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Electric Quadrupole Coupling of 

"'lith the Rotation of a Polar 
in an External Electric Field 1 

the Nuclear Spin 
Diatomic Molecule 

By U. Fano 

. Formulas are given that serve to de termine the hyperfine spectrum of a roLatilig molecule 

111 various cases, depend ing on the external field strength and on the rotational quantum 

number. A complete calculation is carried out for a ca e in which only one of the nuclei 

has. a quadrupole moment, the molecule is in a rotational state (1: ± 1 or 0), and the inter­

action between the field and the molecular dipole is comparab le to t hat between the dipole 

and th e nuclear spin. 

1. Introduction 

The rotation of a polar diatomic molecule in an 

e l e~tric field has been discussed theoretically by 

vanous authors, particularly by Brouwer [IV 

Experimentally, this problem is being inve ~ tigated 

at Columbia Univer ity u ing a modification of 

the standard molecular beam radio-freq uency reso­

nance method [2], in which the beam is subjected to 

electric instead of magnetic field [3]. The method 

permit3 the energy differences beLween rotaLional 

state, of the molecule to be measured. Various 

spin-dependent interactions between the nuclei 

and the rest of the moleCllle may give rise to a 

hyperfine structure of the rotational spectrum. 

The electric quadrupole interaction between the 

nuclei and the molecular electrons, if present at 

all, ie likely to be the major factor in this connec­

tion and is the subjcct of the present theoretical 

investigation. 

JJ;[olecular rotation.- The qualitative aspects of 

molecular rotation in an electric field will be 

r~viewed here, disregarding the effects that give 

rise to a hyperfine spectrum. The electronic 

system of the molecule is assumed to be in a l~ 

state, 0 that it has no net angular momentum. 

The rotation of the molecule is then similar to 

that of a dumbbell whose two spheres (the two 

I ]'an of . this work w as performcd at the Pupin Physics Labora tory , 

Columbia U ni versity, during the tenure of a Researcb Assoeiateship of the 

Carnegie Tnst it ution of Washin gton in 1946. 

2 l"igures in Lrackets indicate th e lit erature references a t the end of th is 

paper. 
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atoms) cany charges of opposite sign. Several 

cases may be considered: 

(a ) The electric field is so trong that the poten­

tial energy of the molecule, when oriented along 

the field , is much greater than its rotational kinetic 

energy. Then the molecule remains oriented 

along the field, except for minor oscillations about 

this position. This case is umealistic, however, 

as no sufficicntly strong field is currently available. 

(b ) The field i vanishingly ,veak, so that the 

molecule rotates freely about its center of mass 

with a constant, quantized, angular momentum. 

The component of this angular momentum along 

the field is then alEO con tant and quantized. 

The posi tively charged part of the molecule points 

in the direction of the field aboll t as frequen tly as 

ill t be opposite direction . Thus the molecular 

electric moment averages out, and the presence 

of the field has no efl'ect on the rotational energy 

levels. 

(c) The field is moderately weak. The rotation 

is now appreciably perturbed by the field, and the 

molecular electric moment LlO longer averages out; 

an electric polarization is thus induced and each 

rotational energy level is accordingly lowered by 

an amount equal to a polarization coefficient times 

the square of the electric field. When the rotation 

has primarily the character of a precession (clock­

wis e or counterclockwise) around the direction of 

the field, the effect of the field is to force the 

posi tively charged part of the molecule to lean in 
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the direction of the field, and so induces a positive 

polarization. An opposite effect occurs, however, 

when the rotation brings the positively charged 

part alternately close to the direction of the field 

(downhill), and then away from it in the opposite 

direction (uphill); the positive charge moves 

rapidly while it is downhill and spends little time 

there, but it lags in the uphill position, and on the 

average it will spend more time uphill, giving rise 

to a negative polarization. 

(d) The field is intermediate or moderately 

strong. The rotation is perturbed by the field to 

a greater and greater extent. As the field in­

creases, the positively charged part of the molecule 

is forced to lean in th e direction of the field, 

whatever the type of rotation may be, and the 

polarization is always positive. 

