changed their strategies to 

increase clearing price. Then system dimension should change accordingly, which 

results in the change in clearing price. But, the nodal price is more closely related to 

the strategy of the agents located at the bus. As is shown in Fig. 5. 7, the state of York-

Warbasse changed during the period while that of Cornell did not. There might be 

several reasons to change the state beside change in the strategy, i.e., a change in 

network or offer strategies of other agents. However, only interest here is to check if 

the system state which an agent must deal with has been changed. During the period, 

York-Warbasse faced a different market from that before the period while Cornell did 

the same or unnoticeably different market. Both cases, the Liapunov exponent had a 

negative value which means the markets were settling down to a new equilibrium, 

consequently all the data were relevant to estimate a future state.  

 

 

5.3. Results from Simulations with Demand-side Agent and Discussion 

 

A modified IEEE 30 bus system with 6 generators and 20 loads was used for a 

simulation. Fig. 5. 8 shows the transmission network used in this study. In the system, 

there are three different areas divided due to line constraints. A closer look to data for  
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Figure 5. 7 The change in systems which agents, York-Warbesse and Cornell, 

faced during June 2003. While system of Cornell did not change significantly, that of 

York-Warbasse evolved. 
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Figure 5. 8. Modified IEEE 30 bus system with six suppliers. Capacities of lines 

connecting Area 1–Area 2 and Area 3–Area 2 are lower than those of other lines.  
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line constraints allows clustering between Area 1 and 3 with no significant loss of 

generosity since line capacities between the two areas are large. Due to strict line 

constraints between Area 2 and the clustered area, Firm 5 and 6 have a locational 

benefit in case of heavy load in the Area 2, which implies a potentially duopoly 

situation. Actual demand seems to have weekly and hourly periodicities. To mimic 

these periodic behaviors, a convolution between two sine functions added with small 

values of random number were taken for an actual demand. For the purpose, 

convolution of two functions f(x) and g(x) over a finite range [0, t] is performed in the 

following way: 

 

( ) ( )∫ −≡⊗
t

dtgfgf
0

τττ         (77) 

where the symbol gf ⊗  denotes convolution of f and g.  

 

To emulate the periodic behaviors of load as well as stochastic behaviors, the 

functions f and g were taken as 
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where A, B denote fluctuation of load for periodic part and that for stochastic part, 

respectively, and τ and δ stand for periodicity and for random value in [0, 1], 

respectively, and subscripts represent time period. 

 

Several simulations with various types of supply-side agents have been performed. 

There are two extreme cases in the simulations: all suppliers are marginal cost offer 
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agents or all speculators. For the first case, there is no need to include demand side 

participation since a market clearing price is already low enough. On the other hand, 

there is no need for demand side participation for the second case either because 

demand-side participation can make little improvement on the situation since 

must-be-served unit needs power regardless price and dispatching only the unit 

already requires a high market clearing price. To get a more realistic simulation result, 

two scenarios were selected based on the types of real suppliers observed in PJM 

market shown in Figure 5. 9. For Case a) which is the more competitive market, while 

the average market clearing price is about $ 550/MWh with inelastic demand without 

demand-side participation, it was less than $ 100/MWh with a demand-side 

participation. Case b) is more interesting in that there were many price spikes to meet 

inelastic demand due to highly volatile market. Demand-side participation lowers the 

number of price spikes as well as average price in both cases. Some price spikes are 

eliminated by backing up less than 10 % of load while some are reduced by a 

significant amount that requires declaring PRL. When significant deduction occurs, 

the number of allowed PRL is decreased by one which resulted in a decrease in 

freedom. Consequently, a bid curve approaches the inelastic demand curve. When 

number of allowed PRL goes to zero, the bid curve of demand-side agent looks 

identical to that of inelastic demand. Therefore, market clearing price are same. For 

example, the results with elastic demand after 720 periods is equal to those without. 

 

 

5.4. Simulation Results with Adaptive Supply-side Agents and Discussion 

 

 In this section, implementation detail for a supply-side agent is presented. 

Furthermore, several simulation results with the agents designed in this study are  
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Figure 5. 9. Two typical simulation results with inelastic demand without demand-side 

participation (red line) and with elastic demand with demand-side participation (blue 

line). Case a) shows the results in a more competitive market than that for Case b). 

Case a) 

Case b) 
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presented and discussed. 

 

 

5.4.1. Description of adaptive supply-side agents 

  

With no change in behavior of all the participants, the state of a market remains 

unaltered even under stochastic demands as long as the distribution of demand does 

not change significantly. However, by the nature of a market, there is always a change 

in the strategy of market participants. Once there exists such a change in the market, 

the change acts as a new driving force leading to a change in the market state. 

Consequently, future state somewhat deviates from an expectation if the expectation 

was extrapolated from the observation made on the previous state of a system. 

Therefore, the offers in learning period must be carefully selected in order not to 

disturb the market. Otherwise, the observation made is not useful for the estimate of 

future market. Since current market rules do not allow communication amongst 

market participants, the only way to collect data is participating in the market. Once 

the agent participates in the market to collect data, the participation inevitably drives a 

system into a new state, which makes its collection of data irrelevant. The best way to 

solve this dilemma31 is minimizing the difference between current and new state. For a 

dynamic system, it is well known that the degree of the change in system 

proportionally depends on the magnitude of the driving force. There are two ways to 

minimize the magnitude of the driving force: minimizing driving forces in each period 

and minimizing the sum of driving forces. Withholding most capacity from the market 

for all the periods may introduces a minimal change in the system when the 

                                                 
31 to collect data, an agent needs to participate in the market, but participation may  
change the system which makes collecting data useless 
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perturbation due to the introduction of the agent is small enough not to alter market 

much. However, this should be avoided since such participation results in exploring 

only limited area of a search space of mapping function. A better way is the second 

choice: exploring more search space while the offer does not alter the state much. 

When significantly many random vectors are summed over, the net vector has a very 

small magnitude since they are canceled out with each other [18]. With given values 

of short-term and long-term variables, the main variables are randomized in a 

following way: for n learning periods, equally distributed vectors a and b32 are chosen 

from distributed from minimum to maximum values of each variable, and then the 

elements in two vectors are randomly selected for an offer.  

 

Each period in a learning process, the element in a matrix for simulated earning, A, 

is calculated based on initial scenarios. After learning period, the scenario set is 

evaluated to test its validity. Since the scenario set is not the complete basis set, a 

wrongly chosen one cannot represent the actual market properly. From an error 

minimization process with simulated and actual earning A and b, the weight factor x is 

estimated. When the process does not give a satisfactory result33, the scenario set will 

be altered based on the contribution to expected earning. The actual earnings are more 

closely related to the competitor(s) located at the same area. Therefore, only the 

portion of scenarios for the competitors will be modified while the portion of scenarios 

for “far apart” agents which are located in different area are intact. It is noteworthy to 

mention that all the extremes must be included in the scenario sets even after the 

                                                 
32 [ ] [ ]maxmax , and , ppbdda ∈∈  where d, pmax xx  and stand for degree of speculation, 

maximum offer price, minimum and maximum value of the variable x, respectively 

33  
2

2

2  ofminimizati  theofresult   theis x  where bAx
b

bAx
−≤

−
δ  and δ is the 

satisfactory limit 
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modification in order to guarantee that the scenario set represents the actual 

competitors.  

 

When a learning period ends, an agent finds a proper scenario set minimizing the 

error of 
2

bAx − . With the modified scenario set, it finds an optimal offer for each 

period. For the optimization process, the expected demand for a coming period is 

obtained by using neural networks. To achieve this, the data obtained during learning 

process is eliminated for a better estimate since its offer strategy after learning period 

is not randomly distributed anymore. For this period, the new offer strategy might 

make the whole market evolve. Therefore, a dimensionality check during learning and 

this period is not required since the new state is not guaranteed to be relevant to 

previous ones. The dimensionality check is performed after another k periods. It is 

possible that the state after k periods might be different from that of the state before 

since the new strategy during k periods may system evolve. However, the state cannot 

be far from the last state since the strategy of the agent did not change over k periods. 

Consequently, the expectation based on similar state should work well.  

 

After the first dimension check, the agent keeps checking dimension every day to 

see if there is any change in the market. If it finds no significant change in dimension, 

it assumes that the current state is not far away from former state, and then keeps using 

the current data set with more added market clearing results. When there is change in 

the value of the dimension, there assumed three main possibilities which make system 

changed: change in the strategy of its own, those of competitors and condition of 

market such as network change, etc. The first possibility is easiest to detect since the 

agent already knows even before the check. Note that dimensionality check will give a 

clue on the effects of the change in its strategy if there is any. The third possibility is 
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also easily found by assumption that the agent has good knowledge on network by 

using external information, e.g., Genscape34. Once the agent detects the change in 

dimensionality and also finds the reason is not any of those two above, and then it 

assumes the change in the strategies of its competitor(s) makes the state of the system 

evolve. In the case that there is unknown change in network resulting in a change in 

the system state, it will get a wrong reason about the change. Consequently, the weight 

factor distribution from the error minimization 
2

min bAx
x

−  might cause a bigger 

error. However, as far as its earning concerned, the weight factor distribution performs 

well in the optimization process since the distribution came from the process of the 

error minimization. Once it detects the change in the state for any reason, scenario sets 

and matrix A need to be modified for a better system estimate.  

 

When an agent finds any change in the state, there may not be enough data obtained 

from a new system. In such a case, the number of row in A is less than that of column, 

i.e., an underdetermined system. In treating a underdetermined system in the matrix 

computation, the weight factor distribution inevitably contains many zeros which may 

lead inappropriate representation to a real market. To avoid this problem, the most 

recent data obtained from the old state are added to the new data under assumption 

that old state might not be too different from the new one. To have the new data more 

impact on the weight factor distribution, heavy weight is given to the new data by 

adding many copies of the new data into the matrix A and the vector b. If difference 

between the two states is significantly different, the weight factor distribution might 

results in a bigger error for a mapping function from offer to earning. However, if this 

is the case, the market is very unstable, and then no agent performs well in the 

circumstance.  

