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We study the electromagnetic form factors of the lowest-lying singly heavy baryons in a pion
mean-field approach, which is also known as the SU(3) chiral quark-soliton model. In the limit
of the heavy-quark mass, the dynamics inside a singly heavy baryon is governed by the Nc − 1
valence quarks, while the heavy quark remains as a static one. In this framework, a singly
heavy baryon is described by combining the Nc − 1 soliton with the singly heavy quark. In
the infinitely heavy-quark mass limit, we can compute the electric quadrupole form factors of
the baryon sextet with spin 3/2, with the rotational 1/Nc and linear corrections of the explicit
flavor SU(3) symmetry breaking taken into account. We find that the sea-quark contributions
or the Dirac-sea level contributions dominate over the valence-quark contributions in the lower
Q2 region. We examined the effects of explicit flavor SU(3) symmetry breaking in detail. The
numerical results are also compared with the recent data from the lattice calculation with the
unphysical value of the pion mass considered, which was used in the lattice calculation.
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1. Introduction

Conventional lowest-lying singly heavy baryons consist of a heavy quark and two light valence
quarks. In the limit of the infinitely heavy-quark mass (mQ → ∞), the physics of singly heavy
baryons becomes simple: The spin of the heavy quark J Q is conserved in this limit and hence it leads
also to the conservation of the spin of the light-quark degrees of freedom, i.e. J L = J − J Q. This is
known as the heavy-quark spin symmetry [1,2]. In the mQ → ∞ limit, we do not distinguish a charm
quark from a bottom quark, which gives up heavy-quark flavor symmetry. On the other hand, chiral
symmetry and its spontaneous breakdown still play an important part in describing the singly heavy
baryons because of the presence of the light quarks inside a singly heavy baryon [3]. The singly
heavy baryons consisting of two light valence quarks can then be represented in terms of irreducible
representations of flavor SU(3) symmetry: 3 ⊗ 3 = 3̄ ⊕ 6. Thus we have the two representations for
the lowest-lying singly heavy baryons, i.e. the baryon antitriplet and sextet. The baryon antitriplet
has the total spin J = 1/2 that comes from JQ = 1/2 and JL = 0, whereas the baryon sextet can
have either J = 1/2 or J = 3/2 with JL = 1 and JQ = 1/2.

In a pion mean-field approach, which is also known as the SU(3) chiral quark-soliton model
(χQSM), a singly heavy baryon can be viewed as the Nc −1 valence quarks bound by the pion mean
fields that are created from the presence of the Nc − 1 valence quarks [4,5]. In fact, this idea is taken
from Witten’s seminal paper on baryons in the large Nc limit [6]. This pion mean-field approach
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has successfully reproduced the mass spectra of the lowest-lying singly heavy baryons [5] and even
explained their nontrivial isospin mass splittings [7]. Interestingly, the corrections from the heavy
quark mass are indeed negligible in the description of the isospin mass splittings of the singly heavy
baryons, as shown in Ref. [7], although they provide hyperfine interactions which remove the spin
degeneracy of the baryon sextet.

Recently, the electromagnetic (EM) form factors of singly heavy baryons have been studied for the
first time within lattice quantum chromodynamics (QCD) [8,9]. While there are no experimental data
on the EM form factors of the singly heavy baryons to date, the results from the lattice calculation
provide a clue to the internal structure of singly heavy baryons. Thus, it is also of great importance
to investigate the EM form factors of the singly heavy baryons. In Refs. [10,11], we have studied
the electric monopole and magnetic dipole form factors of the singly heavy baryons in detail, based
on the χQSM. Since we consider the limit of the infinitely heavy-quark mass, there is no physical
difference between the heavy baryons with spin 1/2 and those with 3/2 except for the value of the spin.
On the other hand, the baryon sextet with spin 3/2 has yet another structure that arises from its higher
spin, which is revealed by the electric quadrupole (E2) form factor. The E2 form factor of a baryon
exhibits how the baryon is deformed. It is also known that the pion clouds play a significant role in
understanding this deformation [12]. This will also be discussed in the present work. We will also
examine the effects of flavor SU(3) symmetry breaking on the E2 form factors of the baryon sextet
with spin 3/2. The numerical results for�∗0

c will be compared with that from the lattice calculation.
The present work is organized as follows: In Sect. 2, we briefly recapitulate the general formalism

for the electric quadrupole form factors within the framework of the chiral quark-soliton model. In
Sect. 3, we present the numerical results and discuss them in detail. The final section is devoted to
the summary and conclusion.