The quantitative treatment of cases (a), (b), 

and (c) is simple, but in case (d), which obtains 

most frequently, the energy levels cannot be 

given in general as analytic functions of the electric 

field. In work as yet unpublished, W. E. Lamb, 

Jr., has developed a convenient method for th e 

numerical computation of the terms for any value 

of the field strength. The rotational wave 

equation is 

where the electric field, E, is taken as a polar axis, 

(l'1-R' <PR) are polar coordinates of a vector R joining 

the nuclei, l is the dipole moment, of the molecule 

A its moment of inertia, D. the two-dimensional 

Laplace operator (in the coordinates ?JR, <PR)' and 

W th e energy eigenvalue. The first term in 

brackets represents the kinetic energy of rotation; 

the second represents th e potential energy of the 

dipole in the electric field. A dimensionless form 

is obtained by dividing the equation by (-ti,2f2A) : 

(Ia) 

where 0'. = lE/ (ifl /2A) is a numerical index of the 

field strength and W = W / (jj?j2A). The eigenfunc­

tions can be labeled by means of two quantum 

numbers nand m; m is the magnetic quantum 

number, which indicates the rate and th e direction 

of the precession of the molecule around the 

electric field; n - Im l is the number of nodal lines, 

which characterizes the component of the motion 

along the meridians of the polar coordinates. The 

eigenvalues are functions of 0'.. For all values of 
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0'., we have W n . m= W n .- m, as the energy docs not 

depend on the direction of the precession. For 

0'. = 0, the results are familiar, namely, '/l' n, m= 

n (n + 1), >/In, m is a spherical harmonic, and n is an 

azimuthal quantum number that measures the 

total angular momentum. For 0'.« 1, case (c), a 

perturbation calculation gives W n7l, '"Vn(n + 1) + 
0'.2 [(n + m) (n - m )/2n (2n - 1) (2n + 1) - (n + 1 + m ) 

(n + I - m) /2(n+ 1) (2n + 1) (2n + 3)); as expected, 

the coefficient of 0'.2 is positive for [m/n l '"V 1 (fast 

precession), negative for Im/n l« l. 

quadrupole interaction.- The electrical charge 

distribution of a nucleus having a quadrupole 

moment resembles an ellipsoid of rotation rather 

t han a sph ere (the direction of the nuclear spin 

being the axis of symmetry of the ellipsoid). The 

value and sign of the quadrupole moment indicate 

the elongation of the ellipsoid. As the charge 

distribution of a diatomic molecule is not spheri­

cally symmetrical about any of its nuclei, the 

electrostatic energy of the nucleus within the 

molecule will depend upon the orientation of th e 

nuclear spin with respect to th e axis of symmetry 

of the molecule (i. e., the line joining t he nuclei). 

If the spin be directed along the axis and then 

swung into the opposite direction and back into 

th e initial one, the interaction energy will go 

through two maxima and tu'O minima. 

In the absence of this quadrupole interaction 

and of magnetic interaction, the nuclEar spins 

would maintain a constant orientation in space 

while the polar molecule rotates in an electric 

field, and the orientation of each nuclear gpin 

with respect to the axis of the rotating molecule 

would undergo periodic variations. In the pres­

ence of a quadrupole moment there will then be 

periodic variations of the interaction, and hence 

torques that affect both the rotation of the mole­

cule and the orien tation of the nuclear spins. This 

effect will be particularly conspicuous in case (b ) 

described above, as th e orientation of th e angular 

momentum of the molecular rotation can then be 

shifted by a torque without pel'fOlming any work. 

This angular momentum will then precess freely 

together with the nuclear spins, and only the total 

angular momentum, i . e., th e vector sum of the 

molecular momentum and of the nuclear spins, 

will remain cons tan t. When, on the other hand, 

considerable work must be performed to upset 

the molecular rotation, the quadrupole interaction 

will have no significant effect on the motion of the 
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molecular constituenLs; Llle energy of the sys tem 

will then simply includ e a contribution from the 

quadrupole interactions avcraged over the varying 

orientation of the spins with respect to the mole­

cular axis. This contribution will depend on the 

state of rotational motion of the molecule and on 

the (constant) orientation of the nuclear spins 

with respect to the electric field. This situation 

prevails generally in cases (a ) and (d) described 

above, i. e., for moderately to very strong fields; 

from this standpoint, case (c) Tepresents an 

intermediate situation. 

It should still be considered that no work is 

ever r equired for the simple operation of reversing 

the direction of the preces ion of the molecule 

around the electric fi eld, provided the speed of 

precession is unchanged . Owina to the quadrupole 

interaction, and for any electri c field strength, the 

uniform precession might therefore conceivably 

be turned into a precession whose direction is 

periodically reversed; the con ervation of angular 

momentum would be preserved by corre ponding 

variations of the precession of the nuclear spins. 