                                                 
34 http://www.genscape.com/na/index.shtml 
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5.4.2. Simulation detail and results 

 

Several simulations have been performed with the supply-side and demand-side 

agents described here. All demand-side agents have must-be-served demand about 

10 % of their total demands. To see the performance, only one supply-side agent was 

placed on the Bus 23, and standardized agents represented other firms. To emulate 

different situations, several markets with different types of competitors have been 

simulated. Figure 5. 10 shows simulated historical nodal price data both competitive 

and volatile markets. In these simulations, none of competitors change their strategies, 

but it is common for each agent to exercise market power by trying other strategies. 

To test how an agent reacts against a permanent and consistent change, after some 

periods, a competitor changes its strategy consistently. The results are shown in Figure 

5. 11. For the current market, it is allowed for a buyer to purchase electricity from a 

seller from outside. When there exists such an independent contract, external flow 

must be injected through network. The external flow might not be known to all the 

supply-side agents, but it changes power flow to some extent. The change results in a 

virtual change in the network. If a supply-side agent does not know the existence of 

the flow, its ability to find a change of the market state needs to be tested. 

Furthermore, it might be useful to know how the agent reacts against the change if it 

finds. To check this ability, a simulation with five standardized agents and one supply-

side agent from outside has been performed in a following way: no change in the 

strategies of the standardized agents was made, but after 200 periods external flows 

about 10 MW from the Bus 28 to the Bus 20 are injected. Figure 5. 12 shows the 

prices obtained from the simulation. Above three different simulations, the agents of 

interest always have locational benefit. For testing the performance in case without 

locational benefit, a simulation was performed with an agent on behalf of Firm 1 in the  
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Figure 5. 10 Simulated historical data for nodal prices at the Bus 23 (Firm 5) in the 

case that 4 marginal cost offer agents in Area 1 and 3 exist while Firm 6 is a) a 

marginal cost offer agent or b) speculator with different predetermined the degree of 

speculation 

a) 

b) 
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Figure 5. 11 Simulated historical data for nodal prices at the Bus 23 (Firm 5) in the 

same cases in Fig. 8. 1., but nearest competitor (Firm 6) changes its strategy 

completely a) from MC to speculator and b) speculator to MC 

b) 

a) 
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Figure 5. 12. Simulated historical data for nodal prices at the Bus 1 (Firm 1) when 

there is injection at Bus 28 and withdrawal at Bus 16 from the period of 253 
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same situation described in Figure 5. 11. The results are shown in Figure 5. 13. 

 

 

5.4.3. Simulation with no change in the strategies of competitors 

 

The competitors have differently assigned DOS; for Firm 1 – 4 were 20, 10, 25 

and 15 respectively, and that for Firm 6 was 25 for a) and 85 for b). During learning 

periods, the nodal price data for the agent representing Firm 5 fluctuate from its 

marginal cost to reservation price with mean of about $ 400/MWh and $ 900/MWh, 

respectively. After learning periods, it updates the scenario set based on the error 

minimization process. Original matrices A contain simulated earnings from equally 

distributed scenario sets, and the relative errors ( )
22

/ bbAx −=  were about 52 % 

and 38 % for a) and b), respectively. Note that equal distribution of strategy set was 

assumed before participating in the market. The matrices A were modified based on 

the contribution to expected earnings of each scenario. For a), the second most 

speculative scenario with the value of 75 for DOS was discarded and replaced with a 

scenario between most and second most competitive scenarios with DOS of 12.5. On 

the other hand, the second most competitive scenario with DOS of 25 was replaced 

with one of 87.5 for DOS for b). The modification of scenario set reduces error to 46 

% and 27 %. With the new modified scenario set, the agent tried to find an optimal 

offer at given load forecast. 

 

On a daily basis, the dimension was checked for detecting if there is a change in 

the market state. Figure 5. 14 shows the result of the dimension check. Since 100 data 

points are needed for a reliable dimension check for a dimension with a value of 2, 

only after 8 days the value for a dimension is reliable. From a), the dimension check 
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Figure 5. 13. Simulated historical data for nodal prices at the Bus 23 (Firm 5) which 

has no locational benefit; a competitor in Area 2 (Firm 6) changes its strategy in a 

more speculative way completely at the period of 253 
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does not detect any conceivable change in the state of market after the 8th day, which 

was true in fact. The false alarm on day 7th may cause unnecessary consideration on 

Day 8th as well as Day 7th. On both days, the agent checks the dimension and finds a 

change in the state. Then, the agent selects the part of data for estimate based on its 

data selecting algorithm discussed in chapter four. The selected data contain the 

information of the same state which the agent must observe from. Therefore, the 

performance of an agent should not be affected by the false alarm in this case. There is 

a possibility that malfunctioning of the tool may cause wrong selection of data causing 

silence after a change in the market state. In the current setup, the probability is very 

low since the tool should not inform a change for many days. Note that the agent 

evaluates dimension everyday. The dimension check shown in b) gives almost 

identical case except to exhibit relatively larger errors which makes the result less 

reliable. An agent might be uncertain if there is any change in the state. All the 

experimental data contain error, and correspondingly, an analysis made on such data 

has reliability issue when noise over signal ratio gets bigger. In the simulation for b), 

the change in the nodal price is relatively. In such a case, the dimension check may 

give unclear conclusion due to large error. Since two adjacent points in Fig. 5. 14 b) 

are overlapped in error range, the probability that the system is not changed is more 

than 10 % which is not small enough to ignore. Consequently, an agent assumes there 

is no change in the market state. 

 

When the dimension check does not detect any change in the state of the market, 

an agent needs data for the matrix A and vector b for finding weight factor 

distribution, which might contain too many rows. It is not economic to carry too much 

data for a computation. To select proper amount of data for estimating a future state, 

the Liapunov exponent calculation was performed. Figure 5. 15 shows the results of 
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Figure 5. 14. Daily dimension checks for the historical nodal price data obtained 

from the simulation described in Figure 5. 10 a) and b), respectively. 

 

a) 

b) 
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the Liapunov exponent calculation. Both a) and b) shows no positive exponent clearly, 

and especially for b), the values are clearly negative. A negative exponent implies that 

the system settles into an equilibrium or a strange attractor. In such a case, all the data 

are relevant for estimating a future state, but for computational convenience, only part 

of the data is taken for calculating weight factor distribution. Note that default value in 

this study is 100 when the number of scenarios in a scenario set is 25. In both cases, an 

agent can check whether or not the system evolves based on a dimension check and 

then Liapunov exponent. 

 

With a given weight factor distribution, an agent finds an optimal offer to 

maximize its profit for a given forecast. As was shown in Fig. 5. 10 a), the agent 

manages to keep the nodal price no less than $ 500/MWh while the price fluctuates 

from $ 10 to $ 1,000/MWh when random offers were submitted. The similar situation 

occurs in Fig. 5. 10 b). Figure 5. 16 shows the simulated historical earnings for both 

cases from the simulation as was described in Fig. 5. 10. For b), the nearest competitor 

offers its quantity at a high price, and consequently the market that the agent 

representing Firm 5 faces must accept offers submitted by Firm 5 unless its offer is too 

high. Therefore, average earning from learning period are not much different from that 

after the period. About 30 % increase in earning was achieved. When a market is more 

competitive like in a), earning depends more on the offer by the agent. Average 

earning in the learning period was $ 6,000/h, but that after the period was about 

$ 10,000/h which was approximately 70 % increase. To show how well the market 

modeling is done, the expected earnings is plotted also in red line. The relative errors 

during learning period are 46 % and 27 % as was mentioned before, but those after the 

learning period are 19 % and 1 %. During the learning period, an agent searches all the 

space available by submitting random offers. After the period, an optimization process  
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Figure 5. 15 The results of Liapunov exponent calculation performed with the 

historical nodal price data obtained from the simulations described in Fig. 5. 10 a) and 

b), respectively 

a) 

b) 
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Figure 5. 16 Simulated historical data for the actual and expected earning of Firm 5 

from the cases described in Fig. 5. 10 in blue and red line, respectively 

a) 

b) 
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restricts the search space into a small area, which is well defined. Therefore, the 

relative error should become significantly small. When the market gets less 

competitive, the optimizing strategy is selling more quantity to the market by offering 

lower price. Then, the search space is very limited, and then the error should be 

significantly small, which was 1 % in comparison to 19 % for a more competitive 

market. 

 

 

5.4.4. Simulation with the change in the strategies of competitors 

 

Before Firm 6 changes its strategy, the agent representing Firm 5 behaves 

approximately identical to the case described in Section 5.4.3. The relative errors were 

about 65 % and 33 % for a) and b), respectively. Modifying scenario set as described 

in Section 5.4.3 makes error reduced to 59 % and 28 %, respectively. With the new 

modified scenario set, the agent tried to find an optimal offer at given load forecast.  

 

A dimension check was performed everyday in order to detect if there was a change 

in the market state. The results are plotted in Figure 5. 17. For a), a dimension check 

detects a conceivable change in the market state 4 days after Firm 6 changes its 

strategy. A dimension check shown in b) gives almost identical case as was before. A 

dimension check detects the change in the market state reliably in both cases. When 

the state of the market changes, it is important to find how long the change takes to 

settle into a new equilibrium state. The question can be answered by evaluating 

Liapunov exponent. In general, it takes two times of the inverse exponent for the 

system to reach another equilibrium. Figure 5. 18 shows the results of evaluation to 

the exponents. In both cases, the exponents after the change was made are very small 
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Figure 5. 17. Daily dimension check for the historical nodal price data obtained from 

the simulation described in Figure 5. 11  

 

a) 

b) 
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Figure 5. 18 The results of Liapunov exponent calculation performed with the 

historical nodal price data obtained from the simulations described in Fig. 5. 11 a) and 

b), respectively 

a) 

b) 
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positive numbers. For example, the values of the exponents at day 12 and 16 for a) and 

b) are very small and positive. In evaluating the Liapunov exponent, only a few points 

were randomly taken to avoid choosing biased data, and the actual value of the 

exponent greatly depends on the choice in the point selection. Consequently, the value 

of the exponent is less reliable especially when it is small. For negative or zero values 

of the exponent, an agent chooses only a small number of data to calculate weight 

factor rather than whole data for saving computational effort. When the exponent has a 

large positive value with small error, it implies that a system divulges very fast. A 

small positive value of exponent, like in these cases, implies that the dynamics is very 

slow, and then approximately 2 times of inverse exponent of data points are relevant 

for estimating a future state. Since the exponent tells how recent data are relevant to 

estimate a future state, it only gives an upper limit for the number of data that an agent 

should take. In both cases here, more than 100 and 200 data points are upper limits for 

a) and b), respectively. It is noteworthy that for b), the dimension was approximately 

1, and the embedded dimension was 2.  Correspondingly, one point in embedded 

space is composed of two data points, which results in 200 data points of upper limit 

for b). Therefore, a default value was taken for estimating weight factor distribution. 