2. Electric quadrupole form factors in the χQSM

We start with the EM current for a singly heavy baryon, which is defined by

Jμ(x) = ψ̄(x)γ μQ̂ψ(x)+ eQ�̄γ
μ�, (1)

where ψ(x) stands for the light-quark field ψ = (u, d, s) in SU(3) flavor space and � denotes the
heavy-quark field for the charmed or bottom quark. The charge operator Q is expressed as

Q̂ =
⎛
⎜⎝

2
3 0 0
0 −1

3 0
0 0 −1

3

⎞
⎟⎠ = 1

2

(
λ3 + 1√

3
λ8

)
. (2)

The eQ in the second term in Eq. (1) denotes the charge corresponding to a heavy quark, which has
the value 2/3 for the charm quark and −1/3 for the bottom quark. The matrix element of Jμ between
baryons with spin 3/2 can be parametrized in terms of four different real form factors as follows:

〈B(p′, s)|Jμ(0)|B(p, s)〉 = −uα(p′, s)

[
γ μ

{
FB

1 (q
2)ηαβ + FB

3 (q
2)

qαqβ
4M 2

B

}

+ i
σμνqν
2MB

{
FB

2 (q
2)ηαβ + FB

4 (q
2)

qαqβ
4M 2

B

}]
uβ(p, s), (3)
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where MB denotes the mass of a singly heavy baryon in the baryon sextet with spin 3/2. The metric
tensor ηαβ of Minkowski space is defined as ηαβ = diag(1, −1, −1, −1). qα represents the momen-
tum transfer qα = p′

α − pα and its square is written as q2 = −Q2 with Q2 > 0. uα(p, s) is the
Rarita–Schwinger spinor for a singly heavy baryon with spin 3/2, carrying the momentum p and the
spin component s projected along the direction of the momentum. σμν designates the antisymmetric
tensor σμν = i[γ μ, γ ν]/2. Note that when one takes the limit of the infinitely heavy quark mass
(mQ → ∞), the heavy-quark current given in the second part of Eq. (1) can be safely neglected
for the EM form factors. It gives only a constant contribution to the electric form factors as already
shown in Ref. [10].

It is more convenient to introduce the Sachs-type form factors or the multipole EM form factors, in
particular, when the EM structure of a baryon with spin 3/2 is examined. The electric quadrupole form
factor reveals how the shape of a baryon with spin 3/2 is deviated from the rotationally symmetric
one. The Sachs-type form factors can be expressed in terms of FB

i given in Eq. (3)

GB
E0(Q

2) =
(

1 + 2

3
τ

) [
FB

1 (Q
2)− τFB

2 (Q
2)
] − 1

3
τ(1 + τ)

[
FB

3 (Q
2)− τFB

4 (Q
2)
]
,

GB
E2(Q

2) = [
F1(Q

2)− τF2(Q
2)
] − 1

2
(1 + τ)

[
F3(Q

2)− τF4(Q
2)
]
,

GB
M1(Q

2) =
(

1 + 4

5
τ

) [
FB

1 (Q
2)+ FB

2 (Q
2)
] − 2

5
τ(1 + τ)

[
FB

3 (Q
2)+ FB

4 (Q
2)
]
,

GB
M3(Q

2) = [
FB

1 (Q
2)+ FB

2 (Q
2)
] − 1

2
(1 + τ)

[
FB

3 (Q
2)+ FB

4 (Q
2)
]
, (4)

where τ = Q2/4M 2
B . Since GB

E0 and GB
M1 have already been investigated in Ref. [10], we will focus

on the electric quadrupole form factors of the baryon sextet with spin 3/2, i.e., GB
E2, in the present

work. At Q2 = 0, GE2(0) yields the electric quadrupole moment

QB = e

M 2
B

GB
E2(0) = e

M 2
B

[
eB − 1

2
FB

3 (0)
]

, (5)

which reveals how much the charge distribution of a baryon is deformed from a spherical shape. If
QB has a negative value (QB < 0), then the baryon takes a cushion shape, whereas if QB is positive
(QB > 0), then it looks like a rugby-ball shape.