Quantum mechanically, there would thus be 

"standing waves of precession," the number · of 

nodes of the standing wave depending on the 

speed of precession. However, it will be shown 

further below that only the standing wave with 

two nodes actually arises in th is way. This is a 

1- direct consequen ce of the particular dependence 

of the quadrupole interaction upon the mutual 

orientation of the molecule and of t he nuclear 

spin; as already stated this ·inter action goes 

through two maxima and minima when a cyclic 

chang-e of orientation is performed. 

The quantitative treatment of our problem 

will accordingly proceed as follows. As shown by 

Casimir, [4), the interaction energy between a 

nuclear quadrupole moment and the electronic 

charge of an atom or molecule is of the order of 

e2qQ/4 (q and Q are the usual ymbols for a 

molecular and a nudea,I" constant whose product 

is < 1 em-I). H en ce, taking into account the 

\ po s~ bl e values of the pertinent constants, it 

seems safe to assume for the dimensionless 

parameter characterizing this interaction: 

L 

(2) 

This value must be related to the fact that, in gen­

eral, the separation of different unperturbed rota-
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tional levels of the molecule i 3 IWn'm' -Wnml? l. 
Therefore, in general, the quadrupole interaeLion 

can be treated as a small perturbation of each 

rotational term, and each term will preserve iLs 

quantum numbers n, m. This procedure will not 

be adequate in the eases discussed above, in which 

the quadrupole interaction has a great effect on 

the rotation of the molecule, namely, for states 

(n, m) which are directly coupled by the quad­

rupole interaction to other states (n', m') such 

that IWn'm,-wnml< IfJ l. Direct quadrupole cou­

pling means that t~ quadrupole interaction energy 

Flo has a matrix element (n'm'IHo l nm)~O; this 

occurs only when Im-m' I:::: 2, as it will be shown 

in the next section. These two conditions can be 

fulfill ed simultaneo usly in two, cases only: 

(1) n = n' > O, m=-m'=±l (all values of a) , 

in which the molecule precesses back and forth , 

i. e., cloek- and counterclockwi e; 

(2) n = n' > O, a2<1 i31 (Im- m' I:::: 2) , in which the 

fi eld is weak and th~rotation is strongly perturbed. 

The latter case becomes simpler when a 2«1 .s1 or 

even a 2 = O. In fact, the zero-field case involves 

a simple vector cOllpling of the rotational angular 

momentum J (J = n) with the nuclear spins I I 

and 12 , In the case of near-zero-fi eld, this vector 

coupling is preserved and the e£1'ect of the electric 

field can be treated as a small perturbation, some­

what analogous to the anomalous Zeeman effect 

produced by a weak magnetic fi eld. 

The general expression for the quadrupole 

interaction matrix is given in the next section; the 

application to the different ca es will then follow. 

II. Matrix Elements of Quadrupole Inter­

action Between Molecular Rotation and 

a Spinning Nucleus 

(a) The electrostatic interaction -e2/l r- pl, 
between a nuclear proton at a position p with 

respect to the center of the nucleus and a molecular 

electron at a position r with respect to the same 

center, can be expanded into a series of Legendre 

spherical functions of the angle "(rp between the 

vectors r and p . The first term of this series 

3 'rhe magnetic spin-spin interaction between the nuclei and the inter­

action between the nuclcar magnetic moments and the rotation-induced 

magnetic moment of tbe molecule are generally weaker than the electric 

qu adrupole interaction; in our scale they may be characterized by a parameter 

~ -:; 1O -'. Tbese interactions will be disregarded in the following therefore 

we must assume 
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represents the Coulomb attraction of the electron 

toward the center of the nucleus, the second term 

has no average effect, and the third, namely: 

H Q = -e2(p2/r3) P 2(COS 'Ypr) = 

_e2(p 2/r3) (~ cos2 'Ypr - ~} (3) 

is called the quadrupole component of the inter­

action. This component must be integrated over 

the density of protons throughout the nucleus 

and the density of electrons tlU'oughout the 

molecule. The integration over the electron 

density is carried out in polar coordinates having 

as axis a vector R from the center of the molecule 

to the center of the nucleus. Using the addition 

theorcm of spherical harmonics and taking into 

account the fact that the ~-type electronic state 

has axial symmetry, we find : 

«(1 /r3) P 2 (cos 'Ypr) r= 

«(1/r3)P 2(cos 'YRr) rP2( COS 'YRp), 

where the symbol Or indicates integration 

with respect to the electron density. The first 

factor on the right-hand side is a molecular char­

acteristic which is indicated [4J by qj2. Using 

again the addition theorem of spherical harmonics, 

P 2 (cos 'YRp ) = 

( 47f' / 5 ) ~p. ( - 1)p. Y2._p.(tJp, cpp) Y 2. p. (tJR, CPR), 

we havE', 

(HQ)r= 

(-e2 q / 2 ) ~p. ( -1) p. [p2(47r/5)1/2Y 2. _p. (tJp, cpp)] 

X [(47f'/5)1/2Y2. p. (tJR, CPR)J. (3a) 

(The normalization of the spherical harmonics is 

such thatf f l Y l , p. 12sin tJdtJdcp= 1,Yz; p. = (- l )p. y z, _ p. . 