 

From the results of the dimension check, the performance of an agent before 

finding the change in the market state seems as good as that after finding. Dimension 

check and  the Liapunov exponent give an agent a guideline to select the amount of 

data. Before the change of the market state, dimension check gives no change and the 

Liapunov exponent calculation gives a negative value, which allows an agent to take 

only 100 data points. Before the agent realizes the change in the state, several new 

data has been added into the 100 data points. Consequently, the effect of the new 

addition is not negligible. Without using the dimension and exponent, the agent should 
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carry all the data, and then the effect is small enough to be ignored since the fraction 

of the new data is small in comparison to the amount of data obtained from the former 

state. Thus, the performance could not be so good as an optimal one. For a randomly 

generated offer, the nodal price fluctuates a lot in a). The price during a learning 

period represents the nodal price in case of a random offer. It also fluctuates between $ 

700/ MWh and $ 1,000/MWh for b) during the period. Once the agent finds a proper 

weight factor distribution, the price never go below $ 500/MWh and $ 990/MWh for 

against competition with MC and speculator representing Firm 6, respectively. DOS 

for Firm 6 was changed from 25 to 85 for a) and from 85 to 25 for b) while DOS’s for 

other firms were unchanged.  

 

The agent finds an optimal offer to maximize its profit for a given weight factor 

distribution and forecast. As was mentioned before, the agent manages to keep the 

nodal price no less than $ 500/MWh and $ 990/MWh for a) and b), respectively. Note 

that price fluctuates when random offers were submitted during a learning period. 

Figure 5. 19 shows the historical earnings for both cases from the simulation as was 

described in Fig. 5. 11. The results were almost identical to the cases described in the 

section 5.4.3 when Firm 6 behaves in the same way as was in the section. The errors 

after the learning period and before the change in the strategy of Firm 6 were 17 % 

and 1 %, respectively, and those after the change were 1 % and 21 %, respectively. A 

more inefficient market allows an agent to explore larger offer-earning space. From 

Fig. 5. 19 a), the earning recovers to an optimal one very quickly. When the agent 

faces a more competitive market, the search space it explores is less limited, and it 

should take a long time to find a new optimal strategy.  As was shown in Fig. 5. 19 b), 

after a sudden change in the market state, the earning shows a typical initial stage of a 

relaxation curve. However, the relaxation was not fully developed because the agent  
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Figure 5. 19 Simulated historical data for the actual and expected earning of Firm 5 

from the cases described in Fig. 5. 11 in blue and red lines, respectively. 

 

b) 

a) 
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adjusted its strategy quickly. It is noteworthy that the performance of the agent after 

the sudden change in the strategy of Firm 6 quickly recovers to the optimal one. 

Though Firm 6 does not change its strategy from period 1 to 253, there were many 

fluctuations in the nodal price as shown in Fig. 5 .11 b). When the market is monitored 

by a snap-shot type tool such as one currently used in several ISO’s, an agent should 

check the change of a system and adjust its strategy accordingly. The unnecessary 

check would cost in computation, and the adjustment would make its performance 

worse. 

 

To study the strategy of the agent, the degree of speculation and the maximum 

offer price (MOP) were plotted from learning period, and periods before and after the 

sudden change of the strategy in Firm 6 as shown in Figure 5. 20. The figures in the 

first row in both Figs. 5. 20 a) and b) show the variables chosen for offers during the 

learning period. Figures in the second and third rows illustrate the variables before and 

after the sudden changes described in Fig. 5. 21. Second row in a) and the third row in 

b) correspond to the simulation against more competitive agents, while third row in a) 

and second row in b) do against less competitive markets. The variables from the 

simulations against more competitive agents seem to fluctuate more often, but it is 

difficult to find a difference in patterns observed both before and after the change. For 

getting a clearer insight, the ratio between the two variables, MOP/DOS, was 

calculated and plotted in Figure 5. 21. Both figures clearly show that the ratio 

increases as the competitor gets more and more speculative, and consequently, the 

market that the agent faces becomes less competitive. For a less competitive market, 

the agent can take advantage of the other agents by being less speculative; i) by 

reducing DOS and/or ii) by offering more quantity into the market, accordingly 

increasing MOP. In both i) and ii) cases, the ratio increases by decreasing denominator  
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Figure 5. 20 The degree of speculation and the maximum offer price changes over 

periods obtained from the simulation described in Fig. 5. 11 a) and b), respectively; 

black lines indicate the mean values of the variables within the period shown in the 

horizontal axis. 

b) 

a) 
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Figure 5. 21. The ratio of the maximum offer price to the degree of speculation over 

the periods shown in the horizontal axis; the corresponding values of both variables 

were shown in Fig. 5. 20 

 

a) 

b) 
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and increasing nominator from the former and latter case, respectively. Contrarily, the 

agent would increase its earning in a competitive market by being more speculative; i) 

by withholding more quantity from the market resulting in decreasing MOP and/or ii) 

by increasing DOS. In both cases, the ratio decreases. 

 

 

5.4.5. Simulation with unknown external flow 

 

Before an external flow exists, the price behavior is practically identical to the case 

described in last section. Modification on the scenario set reduces error to 58 % from 

62 %. After the learning period and before the occurrence of the injection, the error is 

reduced to 16 %. After an external power injected into the system, the relative error 

increases up to 72 % of the relative error. As was shown in Fig. 5. 12, the prices after 

the occurrence of unknown injection fluctuate from zero to reservation price. When 

the prices are compared to those during learning period, the market seems even more 

stable due to the unknown external flow. 

 

Figure 5. 22 a) shows the result of dimension check for finding any change in the 

market state. A conceivable change in the market state is detected by evaluating a 

dimension. As is shown in Figure 5. 22 b), the values of most Liapunov exponents are 

negative. Two points are positive with less than 0.1, which means that a system 

evolved fairly fast. With 0.1 of Liapunov exponent, only about 20 data points were 

relevant to predict a future state, which is less than a default of 100. In such cases, data 

obtained from the previous state are added to form A and b while more importance is 

given to the new data. Since it does not know there was an introduction of an external 

flow and other possible changes and it did not change its own strategy on purpose, the  
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Figure 5. 22. Daily check for a) dimension and b) Liapunov exponent calculated with 

the simulated historical nodal price data obtained from the simulations described in 

Fig. 5. 12  

 

a) 

b) 
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agent assumes the change in the state is due to a change in the strategies of its 

competitors. Demand forecast provided by ISO includes the demand fulfilled by the 

external injection. Consequently, the demand contributes the value of fairshare, 

resulting in an overestimate for fairshare even if the demand is not fulfilled by any 

agents in the network. From the overestimated fairshare, the agent assumes that the 

market gets more competitive. Note that the information on quantity served by the 

competitors is not publicly available. 

 

Consequently, the same value of the weight factor distribution does not properly 

map offer to earning. The agent updates the weight factor distribution and modifies the 

scenario set as well. As a result, the matrix A contains wrongly calculated values, and 

the weight factor distribution does accordingly. To compete against the “changed” 

competitors, the agent updates its strategy according to the way described in the last 

section: to decrease the ratio between MOP and DOS. The changes in the main 

variables and the ratio are shown in Figure 5. 23. Even if the error minimization finds 

the optimal weight factor distribution, the error must be significantly large according 

to the magnitude of the injection.  

 

Figure 5. 24 shows the difference between the actual and expected earning. The 

actual earning after the change fluctuates more than that of expected earning. The 

reason is the actual system is spanned with a quite irrelevant scenario set. The relative 

errors during a learning period, before and after the injection occurs, were 58, 16 and 

71 %, respectively. Significantly high values for the relative error between expected 

and actual earning (78 %) is a signature of the wrongly chosen scenario set. However, 

the same choice worked well with the error of 16 %. Therefore, it is possible for the 

agent to conclude that there is a change which needs updating the basis set instead of  
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Figure 5. 23. The main variables and the ratio between the variables over periods 

obtained from the simulation described in Fig. 5. 12; the black lines in a) represents 

the mean values of the variables during the period 

 

a) 

b) 
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Figure 5. 24 Simulated historical data for the actual and expected earning of Firm 5 

from the cases described in Fig. 5. 12 in blue and red lines, respectively. 
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adjusting the weight factor distribution. Once it gets the information, the agent should 

find the proper reason why the market state changed. As was discussed in Section 

5.4.1, there are three reasons why the market state changes: change in the strategies of 

market participants and the other reasons like change in network. Most likely, the 

other reasons could be considered further to explain the change in the state of the 

system.  

 

 

5.4.6. Simulation with an agent representing a firm without locational benefit  

 

Similar to Section 5.4.4, the prices at the Bus 1 where an adaptive agent is located 

change approximately identically to the case shown in Figure 5. 11. a). Both height 

and frequency of the price spikes are a little lower than those in Fig. 5. 11. a). Before 

Firm 6 changes its strategy, the relative error was about 58 %. For a better estimate, 

the agent modifies the scenario set modeling its neighboring competitors located in 

Area 1 and 3 while leaving scenarios for Firm 5 and 6 unchanged. Modification of the 

scenario set described above makes error reduced to 51 %. With the new modified 

scenario set, the agent tried to find an optimal offer at given load forecast. 