We want to mention that the M3 form factors vanish in the present work. In fact, any chiral solitonic
approaches yield the null results of the M3 form factors because of the hedgehog structure [13].
However, the experimental data on M3 is absent to date and its value should be very tiny even if it
is measured. In fact, one could compute the M3 form factors if one takes into account the next-to-
next-to-leading order in the 1/Nc expansion. This means that the M3 form factors should be strongly
suppressed in the large Nc limit. Thus, we will focus in the present work on the E2 form factors of
the baryon sextet with spin 3/2.

The SU(3) χQSM is constructed based on the following low-energy effective partition function in
Euclidean space, defined by

ZχQSM =
∫

DψDψ†DU exp
[
−
∫

d4xψ†D(U )ψ

]
=
∫

DU exp(−Seff ), (6)

where ψ and U denote, respectively, the quark and pseudo-Nambu–Goldstone boson fields. Having
integrated over quark fields, we can express the partition function in terms of the effective chiral
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action Seff , which is defined by

Seff (U ) = −NcTr ln(i/∂ + iMU γ5 + im̂), (7)

where Tr represents the functional trace running over spacetime and all relevant internal spaces.
Nc denotes the number of colors. M is the dynamical quark mass that arises from spontaneous
symmetry breaking of chiral symmetry. U γ5 represents the chiral field that consists of the pseudo-
Nambu–Goldstone (pNG) fields πa, a = 1, . . . 8, which is expressed as

U γ5 = exp(iγ5π
aλa) = 1 + γ5

2
U + 1 − γ5

2
U † (8)

with

U = exp(iπaλa). (9)

We assume isospin symmetry, i.e., mu = md. The average mass of the up and down quarks is
defined by m = (mu + md)/2. Then, the matrix of the current quark masses is written as m̂ =
diag(m, m, ms) = m + δm. δm is written as

δm = −m + ms

3
1 + m − ms√

3
λ8 = m11 + m8λ

8 , (10)

where m1 and m8 denote the singlet and octet components of the current quark masses, defined by
m1 = (−m + ms)/3 and m8 = (m − ms)/

√
3, respectively. The single-quark Hamiltonian h(U ) is

defined by

h(U ) = iγ4γi∂i − γ4MU γ5 − γ4m . (11)

Since the pion field has flavor indices, one has to introduce the hedgehog ansatz with which the
flavor indices can be coupled to three-dimensional spatial axes. The pion fields are then expressed
in terms of a single function P(r), which is called the profile function, as follows:

πa(x) = naP(r), (12)

with na = xa/r. Then the SU(2) chiral field is written as

U γ5
SU(2) = exp(iγ 5n̂ · τP(r)) = 1 + γ 5

2
USU(2) + 1 − γ 5

2
U †

SU(2), (13)

with USU(2) = exp(in̂ · τP(r)). The SU(3) chiral field can be constructed by Witten’s trivial
embedding [14]

U γ5(x) =
(

U γ5
SU(2)(x) 0

0 1

)
, (14)

which preserves the hedgehog ansatz.
Integration over U in Eq. (6) quantizes the pNG fields. In the large Nc limit, the meson mean-field

approximation is justified [6,14]. Thus, we can carry out the integration over U in Eq. (6) around
the saddle point, where δSeff /δP(r) = 0 is satisfied. This saddle-point approximation yields the
equation of motion that can be solved self-consistently. The solution provides the self-consistent
profile function Pc(r) of the chiral soliton. A detailed method of the self-consistent procedure can
be found in Ref. [15].
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While the quantum fluctuations of the self-consistent pion fields can be ignored by the large Nc

argument, the fluctuations along the direction of both the rotational and translational zero modes
cannot be ignored, since they are not at all small. Note that rotational and translational zero modes
are related to rotational and translational symmetries. Thus, the zero modes can be taken into account
by the following rotational and translational transformations:

Ũ (x, t) = A(t)U [x − Z(t)]A†, (15)

where A(t) is an SU(3) unitary matrix. Thus, the functional integral over U can be approximated by
those over zero modes: ∫

DU [· · · ] ≈
∫

DADZ[· · · ]. (16)

The integration over translational zero modes will naturally give the Fourier transform of the EM
densities. We refer to Ref. [16] for a detailed description of the zero-mode quantization in the present
scheme.