(b) All th e matrix elements of the fir st factor in 

square brackets, i. c., the integrals of this factor 

ovcr the proton density, associated with pairs of 

nuclear states with the sam e spin I and magnetic 

quantum numbers mI, m/, can be given in terms 

of just one such matrix element. Thus: 

(m/ lp 2(h j5)1/2Y2, _p.(tJp, cpp) ImI) = 

(Jlp 2(47f'/5)1/2y Z. (,(tJp, cp p )I I )( D 5"%.:/ D ~~) o mr'. mr p. . 

Thc first factor on th e right-hand side is a nuclear 
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characteristic which is indicated [4] as Q/2 (i. e. , 

half of the quadrupole moment). In the formula 

Oi. k= l or 0, depcnding on whether i = 1c or i ~lc . 

The coefficients D::nm' may bc found by means of 

group theorY,4 and are given in table 1. As 

D51=-I(2I- l) j(2I- l) (2I+ 3) we take : 

d (j )n;,: = - (2j - l ) (2j+ 3)D ;:;:'; 

the coefficients d arc given in table 2. Thus: 

(mI - ll lp2(47r j5) 1/2 Y z. p. (tJp, cpp) 1m,) = 

Qd ( J) r;:.~- P. j 2I ( 2I - l) . (4 ) 

T A BLE I. - Coefficients Dr::' JOT: j' -j=O, ± 2 ; 

m'- m = O. ± 1, ± 2. a 

D }::::= -[3m'-j(Hl )]/(2j- l ) (2H3) 

D }:::+1 = (2m+l )[(3/2) (Hm+ I) (j- m ) 1' ., 

D; ::::+'= -[ (3/2) (j+m+2) (j+m+ I) (j- m )(j-1It -1' 1'/'/(2j- l ) (2H3) 

D ;~~ · m = (3/2)[(j+m+2) U+m+ 1) (j- m+ 2) (j-m+ 1)/(2j+ 1) (~i+3)' 

(2H5)]l/' 

D :~~' ,,+1 = [(3/2) (Hm+3) (j+m+2) (Hm+ 1) (:-m+ 1)/(2j+ 1) (2j+3)' 

(2H 5)]l/' 

J) ;~~.mt'=[(3/8)(j+ m + 4 )(j+ m +3)(j+m+2)(Hm+ l )/(2H I )(2H3)' 

(2j+5)]"' 

• All ot her coeffi cients arc obtained by means of the fo rmulas 

'fA BLE 2.-CoeJlicients d(j);::' = - (2j - 1) (2j + 3) D;:;:' 

<1;::+2= [(3/2) U+m+2)(j+71l + J) ()- rn)()- rn -1l1,!2 

<1 :::+1 = - (2rn+ I) [(3/21 (j+rn+ I ) (j-ml)'" 

d:;:-I= (2m- I) [(3/2)(j-m+ I)U+m)]'''=<C:::+' 

(c) The matrix elements of the factor in the 

second bracket of eq 3a, pertaining to the rotational 

states of the molecule (n , rn ) and (n' , m' ) is the 

average of this factor over the probability distri­

bution l/; ~,. m, l/;". m and can be indicated as 

• These coefficient.s are closely related to those indicated by E. W iguer , 

Gruppentheorie (Vieweg. Braunschweig 1931), p. 206, as Sj~j~". For j and j' 

i'm' 
integer D ;m = (47r/5)'/' f f Y*;· .-m·('J.p) y, . m'-m('?, "') Y ;'m(.?")sin.?d.? d,,. The 

formula given means essentially that the ratio of ma trix elements for 

different values of (mI. mI') is t he same as though the angular distribu· 

t ion of the proton density in each nuclear state (T, m[) were described by 

the spherical har mon ic Y I. mI (suitably generali zed for ha lf- integer 1). 
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' n' , m' I( 47r / 5 )1/2 Y t~(O n , IP n)l n, m) =(47r/5)1i2f J 1/;;',m' (O I 'IP_l)Y 2 ~(0 1l , IPJI) 1/;n,,,,(OU, 1P 1l ) in OndOl/dlP : (5) 

= R n~: ::'oml, m tJ&. 