 

 Daily dimension analysis was performed in order to check if there was a change in 

the market state. The results are shown in Figure 5. 25. The dimension check detects a 

conceivable change in the market state a couple of days after Firm 6 changes its 

strategy. For the market after the change, the agent needs to find how long the change 

takes to settle into a new equilibrium state or to divulge by evaluating the Liapunov 

exponent. Figure 5. 25 b) shows the results of evaluation to the exponents. No 

exponents before and after the change are positive with sufficiently large value, i.e.,  
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Figure 5. 25. Daily check for a) dimension and b) Liapunov exponent calculated with 

the simulated historical nodal price data plotted in Fig. 5. 13  

b) 

a) 
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bigger than 0.5. From both results, the agent finds that there was a consistent change 

in the strategies of its competitors, and the system settled into a new equilibrium. At 

Day 9, the Liapunov exponent shows a positive value, but the dimension check shows 

no change in the state. In such a case the Liapunov exponent is ignored since the 

dimension check is more reliable. 

 

 For showing the offer behavior of the agent, the main variables were plotted in 

Figure 5. 26. a). The pictures in the left hand side show the degree of speculation and 

those in the right hand side illustrate the maximum offer price, respectively. In the 

situation for second rows in the figure, competitors are less speculative, and the 

chance that the agent gets price spikes is much lower than that in the 3rd row. The ratio 

between the two variables was calculated and plotted in Figure 5. 26. b). The figures 

clearly show that the ratio decreases when the competitor gets more speculative, i.e., 

the market that the agent faces becomes less competitive accordingly. It is an 

interesting result since the ratio changed in the opposite direction in comparison to the 

case for the agent with locational benefit. When the market is less competitive, the 

agent can take advantage of its competitors if it can. However, the market does not 

become sufficiently volatile due to the change in the strategy of Firm 6. Consequently, 

the agent may have options; it makes the market more volatile by submitting more 

speculative offer, or it takes a small advantage out of the change. Optimization process 

finds a better way in maximizing its profit. In such a situation, the process finds that 

more speculative is a better way to maximize its earning. For cooperating with the 

Firm 6 that changed the strategy, the agent tries to help by withholding more, or being 

more speculative. Note that the agent may do both. The former decreases the MOP, 

while the latter increases DOS.  Therefore, both cases result in decreasing the ratio of 

MOP/DOS. 
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Figure 5. 26. The main variables and the ratio between the variables over periods 

obtained from the simulation described in Fig. 5. 13; the black lines in a) represents 

the mean values of the variables during the period 

b) 

a) 
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For a more competitive situation, the ratio increases in order to compete the 

“updated” competitors. For an agent without locational benefit, the unit that it owns 

may not be required to meet the demand. In such a case like competitive market and 

no locational benefit, speculation may increase the probability of not being dispatched. 

In order to avoid being de-committed, it tries to compete against its competitors. Then, 

it may decrease DOS or withhold less quantity, and accordingly increase MOP. 

Therefore, the ratio increases, which is the opposite case when the agent has locational 

benefit. 

 

The agent manages to keep the nodal price about $ 500/MWh and $ 900/MWh for 

before and after the change in the strategy of Firm 6, respectively. Figure 5. 27 shows 

the simulated historical earnings for both cases from the simulation as was described 

in Fig. 5. 13. The results were almost identical to the cases described in the 

Section 5.4.4. The error after learning period and before the change in the strategy of 

Firm 6 was 19 %, and that after the change was 1 %. 
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Figure 5. 27 Simulated historical data for the actual and expected earning of Firm 1 

from the cases described in Fig. 5. 13 in blue and red lines, respectively. 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORK 

 

 

Restructuring of electricity systems has been ongoing around the world for several 

decades. New auction based markets are considered more efficient, but less efficiency 

have been observed. Demand-side participation was claimed to make market more 

efficient due to the fact that only small portion of reduction in demand can reduce the 

number of price spikes significantly. For a better design, the implementation of such 

an agent must be in favor of end consumers such as less involvement and higher 

earning. To maximize demand-side profit with less involvement, distributors, such as 

NYSEG, participate in the market on behalf of end consumers, and submit an optimal 

bid. This dissertation has discussed the properties of demand and developed an 

optimal bidding function. A simulation with such demand-side agents shows a 

significant increase in market efficiency. 

 

When a supply-side agent is introduced into a new unknown market, it tries to find 

what is happening. With available information, it can have a good knowledge on the 

market including network. However, the state of a market including the strategies of 

competitors is subject to change. The change in the market state might be either 

consistent or fluctuating. An optimal strategy should not change for simple 

fluctuations. Under the rule that no communication is allowed amongst suppliers, the 

agent should monitor the market state due to any consistent change based only on 

publicly available data such as nodal price. However, the data are affected in a way 

due to unknown offer strategies of competitors and network. The complicated nature 

of electric power markets makes a systematic study on the field difficult. This 
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dissertation primarily investigates finding an optimal strategy for a supply-side agent 

by using theoretically derived modeling and a market dynamic toolbox. 

 

For a supply-side modeling, the objective of offer for quantity was discussed. Based 

on the discussion, a new model was developed and a differential equation was 

constructed to find an offer function. The resulting offer function theoretically derived 

from modeling fits existing offer data obtained from the 

Pennsylvania-New Jersey-Massachusetts market in 1999 successfully. Only small 

number of variables is needed to describe an offer curve instead of many quantity and 

price pairs for all the blocks submitted. Consequently, it is possible to assign the 

earning from each period into the number of variables.  

 

As long as a system stays an equilibrium state, it is possible to estimate the market 

state with a relatively small error. In the case, time is not a variable to specify the 

state, i.e., it is not important when one explored the market. Therefore, all the data or 

any part of data observed are relevant to specify the system. For a given system in an 

equilibrium state, one needs some number of independent variables to describe the 

system, dimension. The value of dimension does not change if the system stays in the 

same equilibrium state or even a strange attractor. The number is closely related to the 

degree of freedom which the system has. Once the system evolves, one must check if 

the system settles into a new equilibrium or a chaotic state. In both cases, the degree of 

freedom changes as the system evolves, and consequently the dimension changes too. 

For the former case, relaxation time is an important quantity evaluating how long it 

will take for the system to reach another equilibrium. A similar quantity exists in the 

latter case such as a Liapunov exponent quantifying how long it will take for initially 

close states to separate far apart. The new quantities such as the dimension and a 
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Liapunov exponent gives an agent a way how to check the change in system as well as 

to decide which part of data should be used for estimating a future state. Those 

quantities were evaluated with the nodal price data obtained from the New York ISO 

web site during spring-summer 2003. The results tells that a systematic change 

occurred for the market state that a generator located in NYC area faced as season 

changed from spring to summer as demand increased consistently. 

 

To construct a mapping function from an offer to earning, an unknown market was 

linearly superposed in terms of known types of competitors. The known types of 

agents are implemented based on the fact that the degree of speculation is the most 

important factor to affect earning. With the setup, an agent has an implicit way to 

recognize the market which it participates in. The linear superposition allowed a 

numerical mapping function and numerical optimization process.  

 

Four different categories of simulations were performed for different competitors; 

one nearest competitor 1) did not change the strategy, 2) changed strategy 

consistently, and 3) external flow existed without knowledge of the agent of interest. 

All the simulations in the different setups with a supply-side agent showed that its 

performance is significantly better than that of random offer. Once a competitor 

changes the strategy, the dimension and a Liapunov exponent give a signal to an agent 

to inform the change. With help from the tools, an agent adjusts its scenario set for 

spanning the real world to have a better understanding on the real world. After the 

adjustment, an agent re-evaluated all the quantities such as scenario set and weight 

factor distribution. When it has no information on the network change, such as change 

due to an external flow, it assumes only change in competitors’ strategies alters the 

market state. As a result, the discrepancy between the inner and the real world gets 
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bigger. In all the simulations, the agent found an optimal offer to maximize its profit, 

and it maintained the nodal price above a certain level depending on its competitors.  

 

The supply-side agent designed in this study is a unique agent able to properly deal 

with transmission network, and it also performs well under stochastic demand. The 

strategy used by the agent under unknown situation was found to be consistent, which 

explains why it performs well. In the analysis of the offer behavior, the degree of 

speculation and the maximum offer price are key features to show how the agent 

reacts against the change in the market state. The ratio between them indicates the 

offer strategy of the agent in maximizing its profit. 

 

Due to its computational expense, a larger system than IEEE 30-bus system was not 

tried in this study. Most computational burden in this study was function evaluation 

since it needs to run for multiple AC OPF’s. However, each run can be parallelized 

which result in less computation time and space.  

 

When an agent assigns a wrong reason for the change in the state of market, its 

performance is not good. In such a case, the error between estimated and actual 

earning is rather high, which is a signature of wrong reasoning. A new tool is required 

to detect such a signal in order to improve the performance of the agent. 

 

Appendix A gives a way to an agent to check if a generator or subset of generators 

have market power. Once the agent finds out it has market power, there is a way to 

exercise its market power to increase its earning. If a subgroup has market power, the 

agent can construct a long term strategy for an investigation. In this study, such a long 
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term plan is not considered. However, it is reasonable for an agent to get such a plan 

as long as the plan might increase long-term profit.  

 

With properly designed agents with tools mentioned above, the market behavior 

such as price can be forecasted. Based on the forecast, it is possible to construct a 

toolbox for operating and planning a power system. 
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APPENDIX A 

GENERATION SENSITIVITY MATRIX FROM A NETWORK 

TOPOLOGY 

 

Based on offers submitted by participating generators, a system operator finds an 

optimal solution to minimize whole system cost while all constrains are met such as 

power balance equations and voltage constraints etc. From the solution, a generation 

setpoint which comprised of generation and price is determined. Consider a following 

economic dispatch problem: 

 

( )
lossD

T

iii

T

g

PPg

capacitygFflow

gc

+=

≤=

1                

 subject to

min

               (A.1) 

where F is part of PTDF matrixA1 whose dimension is (number of lines)-by-(number 

of dispatched generators, n),  

 

Lagrange relaxation technique is a well developed technology to solve such an 

optimization problem by forming a Lagranian: 

 

( ) ( )
****  and ,,

1

σµλ

σµ

g

WgflgPPgcL T

lossD

T

→

−+−++=
               (A.2) 

where g, λ, µ and σ stand for real power injection, locational marginal pricing (LMP, 

λ), shadow price of power balance equation and shadow price of binding line 

constrains, respectively. 

                                                 
A1 Power transfer distribution factor, sometime it is called a shift factor 
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From the solution, g and λ are sensitivities of total system cost with respect to 

LMP and real power injection, respectively. It is possible to construct a sensitivity 

matrix of generation (real power injection) with respect to LMP, i.e., 

 

( ) λλλλλλ ∆=∆↔∇=∇∇=∇≡ MgZZgM               (A.3) 

Note that M is a Hessian matrix with a dimension of n-by-n. Consequently, M is 

symmetric, i.e., MT = M. Since (A.1) is degree one homogeneous in price, M has only 

one structural eigenvector, corresponding eigenvalue is zero. Therefore, change in 

price along LMP does not alter generation. 

 

0*
* ==∆=∆

=∆
λλ

λλ
cMMg

c
                          (A.4) 

where c is non zero scalar. 

 

 One can write following Kuhn Tucker optimality conditions: 

 

( ) 01 *** =−∇−−=∇= σµλ T

lossgg EPLf            (A.5.1) 

01 ** =−−=∇= lossD

T PPgLh µ                     (A.5.2) 

0* =−=∇= EgflowLfl σ              (A.5.3) 

where E is part of F matrix for congested lines; the dimension of E matrix is m’-by-n. 

E is comprised of row vectors of F matrix only for the lines whose constraints are 

binding, i.e., congested lines. 

 

By solving equations (A.5.1), (A.5.2) and (A.5.3), generation setpoints as well as 

all shadow prices can be obtained. If offers in the original optimization problem (A.1) 

is replaced with LMP and then re-solved, the solution should be invariant due to the 

definition of LMP. 
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 Suppose that the price replaced is perturbed from the exact LMP. Then all the 

parameters like real power injection and shadow prices (µ and σ) will be changed. 

However, by the property of optimization with a linear objective function and with 

convex constraints, the subset of active constraints does not change. Note that a linear 

programming, LP, with convex constraints finds solution at one of extreme pointsA1. 

Therefore, the optimality condition is only perturbed around the original points: 

 

( ) ( )
( )[ ] σ

µ
µλ

µ

σµµλ

∆
∆
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∆
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=∆−∇−∆−∆∇+∆=∆

T

lossgglossg

T

lossglossgg

EgPP

EPgPf

11
1

01

***

***

             (A.6.1) 

( ) 01 * =∆∇−=∆ gPh
T

lossg                      (A.6.2) 

( ) 0** =∆=−∆+=∆ gEEgggEfl             (A.6.3) 

 

Combining equations (A.6.1) and (A.6.2) gives, 

 

( ) ( )[ ] 0
11

1 *** =∆∆
∆

−∆∆∇+∆
∆

=∆∇− gEggPgP
TT

lossgg

T

lossg σ
µ

µλ
µ

           (A.7) 

Since the second term in equation (A.7) vanishes by using equation (A.6.3) and ∆µ 

is a scalar, equation (A.7) gives a following expression for M matrix by using the 

definition of M matrix as given in equation (A.3): 

 

( )[ ] 0** =∆∇+∆ λµλ MMPI
T

lossgg

T                    (A.8) 

 

Note that equation (A.8) needs to be satisfied for all ∆λ. Consequently, one can write a 

following equation: 

                                                 
A1 The corners or vertices of the feasible region 
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[ ] ( ) 00*1 =↔==+−
BAMMBAMBMB

TTTT

µ                  (A.9) 

where **1  and lossgg PBMBA ∇≡+≡ − µ  

 

Note that B matrix is symmetric since B is a Hessian matrix of loss, and 

consequently so are B-1 and A. From the definition of A matrix, one can find the inner 

product of A and LMP: 

 

[ ] *1***1**1* λλµλλµλ −−− =+=+= BMBMBA                 (A.10) 

 

Congestion makes the power system restricted in a certain way such that only 

certain patterns of perturbation in generation are allowed. Therefore, in this study, 

uncongested case and congested case will be discussed separately. 

 

 

 

Uncongested network 

 

If there is no binding line constraint, the system is similar to networkless except 

loss. In the case, LMP is the sum of the system marginal cost of generation and 

delivery cost. Since no line constraint is binding, delivery cost is not high. Therefore, 

each price has similar value with each other. From the last expression in equation 

(A.9), one can find following relations for each column of the resulting matrix (BA): 

 

( ) 0=jbaM  for j  =  1,…, n                       (A.11) 

where ba is a column vector of BA matrix. 
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As was discussed earlier, M matrix has only one structural eigenvector which is 

parallel to LMP for an uncongested case. Consequently, all the columns of BA matrix 

must be parallel to the structural eigenvector which is also parallel to LMP. Therefore, 

all the columns of BA matrix are parallel to LMP, i.e.: 

 

[ ] nn

nBA
××== 11***

1 αλλαλα L              (A.12) 

where α is a row vector whose elements are all proportionality constants of each 

column vector of BA matrix. 

Since B is given and invertible matrix, one can rewrite equation (A.12) in a following 

way: 

 

nnnn
BA

××××− == 1111*1 αδαλ               (A.13) 

where δ = B-1λ*. Since A is symmetric, Aij = Aji, i.e.: 
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Therefore, 
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By using equation (A.10), one finds: 
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From equations (A.15) and (A.16), A and M matrix can be found: 
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               (A.18) 

 

Congested network 

 

From equation (A.6.3), one finds 

 

00 =→=∆=∆ EMEMgE λ                     (A.19) 

Note that left hand side of arrow holds for all perturbation of LMP. Since LMP stays 

on the null space of M matrix, the null space of M is composed of LMP and row 

vectors of E matrix. From equation (A.9), ATBTM = ABM = 0 since A and B are 

symmetric matrices. Consequently, each row vector of AB matrix lies on the null 

space of M matrix, i.e., each row vector if AB matrix is linear combination of ej  (j = 1, 

…, m’) and λ*T where e is a row vector of E matrix. Therefore, AB matrix can be 

expressed in terms of E and LMP in a following way: 
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where α’s stand for proportionality factors, m equals to m’ + 1, and L represents an E 

matrix with one additional row of LMP. 

 

By multiplying B-1 on both sides, one will get: 
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where G is defined LB-1. 

 

Since A is symmetric, one can get: 

 

( ) 1111111111 GGGGG
TTTTT ααααα −=→==          (A.22.1) 

( ) 112

1

1122121221 αααααα TTTTTTT
GGGGGGG

−− ==→==         (A.22.2) 

 

Combining equations (A.21) and (A.22.2) gives: 
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Note that G is known, then only unknown in equation (A.23) is α1. 

By using equation (A.10), one finds: 
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Note that: 
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Let C be BGTG1
-T, then: 
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Combining equations (A.24) and (A.26) gives: 
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Equation (A.27) shows that only m prices among n are independent and rest can be 

calculated from the m price by using network parameters.  

 

One can also find price explicitly in a following way: 
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By substituting expressions for C’s as given in equation (A.26), LMP is: 
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Equations (A.27) and (A.29) can be combined to lead to: 
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Equation (A.30) is valid for all *

1λ , which results in: 
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A and M matrix can be found by combining equations (A.23) and (A.31) in a 

following way: 
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=

===

LBLLBLB

LBLBBLBLBGGBGGGGGA

TT

TTTTTT α
             (A.32) 

( )[ ] ⎟⎟
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⎞
⎜⎜
⎝

⎛
=−= −−−

−

T

TT
E

LILBLLBL
B

M
*

111

*

1

 where          
λµ

           (A.33) 

M matrix can be calculated by using equations (A.18) and (A.33) with publicly 

available and predictable data such as LMP, B and PTDF matrix.  

 

 Market power is very closely related to M matrix since change in revenue 

according to change in price can be calculated in a following way: 

 

( )

( )[ ] ( )[ ]
iiii

ii

j

jijiiiiiiii

gDiagMDiag

gMgggr

λλλ

λλλλλλ

∆+∆=

∆+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆=∆+∆=∆=∆ ∑

**

****

     

                            (A.34) 

( ) ( )[ ] λλ ∆+=∆ **

ii gDiagMDiagr                            (A.35) 

 

If an agent owns multiple generators, then by using equation (A.35) it can find if it 

has market power as a group and furthermore can have a guideline of the way to 

exercise market power before submitting its offers. 
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APPENDIX B 

ERROR MINIMIZATION WITH 2-NORM 

 

A good weight factor distribution gives an estimate to the market providing which 

norm should be chosen. In this study, 2 norm is chosen. QR-factorization is a very 

stable way to solve LLS, where Q is an orthogonal matrixA2 and R is upper triangular 

matrixA3. 

 

( ) ( )
( )

( )
( )

2

1

2

1

22

222

222

min  

min

 minmin 

min  min  min 

bQRx

bQRxRQ

bQxRQbQxRQ

bQQxRQbIxRQbxA

T

T

TT

T

⋅⋅−↔

⋅−=

⋅−⋅=⋅−⋅⋅=

⋅⋅−⋅⋅=⋅−⋅⋅=−⋅

−

−
         (A.36) 

When only n number of components exists in the set, non-zero elements in R matrix 

are n2 and multiplying QTb costs only m-by-n since the multiplication is only between 

matrix and vector. Beside the computational efficiency, orthogonal matrix Q could be 

well defined even for an ill-defined matrix.  