Expanding the ro tational wave functions 1/;n. m 

into spherical harmoni cs: 

1/;n, m(O, IP) = 1:J C:; ' mY J , m(O, IP), 

where the coeffi cirnts C]m depend on the parameter 

a, we have: 

(5a) 

For n=n', m = m' (which is the only case 

involved in a first -order per turbation ), we have: 

There is also a simpler form for 

The coeffi cients R must b e obtained by numeri ­

cal computa tion except when a is v ery large or 

very small. For a« l : 

where j is a fun ction of nand n ± 1; h ence eq 5a 

glVl'S 

For ex» l , l1/;n.ml "-'0, excep t for t?R « l (i, e., the 

molecule points approximately in th e direction of 

the field ). H en ce, according to eq 5, lim B::::'= 
a= m 

On,n,Om .m" However, th e convergence to this limit 

is slow. For example, B (n, m) can be expanded 

in powers of a - I / 2 as follows: 

R (n , m )= 

1- 3(2n- m + 1)(2a)-1/2+ terms in a-I, etc. 

(d) Combining eq 3a, 4 , and 5, the matrix 

clement of H Q , pertaining to states with th e same 

total magnetic quantum number 1\1= mz+ m = 

m'l+ m', is found to b e 

(n', m' IHQln, m)= 

- (ti} /2A) ( - 1) m-m/ (3' R ~:::' d (1) ~~ ::;:' " (6) 
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where 

{3' = (3/I (2 I - 1) = [e2qQ/4I(2I - 1) ]/( fl?j2A). 

III. The General Case: a 2 »\ {J\, Im\ ~ l 

H ere it is sufficient to treat the quadrupole 

coupling as a first order perturbation of each 

rotational term. 

Only one of the nuclei has a Quadrupole moment.­

Each term of the complete system is characterized 

by the three quantum numbers n, m, and 

mJ= M - m. The term en ergy is then given, to 

the first order in {3, by the sum of th e rotational 

term and of the ma trix element (6) with n =n' 

and m = m' : 

(TI}/2A) {wn,m- (3'[31n;- I(1 + l )]R (n,m)}= 

(7) 

Each rotational energy level of energy WIt,lml splits 

thus, in this approximation , in to I +! levels if I 

is a half-integer, into 1+ 1 levels jf I is an integer. 

The absolu te valu es of the intervals between the 

levels of such a multiplet arc functions, of ' t he 

electric fi eld (through R ), but their ratios rul'e 

independen t of it.. 

Both nuclei have a Quadrupole moment.- Each 

term is now characterized by four quantum num­

bers n, m, mIl , mn. The term energy is , again to 

the first order in {3: 

(1l.2/2A) {wn,m- {3; [3m 71 - I I (11 + l )]R (n,m)-

/3;[3m;2- I 2(1z+ 1)]R (n,m)} (8) 

IV. The Special Case : a 2» \{J\,,\m\ = 1 

Only one oj the nnclei has a qnadrupole moment.­

The energy of terms with m = l , m;= (1 - 1) or I , 
M = I or (1 + 1), or with m=-.1 , mJ=- (1 - 1) 

or - 1, M =-l or - (1 + 1), is still given by eq 7. 
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For other terms, with IM I< 1, m is no longer a 

good quantum number, but Iml is . The term 

energy ~(1i,2f2A) is then obtained, to the first order 

in (3, by solving the secular equation, 

I
Wnl+ ( n,l I H Qln, l )- ~ (n ,l iHQ in,- l ) I 

= 0, 
(n,-l IH Q ln,1) Wn .-l+ (n,- l )I H Qln,-l)-~ 

with R (n, l )=R(n,-l), Wn .l=Wn .+ Its solution is 

f= Wn ,1 ,M/ (iF/2A)= W n,l ,_M/(fl,2/2A) = wnl- I1'R(n,1){3(AP + 1) - 1 (1+1) ± 

[(3 /2) (l +~ i\d ) (l +..i:lf + 1) (1 - M) (I - M + 1)S(n)2/R(n,1)2+36M2]l /2} . (9) 

The original Wnl rotational level is thus split into 

21 + 1 different levels, if 1 a half integer, and into 

2(1 + 1), if J is an integer. 