 

Another approach is LU-factorization. When matrix A is m-by-n matrix with m 

greater than n, L is m-by-n and U is n-by-n matrix. While the diagonal element in L is 

ones, all the ill-defined property enters into U, i.e. there are r zeros in the diagonal of 

U matrix if r columns are a linear combination of (n – r) columns. Since r columns are 

dependent, there is only (n – r) information available which means that r variables in x 

vector cannot be uniquely defined. Note that one can arbitrarily assign values for 

                                                 
A2  a matrix containing column vectors orthogonal with each other, i.e.,  

IQQQQ
T =⋅=⋅ −1  where T stands for transpose and I is an identity matrix 

A3 a matrix that all the elements under the diagonal are zeros 
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undetermined variables without increasing error. From the properties of U matrix 

being an upper triangular matrix, the corresponding elements to the zero diagonal 

element in U matrix can be set to zero arbitrarily. Then the r columns in U matrix are 

meaningless to determine elements in x since the columns are multiplied with zeros. A 

reduced U matrix that is the U matrix where those r columns were deleted is well 

defined. Consequently, the LLS problem for the reduced U matrix and vectors x and 

b’ (= L-1(PTb)) yields a 2-norm minimizing weight factor distribution vector x.  

 

( )

( )
21

1

11

2

1

22

min 

min  

min  min 

bLxU

bLxU

bxULbxA

⋅−⋅↔

⋅−⋅↔

−⋅⋅=−⋅

−

−              (A.37) 

Figure A-1 illustrates the procedure described in equation (A.37) schematically. It 

should be noted that the above argument is only valid for a stationary system.  
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Figure A-1. A schematic diagram for explaining how to determine a weight factor 

distribution, x, a) by using traditional LU-factorization and b) by using 

LU-factorization where b’ = L-1(PTb). The thick arrows show where zeros could be 

assigned in the vector x, and eliminating R rows from U and the assigned elements 

from x yields U’ and x’, respectively. 
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APPENDIX C
A4

 

TRUST REGION METHOD  

 

Trust Region Method for Unconstrained Minimization Problems 

 

Trust region methods are widely and successfully used for unconstrained 

optimization process due to its strong convergence and fewer numbers of iterations. 

However, the cost of the linear algebra for the methods is higher. Consequently, trust 

region methods are effective on highly nonlinear problems of which function has high 

cost to evaluate. This method is recently proven to work successfully in solving 

problems to the large-scale setting.  

 

When a function f is twice continuously differentiable, Taylor series expansion of f 

gives 

 

( ) ( ) ( )22

2

1
sosfssfxfsxf k

TT

kkk +∇+∇+=+             (A.38) 

where o(x) stands for the quantity approaches zeros faster than x when x goes to zero. 

Consequently, sfssf k

TT

k

2

2

1
∇+∇  equals to the change in f, ( ) ( )kk xfsxf −+ , 

approximately around xk ∈ Rn. The trust region subproblem can be defined at xk;  

 

⎭
⎬
⎫

⎩
⎨
⎧ ∆≤∇+∇ kk

TT

k ssfssf
2

2 :
2

1
min               (A.39) 

 

Note that equation (A.39) is a little bit different from general trust region 

subproblem in that 2-norm is used because 2-norm may allow an efficient global 

                                                 
A4 Most part of Appendix II were taken from the textbook [T. F. Colman and A. Verma,  
“The Solution of Large-Scale Optimiztion Problems”, Cornell University, Ithaca, NY  
2003) 54-61] 
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solution. Equation (A.39) defines a trial step for sufficiently small ∆k and 

( ) ( )kkk xfsxf <+  . It is noteworthy that the subproblem is well defined regardless of 

kf
2∇  enough not to assume that kf

2∇  is positive definiteA5. There are three different 

cases for kf
2∇ . For a positive definite kf

2∇ , the solution to the subproblem is the 

Newton step, ( ) kk ff ∇∇−
−12  for a large value of ∆k. When the smallest eigenvalue of 

kf
2∇  is negative, the solution sk satisfies ||sk || = ∆k

A6. If the smallest eigenvalue is 

zero, a (not unique) solution exists on the surface of n-ellipsoid. A general procedure 

of trust region method is following; solve equation (A.39) for trial step sk, and 

calculate ( )kk sxf + , kk

T

kk

T

k sfssf
22/1 ∇+∇  and 

( ) ( )[ ] [ ]kk

T

kk

T

kkkk sfssfxfsxf
22/1/ ∇+∇−+ , and then adjust the size of n-ellipsoid, 

∆k; for a large ratio, ( ) ( )[ ] [ ]kk

T

kk

T

kkkk sfssfxfsxf
22/1/ ∇+∇−+ , decrease the size, 

and for a small ratio, increase the size, and otherwise, maintain the size. Repeat these 

procedures until stopping criteria is met. The constants to define the size of ratio and 

to decide how much increase or decrease are predetermined and do not change with 

the period k. The main advantage of the trust region method (less number of function 

evaluation) comes from updating algorithm: update kkk sxx +=+1  only for positive 

ratioA7 (whenever moving by sk decreases the value of f). Generally speaking, the ratio 

tells how well the solution to equation (A.39) predicts the real change in f; the higher 

value the ratio is, the better the performance is.  

 

                                                 
A5 positive definite matrix means a matrix of which eigenvalues are all positive 
A6 if kks ∆< , sk is an unconstrained local minimizer of an indefinite quadratic 

function which is impossible 

A7 for non-positive ratio, ( ) ( )kkk xfsxf ≥+  since kk

T

kk

T

k sfssf
2

2

1
∇+∇  is negative; 

note that sk is the solution of the subproblem (equation (A.39)). Since equation (A.39) 
is minimization problem and zero is a trivial solution for equation (A.39) satisfying 

the constraint, kks ∆≤  when sk = 0, kk

T

kk

T

k sfssf
2

2

1
∇+∇  must be negative 
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Suppose there are s* and λ* satisfying following equations: 

( ) gsIH −=+ λ                 (A.40) 

( ) positive is IH λ+ semi-definite              (A.41) 

∆≤
2

s                  (A.42) 

( ) 0
2

=∆− λs                 (A.43) 

 

From equations (A.40) and (A.41), s* is the unconstraint minimizer of the quadratic 

function ( )sIHssg
TT

*
2

1 λ++ . Consequently, one can find a following inequality: 

 

( )2

2*

2

2

*
***

22

1

2

1
ssHsssgHsssg

TTTT −++≤+
λ

            (A.44) 

For all feasible s, ( ) 2/
2

2*

2

2* ss −λ  is non-positiveA8, i.e., s* is the global solution to 

the subproblem. Since s* is the global solution, applying equation (A.40) in equation 

(A.44) allows: 

 

( ) ( )
( )

( ) ( ) 0
22

      

2

1

2

1

2

1

2

1

22

1

2

1

**
*

****
*

*****

2

2*

2*
***

≥−+−+−+

−+−+−=

−+−+−

ssssssssssss

HssHssHssHssssg

ssHssHssssg

TTTTTT

TTTTT

s

TTT

λλ

λ

           (A.45) 

Since *Hss
T  and *ss

T  is a scalar, they equal to their transpose 

( ( ) HsssHsHss
TTTTT

*** == A9 and ( ) ssss
TTT

** = ). By the same argument, 

( )[ ] ( ) ( )****** ssHsssHsHsss
TTTTTT −=−=− . Consequently, one obtains: 

                                                 
A8 from equation (A.43), λ* = 0 or ||s*||2 = ∆, and ||s||2 ≤ ∆ for all feasible s from 

equation (A.42), consequently, ( )2

2*

2

2

*

2
ss −

λ
 is non-positive 

A9 H is a Hessian matrix which is symmetric, i.e., HT = H 
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( ) ( )( )

( ) ( ) 0
22

1

2

1

22

1

2

1

2

1

2

1

**
*

*

**
*

*****

≥−⎥⎦
⎤

⎢⎣
⎡ ++++=

−++−+−+−

ssssHsHsg

ssssHssHssHssHssssg

TTTT

TTTTTTT

λ

λ

        (A.46) 

From equation (A.40), the expression for the transpose of g is obtained; 

( )[ ] ( ) ( )IHsIHssIHg
TTTTTTT

***** λλλ +−=+−=+−= . Therefore, an inequality is 

derived from equation (A.46) in a following way: 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )( ) 0
2

1

22

1

22

1

2

1

***

**
*

***

**
*

*

≥−+−=

−⎥⎦
⎤

⎢⎣
⎡ +++++−=

−⎥⎦
⎤

⎢⎣
⎡ ++++

ssIHss

ssssHssIHs

ssssHsHsg

T

TTTT

TTTT

λ

λ
λ

λ

           (A.47) 

Equation (A.47) implies that the matrix H + λ*I is positive semi-definite.A10  

  

Suppose H = VΛVT where the columns of V are orthonormal eigenvectors of HA11. 

Then, equation (A.40) and substitution of sVs
T=  allow: 

 

                                                 
A10 from [D. Sorenson, “Trust Region Methods for Unconstrained Optimization”,  
SIAM J. Numer. Anal., 19 (1982) 409 – 426] 
A11 for a symmetric matrix H, 

real) is ( 
1

2∑
=

=↔==↔=
n

i

i

TT
vvvHvvvHv λλλλλλ , then there is a set of 

orthonormal eigenvectors of H, i.e., qi for i = 1 ~ n such that ijj

T

iiii qqqAq δλ == , ; in 

a matrix form, there is an orthogonal V such that TT
VVHHVVHVV Λ=↔Λ==−1  

where Λ is a diagonal matrix of which diagonal elements are the eigenvalues of the 
matrix H 
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( ) ( ) ( ) ( )
( ) gVsI

gsIVsVVIVsVIHsIH

T

TT

−=+Λ≡↔

−=+Λ=+Λ=+=+

λα

λλλλ
          (A.48) 

Since H + λI is a positive semi-definite matrix by equation (A.41), all the λ must be 

bigger than or equal to the smallest eigenvalue of H, λ1. Consequently, all vectors 

satisfying equations (A.40) and (A.41) are expressed in a following way: 

 

{ }{ }
∑ ∑

>+ =+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
0: 0:λλ λλ

β
λλ

α

i ji j

jji

i

i vvs               (A.49) 

 

By assuming the form for s is given in equation (A.49), setting ||s|| = ∆ gives an 

algorithm to find a trial stepA12. There are different cases depending on the smallest 

eigenvalue of H (λ1) for obtaining expression for s. For positive λ1, if the Newton step 

is inside the n-ellipsoid, ||H-1g|| ≤ ∆, the optimal solution is the Newton step,  

gHs
1

*

−−=  and 0* =λ , otherwise, ( ) ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
n

i

i

i

i vs
1 λλ

α
λ  for non-negative λA13. For  

non-positive λ1, there are two different cases depending on α (when denominator in 

equation (A.49) equals to zero), αi is zero or it is not. If αi is zero, then set  

( ) ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
n

i

i

i

i vs
1 λλ

α
λ  leading to one solution to ||s|| = ∆A14. If αi is not zero, the 

expression for s(λ) does not hold since it diverges at λ = –λ1. To make use of general 

                                                 
A12 note that if ||s|| ≠ ∆, λ = 0 by equation (A.33) and ||s|| < ∆ by equation (A.32) which 
gives a trivial solution 
 
A13 note that ||s(λ)|| approaches zero as λ diverges 

A14 ( ) ∞→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∑
=−→−→ ++

n

i

i

i
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1

limlim
λλ

αλ
λλλλ

, ( ) 0limlim
1

→⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

= ∑
=

∞→∞→

n

i

i

i

i vs
λλ

α
λ

λλ
 and 

the convexity of ||s(λ)|| imply that ||s(λ)|| intersects ∆ in exactly one place for λ > –λ1 
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form of s, equation (A.49), s1(λ) is defined as ( )
{ }

∑
>+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
0:

1

λλ λλ
α

λ
ii

i

i

i vs , and then if 

( )
{ }

∆≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=− ∑
> 1: 1

11

λλ λλ
α

λ
ii

i

i

i vs , there exist λ satisfying ||s|| = ∆ then  

( ) ( )
{ }

∑
>+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

==
0:

1

λλ λλ
α

λλ
ii

i

i

i vss , otherwise, ( )
{ }{ }

∑ ∑
> =+

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
1: 0:1λλ λλ

β
λλ

α
λ

i ji j

jji

i

i vvs  

with a proper choiceA15 of β to satisfy ||s|| = ∆.  

 

 

Minimization Problems with Box Constraints
A16

 

 

As was mentioned in chapter two, an offer equation has two short term variables 

bounded with box constraints. Trust region method is described for unconstrained 

problems here. When constrains have been added to a problem, finding a solution gets 

more difficult. There was an approach to solve such nonlinear problems by using 

interior trust region method, which gives strong convergence.  

 

The problem considered here is following: 

( ) uxlxf
nRx

≤≤
∈

 subject to min               (A.50) 

                                                                                                                                             
 

A15 
{ }

∑ ∑
>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−∆=
i i

i

i

i

i

i

v
1: 1

22

λλ λλ
α

β  – from orthogonality – and 1* λλ −=  

A16 Most part taken from [T. F. Coleman and Y. Li, “An Interior Trust Region 
Approach for Nonlinear Minimization Subject to Bounds”, SIAM J. Optimization, 6 
(1998) 418 – 445] 
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where l and u are lower and upper limits for x, and the objective function f is the 

negative value of earning.  

Among feasible set, int(F) is defined as ( ) { }uxlxF <<≡ :int  which is whole feasible 

region excluding the boundary. Let define a vector v(x) ∈ Rn and a diagonal matrix 

Diag(x) for each component 1 ≤ i ≤ n; 

 

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛≡

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−∞=≥
∞=<−

−∞>≥−
∞<<−

≡

−
2

1

i

i

ii

ii

 and 0 g if             1

 and 0  g if         1

 and 0  g if     

   and 0 g if    

xvdiagxDiag

l

u

llx

uux

v

i

i

ii

ii

i

             (A.51) 

where g is the first derivative of f(x). 

 

By using the definitions, the first-order necessary conditionsA17 for a local 

minimizer x* can be expressed in a following way: 

 

( ) ( ) 0

 if        0

 if         0

 if   0
2

**

**

**

=⇔
⎪
⎩

⎪
⎨

⎧

=≥
=≤
<<=

−
xgxDiag

lxg

uxg

uxlg

iii

iii

iiii

            (A.52) 

By the definition of Diag(x), the points where vi equals to zero must be avoided. It can 

be easily done by letting x to be in int(F). If x is in int(F), one can find a Newton step 

satisfying equation (A.52): 

 

( ) ( )[ ]
kkk

v

kkkk gDiagdJgdiagxfDiag
222 −− −=+∇             (A.53) 

                                                 
A17 for an continuously differentiable function f on an open set , n

RDiag ⊆ , a  local  

minimizer x* satisfies ( ) 0* =∇ xf  
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where Jv is the Jacobian matrix of |v(x)|. 

Let the ith row of Jv set to be zero, and then all the points are differentiable if all the 

elements of the vector gk since vi is not zero for x inside int(F). Consequently, for the 

problems with finite constraints, ( )[ ]gsigndiagJ
v = . Coleman et alA18 developed a 

quadratic model: 

 

( ) sTssgs k

TT

kk
2

1
+≡ψ                (A.54) 

where ( ) k

v

kkkkk DiagJgdiagDiagHT +≡  

The trust region subproblem with constraints is; 

 

( ){ }kkk
Rs

sDiags
n

∆≤
∈

:min ψ                (A.55) 

By substituting variables in equation (A.54), one can modify equation (A.55); 
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sDiagDiagTDiagDiagssDiagDiagg

sTssgs

kk

TT

k

kkkk

T

kk

T

kk

kkkkk

T

kk

T

k

k

TT

kk

ˆˆˆˆˆ
2

1
ˆˆ           

2

1
           

2

1
          

2

1

111

111

ψ

ψ

≡+=

+=

+=

+≡

−−−

−−−

         (A.56) 

where 

( ) v

kkkkkkkkk

kkkkkk

JgdiagvdiagHvdiagDiagTDiagT

sDiagsgvdiaggDiagg

+⎟
⎠
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⎜
⎝
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⎠
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⎜
⎝
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⎜
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⎛==

−−

−

2

1

2

1
11

2

1
1

ˆ

ˆ  ,ˆ

         (A.57) 

                                                 
A18 T. F. Coleman and Y. Li, “On the Convergence of Reflective Newton Methods for 
Large-Scale Nonlinear Minimization Subject to Bounds”, Math. Programming,  
67(1994) 189 - 224 
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Consequently, one can write a trust region subproblem in a following way, which is 

the same form as that for unconstraint problem: 

 

( ){ }kk
Rs

ss
n

∆≤
∈

ˆ:ˆˆmin
ˆ

ψ                (A.58) 

A solution to equation (A.58) gives a trial step for the trust region method. Let dk be a 

trial step obtained from the solution to equation (A.58). Since the control variable x is 

constrained, x needs to be in the boundary; there is bound for a step-size  

 

⎭
⎬
⎫

⎩
⎨
⎧

≤≤⎥
⎦

⎤
⎢
⎣

⎡ −−
≡ ni

d

xu

d

xl

ki

kii

ki

kii

k 1:,maxminα             (A.59) 

The minimum value of ψk(s) along the direction dk within the trust region is  

 

( ) ( ) ( ){ }FdxdDiagddd kkkkkkkkkkk ∈+∆≤≡= τττψτψψ k

**  and :min          (A.60) 

 

In order to guarantee strict feasibility (x ∈ int(F)), a new step obtained from dk with 

step back θk
A19 is defined: 

 

( ) kkkkk dd
** τθα ≡                 (A.61) 

 

Similar to unconstrained problem, trial step is taken only under following 

circumstance in order to make sure that enough value of function f is reduced if the 

step taken: 

 

                                                 
A19 if a trial vector leads to a point on the boundary of constraints , step back makes the 
step take partial movement along the trial step, i.e.,  

[ ) ( ) ( )FdxdO kkkkkklk intfor  1 and 1,1, * ∈+==−∈ τθθθθ  
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( ) ( ) ( )
( ) µ

ψ
ρ >

+−+
=

kk

kk

v

kkk

T

kkkk
f

k
s

sDiagJgdiagDiagsxfsxf
2

1

          (A.62) 

where µ is a positive constant.  

 

For significant reduction of ψk(s), Coleman et alA20 proposed to use a step along the 

scaled steepest descent direction and to take the step only when the value of ψk(s) is 

significantly decreased: 

 

( )
[ ] β

ψ
ψρ >

−
= −

kkk

kkC

k
gDiag

s
2*

               (A.63) 

where β is a positive constant 

 

Only a trial step satisfying equations (A.62) and (A.63) will be taken, i.e., 

double-trust region method. The algorithm is following; Assign positive constants 

quantities defined in unconstrained problems and ( )Fx int and 1,0 0 ∈<<> ηβµ . At 

kth step, Compute ( ) ( ) k

v

kkkkkk DiagJgdiagDiagHgxf  and ,,  to define 

( ) sTssgs k

TT

kk
2

1
+=ψ , and then find a solution to equation (A.55) (pk). With the 

solution calculate following quantities: 
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          (A.64) 

                                                 
A20 T. F. Coleman and Y. Li, “An Interior Trust Region Approach for Nonlinear 
Minimization Subject to Bounds”, SIAM J. Optimization, 6 (1998) 418 - 445 
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Only for a step satisfying equations (A.62) and (A.63) is taken; kkk sxx +=+1 . 