Both nuclei have a Quadrupole moment.- This 

case is similar to the preceding one, but more com­

plicated. There are three levels with total mag­

netic quantum number IM I=11 + 12 or 11+ 12+ 1, 
for which the energy can be calculated by means 

of eq 8. These energies are indicated by the 

following symbols: 

W n ,I.II .l2-1 = TVn,_1 , - II ' - '2+1 ; 

W n,1 ,zl-I "2= If!n,- I ,- I1+ 1 ,-'l' 

For each group of terms with IM I< I I+ 12 one 

must solve two secular equations that in general 

will have more than two rows and columns. The 

rows and columns correspond to zero-order states 

characterized by particular values of (m, mIl, m/2) 

with Iml = l, m+mIl+ m/2= M. The zero-order 

states belonging to each secular equation can be 

arranged in a succession, which (for M > O, 12> 11) 

can be of either type : 

(1,ft, M - 11-I), (-1,11, M - 11+1), 

(1,11- 2, M - 11+1), (-1,11- 2, M - 11+3).,. 

or 

(1,11 - 1, M-11 )' (- 1,11-1, M - 11 + 2 ), 

(1,11- 3, M - 11+ 2), (- 1,11- 3, lV1-11 + 4) ... 

The diagonal elements of the secular equation are 

of the type: 

the elements next to the diagonal are of the type: 

- Sen )11' Id(IJ:~: +2 or - 8(n)I1' 2 d(l 2):~:-2 

as the case may be; all other elements vanish. 

V. The Special Case: a«l[ n > 0 5 

Only one nucleus has a quadrupole moment,­

For a«l, or, more accurately, for: 

a2/2n (n+ 1) '" [a/ ('1On+1 ,m-wn,rn)J2::::; 1111«1 

the difference R ~'::.' - D ~,::: '" a2 can be disregarded , -; 

since R is multiplied by 11 in the expression of the 

matrix elements of quadrupole interaction. 

Replacing then R with D and using the approxi­

mate expression for Wn,m valid for small a 6, the 

matrix element of the complete energy operator 

pertaining to states with the same values of n, I , 
and M = m + m, is 

(m'I H lm) = (f/?j2A) {n(n+ 1)om,m'-

11( - l ) mt -m D ~'::.' [d(l)~}:'::. ' /1(21- 1) - om.m,a 2/2n(n+ 1) I1J + 
terms in a4, a211, or 112, etc . 

The term energy ~Ch N 2A) is then obtained, to the 

first order in 11, by solving the secular equation: 

The number of rows and columns in the determi­

nant, and hence the degree of the equation, is 

'For a«I. 11=0 we ha\'e ~=a'; hence tbe quadrupole interaction can 

be disregarded . 

, Tbis expression can be given in terms of tbe coefficient n::::. provided n>O. 
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:::::(2n+ 1) or ::::=::(21 + 1), whichever is the smaller, 

since m and m' take all the values that. do not 

exceed either (M + 1) or n and are not less than 

either (M - I) or -no The term energy can also 

be indicated as: 

(tf2/2A) [(n(n+ 1) + {3" y)], (10) 

where 11" = I1/ (2n-1)(2n + 3)1(21-1) and y is a 

solution of the secular equation 
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i (_ 1) m-m' d(n );::'(d(1 );::=:::' + Om' .mX) - Om' ,mY I = 0 
(lOa) 

H ere x=- [1(21 - 1)/2n (n + 1)](O'2/ iJ). The coeffi­

cients d are given in table 2, hence the further 

s teps in calcul ati ng y for any given value of x 

( i. c. , of th c fi eld s trength) are' straigh tforward , 
even though th ey may be laboriou. The particu-

lar case for n = 1 is worked out in the appendix, 

which also contains some comments about the 

mC'thocls of solving the secular cq uation. 

Both nuclei have quadrupole moments .- The cal­

culation is similar to that of the prececl ing case 

bu t is more complicated. The energy of each 

term can be expressed as: 

(n?/2A)[n (n + 1) + y"§/ (2n - 1) (2n + 3)]. (11 ) 

Where y is a solution of the secular equation: 

I 
(_ l )m'-md (n ):::' [b1dl ( l l );::; ~ J Om'12,m12+ bzd (12) :::;:' Om 'WmIl + I = 0. 

XOm 'll,lnIlOm' I2,m12]- yOm'Il,mIlOm'I2.ml2 

(lla) 

Here x=- O'2/"§2n(n+ 1) and ,,§, bl and b2 are so 

chosen that : 

73b l = iJd I I (211- 1) , 73b2= 132/12 (212 - 1), bl '" b2 '" 1. 