Finally choose the size (∆k+1) of the n-ellipsoidal trust region in a following way for 

21 10 γγ <<< : 
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Then repeat these procedures until stopping criteria is met. 
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APPENDIX D 

CHAOS AND NONLINEAR DYNAMICS 

 

Lorenz equation 

 

Lorenz introduced an equation (so called Lorenz equationA21) of which solution 

settles down to a complicated set in phase space as shown in Figure A-2. The complex 

geometric shape with fine structure at arbitrarily small scale is referred to as fractals. 

When a small part of the shape is magnified, it shows reminiscent feature of the whole. 

The Cantor set is one of most famous examples showing self-similarity. Figure A-3 

illustrates the way how to construct the Cantor set. When a small part of the Cantor set 

is taken and magnified, the part reproduces the whole regardless of the place where the 

part is originally located. The Cantor set is made from a line, closed interval of [0, 1]. 

It is interesting to perform any measurement on the set: usually a physical 

measurement on 1 dimensional space is length. To calculate the length of Cantor set, it 

is more convenient to calculate the sum of length of the parts taken and then to 

subtract the sum from the length of the original interval, unity. The sum of the length 

of left over parts is  
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, where σ, r and b are all positive parameters from Ref. [31] 
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Figure A-2. Solution of the Lorenz equation (in color) and xy, yz and zx 

two-dimensional projections which show artifact crosses 
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Figure A-3. Start with the closed interval S0, [0, 1], and remove the open middle 

third resulting in closed interval S1. The same procedure is kept performed to produce 

S2, S3 and so on. The limiting set S∞ is the Cantor Set 
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Consequently, the length of the Cantor set is zero which might imply a line with 

no length. One may find a contradiction since the set was supposed to be a line. The 

problem in measuring anything in fractals is not confined to 1 dimension. To see the 

problem in higher dimension, consider the von Koch curve (Figure A-4). The length of 

the von Koch curve can be calculated since the length increases 4/3 in every step. As 

the number of step diverges, the length diverges also; ( ) ∞→∞→ n
n

 as 3/4 , but the 

curve does not cover the whole surface. Therefore, the von Koch curve is infinitely 

long curve confined to limited area. Note that the curve is not 2 dimensional object 

This puzzle could be understood when the dimension of the Cantor set is not 1 and 

that of the von Koch curve is not 2. It is noteworthy that the dimensions are 0.63 and 

1.26, respectively which are non-integer. Since the Cantor set contains infinitely many 

points but not many enough to form 1 dimension, the length is zero. To describe 

fractals correctly, dimension need to be defined in a following way; the minimum 

number of coordinates needed to describe every points in the set. This definition 

provides an enumeration of characteristics related to fractals (similarity dimension). 

Suppose that a self-similar set is composed of m copies of itself scaled down by a 

factor of r. Then the similarity dimension is defined in a following way: 

 

r

m
d

log

log
=                  (A.66) 

Equation (A.66) is convenient to define dimension of fractals with self-similarity. 

However, self-similarity is difficult to define for objects in real life. To deal with 

fractals with not evident self-similarity, generalized definition is needed like box 

dimension as was proposed by FalconerA22. Let S be a subset of d-dimensional space,  

                                                 
A22 K. Falconer, “Fractal Geometry: Mathematical Foundations and Applications”,  
Whiley, Chichester, England (1990) 
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Figure A-4. Start with a line segment S0, [0, 1], and delete the middle third and 

replace with the other two sides of an equilateral triangle, S1. Then repeat the same 

step to generate S2, S3 and so on. The limiting set S∞ is the von Koch curve 
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and N(ε) be the minimum number of d-dimensional cubes of side ε needed to cover S. 

As ε decreases, more d-dimensional cubes are required. The box dimension is defined 

in a following way: 

 

( )
( )ε

ε
ε /1log

log
lim

0

N
d

→
=                  (A67) 

To see how it can be used for quantifying fractals in a real life, consider the length 

of the coast of Norway shown in Fig. A-5. There can be many ways to define the 

length of the coast, but it is impossible to measure when all the small interfaces 

between water and sand grain is considered. A good way is shown in Figure A-5: 

count the number of 2-dimensional box to cover whole coast as a function of the 

length of one side of the square. As was shown in the 2nd graph of Figure A-5, the 

coast of Norway shows a linear relationship with dimension of 1.52.  

 

The dimensions discussed before are convenient to define static fractals, but not 

applicable to the chaotic system settling down to a strange attractorA23 in phase space. 

Practical way for describing a dynamic system, a pointwise dimension is introduced. 

For a fixed point x, define Nx(ε) to be the number of points inside a ball of radius ε 

around x. Most of points in the ball come from later parts that just happen to pass 

close to x, and they are unrelated to the immediate portion of the trajectory through x. 

( ) d
xN εε ∝  where d stands for the pointwise dimension at x.  

 

( )
ε

ε
ε log

log
lim

0

xN
d

→
=                 (A.68) 

 

                                                 
A23 an attractor that exhibits sensitive dependence on initial condition 



 

 

163

 

Figure A-5. a) The coast of the southern part of Norway. The square grid indicated 

has a spacing of δ ~ 50 km (taken from the Figure 2. 1 of [J. Feder, “Fractals”, Plenum 

Press, New York and London (1998)]) and b) The measured length of the coastline 

shown in Figure A-5, as a function of the size δ of the δ×δ squares used to cover the 

coastline on the map. The straight line in this log-log plot corresponds to the relation 

L(δ) = aδ1-D ; L, δ and D correspond to N, ε and d in equation (A.67) 

a) 

b) 
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The pointwise dimension may not be a global quantity since it can depend on x. 

Furthermore, there are many practical applications where the geometric object has to 

be reconstructed from a finite sample of data points with errors. In such cases, 

correlation dimension is most widely used. As a system evolves for a long time, one 

can obtain a set of many points {xi, i = 1,…,n} on a phase space. Grassberger and 

Procaccia proposed a way to evaluate dimensions like correlation dimensionA24. For 

an overall dimension, the x-dependent Nx(ε) can be averaged in a following way; 

 

( ) ( ) ( )∑ ∑
= +=

−−
−

≡
N

i

N

ij

ji xxu
NN

C
1 11

2 εε              (A.69) 

where u stands for a unit step function.  

 

The correlation dimension can be derived from an empirical relationship between 

correlation sum, C(ε), and ε; ( ) d
C εε ∝  where d is the correlation dimension. 

Consequently, one can calculate the correlation dimension in the following way: 

 

( )[ ]
ε
ε

log

log

d

Cd
d =                 (A.70) 

The correlation dimension involves an invariant measure supported on a fractal, 

not just fractal itself, i.e., it takes into account of the density of points on the attractor 

resulting in differing from the box dimension by weighing all occupied box equally 

regardless of the number of points. If equation (A.70) were valid for whole range of ε, 

there should be a straight line in log C(ε) vs. log ε - slope d. In most practical cases, 

the power law holds only over an intermediate range. The curve saturates at large 

                                                 
A24 Grassberger, P., and Procaccia, I. “Measuring the strangeness of strange attractors”,  
Physica D 9 (1983) 189 
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values of ε because the balls with radius of ε  surround the whole attractor and 

therefore Nx(ε) cannot grow any further. On the other hand, the balls with extremely 

small radius of ε contains x only. Therefore, the power law holds only in the 

intermediate scaling region. Typical log C(ε) vs. log ε plot is shown in Figure A-6. 

Data only in the region need to be chosen for an evaluation for the correlation 

dimension.  
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Figure A-6 Log-log plot to estimate the correlation dimension of a fractal. 

Typically, the plot shows two bends both at lower values of ε and at higher values of ε 
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APPENDIX E 

STOCK MARKET AND CHAOS 

 

One of early examples is Hurst exponent in Ref. [33] for measuring heights of 

river. Hurst was an English hydrologist, who worked in the early 20th century on the 

Nile River Dam project. When designing a dam, the yearly changes in the water level 

are of particular concern in order to adapt the dam's storage capacity according to the 

natural environment. Studying an Egyptian 847-year record of the Nile River's 

overflows, Hurst observed that flood occurrences could be characterized as persistent, 

i.e. heavier floods were accompanied by above average flood occurrences, while 

below average occurrences were followed by minor floods. In the process of this 

finding, he developed the rescaled range (R/S) analysis. Suppose there exists a time 

series, t, with u observations: 

 

( )∑
=

−=
t

u

NuNt MeX
1

,                (A.71) 

where Xt, N, eu and MN stand for cumulative deviation over N periods, influx in year u 

and average eu over N periods, respectively.  

 

The range becomes the difference between the maximum and minimum levels 

attained in equation (A.71): 

 

( ) ( )NtNt XXR ,, minmax −=               (A.72) 

where R stands for range of X. 

Then Hurst found a following relation 

 

H
NSR ∝/                  (A.73) 
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where S and H represent the standard deviation of the original observation and Hurst 

exponent, respectively. The Hurst exponent has an inverse dependence with the fractal 

dimension. Hurst’s idea of R/S analysis was recently used in analyzing stock markets.  

 

Peters tried to get a fractal dimension of some stock markets in US, UK, Japan and 

German by using historical S&P 500 data, and found they were between 2 and 3 (see 

Ref. [32] for detail). He claimed the method might be useful to estimate likelihood that 

two consecutive events are likely to occur, and tried to show the stock markets did not 

follow a random process. For above stock markets, dimensions were evaluated, and 

then independent variables were identified. Note that a dimension is the minimum 

number of variables to describe all the points in the fractal of interest. However, for 

this technique, it is usually not possible to evaluate the Liapunov exponent and the 

dimension of a fractal without pretreatment since the measured data contain a large 

error. Thus, it is necessary to eliminate or reduce the effect of error. First, based on 

assumption that the distribution of errors was known, it adds the known type of error 

to the measurement. Then, measured data are “filtered out” in order to reduce error. 

This error reduction process gives rise to major criticismA25, and makes analysis on a 

stock market arbitrary.  

 

 

 

 

 

                                                 
A25 if added error does not follow the original error distribution and it has a bigger 
contribution to the values for the quantity to be estimated than original signal, 
“filtering out” process may wash off the original signal and leftover value represents 
only the arbitrary added error 
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