Finally, Iml,lm' l:::::::n; Imfl l,lm'n l:::::::I I; ImI 21,lm'121 :::::::1z; 
m + mn+ mI2 = m' + m'n + m'12=M . 

VI. The Special Case: a 2«1 .B1 
Z ero field. Only one nucleus has a quadrupole 

moment.- In th is case the total angular momen­

tum F= J + I (J = n) , i. e. , the sum of the rota­

tional angular momentum and of the pin of the 

nucleus hav ing a quadrupol e moment, is a con­

stant of the motion of tIl e system. J and I are 

not constant but precess freely around F on 

accoun t of the quadrupole interaction. All t be 

s tates having tbe same value of F ancl different 

values of the total magnetic quantum number 

M = m + m, have the same energy. As sho wn by 

Casimir [4] 7 th e energy of each term j propor­

tional to an eigenvalue of the quadrupole coupling 

operator : 

3 3 1 
2. (J .I ) (J'] )+'4 (J .I ) -'j (J .J ) (1·1). 

The proportionality factor can be determined by 

comparison with the solution obtained in section V 
for the ca e 1I!/.= F = n + I , aZ= O, which is trivial. 

The energy levels for n + l :::::F::::: ln - I I are 

(1i2/2A {n (n + 1) + 13[30(0 + 1) - 4n (n + 1)1 (1+ 1)] 

/2(2n - 1)(2n+ 3)I (2I - 1) }, (12) 

with 

0 = 2 (J·I ) = F (F + 1) - 11 (n + 1) - 1 (1+ 1) . 

N ear-zero field. 011ly one nucleus has a quad­

rupole moment.- The weak electric field has the 

effect of splittino- th e levels wi th equal F and 

different M . The energy is calculated by con­

sidering th e term proportional to 0'2 in eq 10, 

that is, 

as a small perturbation. This means simply 

averaging the value of this term over the partici­

pation of each ro tational state (n, m) in the com­

plete state (n, F, M ). Tb e following term must 

therefore he added to eq 12: 

(iI?/2A)[O'2j2n(n + 1)]L m (O ;~~ . M-nY D ~:::= - a2 (1f2 /2A)[311d2- F (F + l )J[3D(D- l ) - 4P(F + l )n (n + 1)]/ 

2n (n + 1) (211 - 1) (2n+ 3)2F(F+ 1) (2F- 1) (2F'+ 3) , (I 3) 

where C J;:~.M- .. is the coefficient of the eigenfun c­

t ion (n , m; I , M-m) in the linear combination 

which constitutes the eigenfunction (n , F , M ) [5], 

and 

D = 2(J.F) = F (F+ 1) + n (n + 1)-1 (1 + 1) . 

' ll . n. O. Casimir, Arch ives du Mus'c T eyler [III] VlIl, 2()1 (1936) . The 

application to a molecule in zero·fleld has bee n made by R. 'I'. Fcld and 
W. E. Lam b, J r. (Phys. Rev. 67, 15 (1945)). ' I' he defi n ition of q by Feld and 

Lam b is, however, d ifferent from tbat introduced in th is papcr: this entails 

a difference in t be mult iplicative lactor of some formulas. 

Electric Quadrupole Coupling 

In the theory of the anomalous Zeeman effect 

[6] for a case of (LS) coupling, which is somewh at 

analagous to the present calculation, one has to 

calculate the average value of the quantum 

numbers mL and rns, namely, ~ mL( og :~t M_mJ2mL, 

etc. It is shown by direct methods, however, 

that the results are lvI(L- J )jJ(J + 1) and 

M(S·J) /J (J + 1). In our case the quantity D ~::: 

is a matrix element of quadrupole interaction, 
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while mL is a matrix element of dipole interaction . 

It might therefore he expected that eq 13 could 

be expressed directly by means of quadrupole 

matrix elements. In fact eq 13 involves the 

expreSSIOn D :~~ and the matrix element of the 

operator: 

3 3 I 
"2 (J ·F) (J ·F) - 4 (J .F )--'j (J .J )(F·F), 

but the latter differs from the usual quadrupole 

coupling operator by the sign of the second term . 

B oth nuclei have quadrupole moments.- This case 

is again similar to the preceding ones but more 

complicated. Equation 13 should be extend ed to 

include two terms, one involving the coupling of 

J and I I, and the other that of J and 12 , However , 

neither J + / t nor J + I 2 is a constant of the 

motion, but only the sum F = J + / t + / 2• In gen­

eral , there will b e more than one term with the 

same values of nand F. The characterization of 

each term and the evaluation of (J·/ t ) and (J.J2) , 

and hence of the energy levels, depend upon the 

ratio fJl /fJ2 and require the application of methods 

similar to those used in the theory of complex 

atomic spectra involving a number of terms with 

the same angular momentum [6, p . 233] . The 

same holds for the extension of equation 13 . 

The au thor is indebted to Prof. 1. 1. R abi and 

his associates for suggesting this work, for friendly 

discussions, and for hospi tality in the Pupin 

Physics Laboratory. 
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VIII. Appendix 

The solu tion of t he secula r cquation l Oa for n = l is 

obtained as follows. The total azimut hal quantum 

number Ai assum es all t he values 1M 1::::: 1 + 1. For 

IM I= I + I t he secular ef)uation has on ly one row and 

column ; its trivial solul ion is: 
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y = I (21 - I )+ x, for IM I= ] + 1. (14a) 

For IM I= I , t he equat ion is quadratic : 

1

[(l - 3)(21 - 1) + x] - Y 3(21 - 1)11/ 21= 0, 

3(21 - 1) ]1 /2 - Z[I (21 - 1) +x]- y , 

a nd its solu tion is 

y = - ~{ (l + 3) (21 - 1) + x± 

3([(1 - 1)(2l - 1)+xF + 4[] (21 - I)lZ) I/z}, for IM I= I. (14b) 

For IM I< I , the eq uation is cubic, having three rows and 

columns. Its solution can be indicated as 

where p = O, I , 2, cos a=- K 3/K 23/2 . K 1, K 2, K3 are 

polynom ials of first, second, and t hird degree in the 

elements of the determinan t form of t he secular eq uat ion , 

which can be given in te rms of I , M an d x: 

K z= [412(l + 1)2+ ] (l + 1) + 1] + 2[3ML ] (l + 1) + 1]x+x2 

K 3= [813(1 + 1)2- 24]2([ + 1)2+ (3/ 2)1(l + 1)]-

313M2 [21([ + 1) - 7/ 2] - V([ + ])[41 ([ + 1) + 1]+ l lx + 

3[3ML I U + l )+ l]x2+x3. (15 ) 

Figure 1 shows t he plot of y as a function of x for 1= 7/2, 

corresponding to the Cs n ucleus in the CsF molecule 

(F has no quadrupole mom ent) , and for all values of M . 

The position of t he energy levels fo r x greater than two or 

three times 1 (21 - 1) is already given with good accuracy 

by eq 7 and 9, which were calculated on the assumpt ion 

of a 2~I B ! . 

The derivation of t hc eq 15 is a purely algebraic but 

rath er tediou s and laborious process. Thi s is p robably 

true in general of the process of solvin g secular ef)uat.ion s 

in which the mat rix clement are st ill function s of vario lls 

pertincn t pa ra me ter:". It is no t jus t the sollltion of the 

equation that is t ediou s, uu t cspecially t he preli minary 

process of transforming th e equation from its de te rminant 

form to a polynomial fo rm. The labo r involved increasE's 

rapidly with the degree of the ef)uat ioll. ThE'refore, wh en­

ever it is necessa ry t o obtain a solu tion only for a few 

values of the pa rameters 1 and !VI and x, it is advisable t o 

introduce these val ues in t h e mat rix elements themselves, 

and to carry ou t t he rE's t of the work numerically. Other­

wise it may be advisable to consider other ways of reducin g 

t he equatioll to a polyn omial form. For example, the 

coefficients of an algebraic equation can be expressed in 

terms of t. he sums of powers of its unkn own solu t ion s y;. 

In th e eXll,mple above, IC = S d 3, K 2=(S2-- SV 3)/6, 

K 3=((Sa- S I S 2) /6)- SV 27, where S n= ~ iyi. The quan­

t ity S n is the t race of t he m a trix of t hc n-th power of the 

energy operator ; i t mll,y well be simpler and safer from 

mistakes to calculate thc necessary S n t ha,n to expand t he 

determinant form of th e secular equation. 
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FIGUR E I. - Plol of lhe energy levels W n versus the sqllare oj the electric fi eld, E 2, Jor n= ], [ = 7/ 2, ;MI:S 1+ 1= ':1/ 2 ; coor­

dinales are in dimensionless uni ts: 

1'= -·- 2] (1E)2/e2qQ (h2/2A) , y = 420 H'/e2qQ. 

--, M =±1/2: ••• , M =±3/2; ___ . M =±!i/2: _ • _ • _ ., M =±7/?: ++++, M =±9/2. 

'WAS HIN GTON, March 31, 1947. 
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