Having carried out the zero-mode quantization, we obtain the collective Hamiltonian as

Hcoll = Hsym + Hsb, (17)

where

Hsym = Mcl + 1

2I1

3∑
i=1

J 2
i + 1

2I2

7∑
p=4

J 2
p , Hsb = αD(8)

88 + βŶ + γ√
3

3∑
i=1

D(8)
8i Ĵi. (18)

I1 and I2 denote the moments of inertia for the soliton, the explicit expressions of which can be found
in Appendix A. The parameters α, β, and γ for heavy baryons arise from the breaking of flavor SU(3)
symmetry, which are defined by

α =
(

−�πN

3m0
+ K2

I2
Y

)
ms, β = −K2

I2
ms, γ = 2

(
K1

I1
− K2

I2

)
ms, (19)

where K1, 2 are the anomalous moments of inertia, the expressions of which are found in Appendix A.
Note that the number of light valence quarks for a singly heavy baryon is Nc −1. This means that the
expression for the valence part of �πN also contains Nc − 1 in place of Nc. It can be related to the
πN sigma term as follows:�πN = (Nc − 1)N−1

c �πN . The detailed expressions for the moments of
inertia and �πN are given in Ref. [17].

The presence of the symmetry-breaking part in the collective Hamiltonian, Hsb, causes baryon
wavefunctions mixed with those in higher SU(3) representations. In the present case, the collective
wavefunctions for the baryon antitriplet (J = 0) and the sextet (J = 1) are obtained respectively
as [17]

|B30
〉 = |30, B〉 + pB

15
|150, B〉, |B61〉 = |61, B〉 + qB

15
|151, B〉 + qB

24
|241, B〉, (20)

with the mixing coefficients

pB
15

= p15

[
−√

15/10
−3

√
5/20

]
,qB

15
= q15

⎡
⎢⎣

√
5/5√

30/20
0

⎤
⎥⎦, qB

24
= q24

⎡
⎢⎣ −√

10/10
−√

15/10
−√

15/10

⎤
⎥⎦, (21)
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in the basis
[
�Q, �Q

]
for the antitriplet and

[
�Q, �′

Q, �Q

]
for the sextets with both spin 1/2 and

3/2. The parameters p15, q15, and q24 are explicitly written as

p15 = 3

4
√

3
αI2,q15 = − 1√

2

(
α + 2

3
γ

)
I2, q24 = 4

5
√

10

(
α − 1

3
γ

)
I2. (22)

The collective wavefunction for the soliton with (Nc − 1) valence quarks is then obtained in terms
of the SU(3) Wigner D functions

ψ(ν; F),(ν; S)(R) = √
dim(ν)(−1)QS [D(ν)

F S(R)]∗, (23)

where dim(ν) represents the dimension of the representation ν and QS is a charge corresponding to
the soliton state S, i.e., QS = J3 + Y ′/2. F and S stand for the flavor and spin quantum numbers
corresponding to the soliton for the singly heavy baryon. Finally, the complete wavefunction for a
singly heavy baryon can be derived by coupling the soliton wavefunction to the heavy quark spinor

�
(R)
BQ
(R) =

∑
J3, JQ3

C
J ′ J ′

3
J ,J3 JQ JQ3

χJQ3 ψ(ν; Y , T , T3)(ν; Y ′, J , J3)(R), (24)

where χJQ3 denote the Pauli spinors for the heavy quark and C
J ′ J ′

3
J ,J3 JQ JQ3

are the Clebsch–Gordan
coefficients.

The matrix elements of the EM current (3) can be computed within the χQSM by representing
them in terms of the functional integral in Euclidean space,

〈B, p′|Jμ(0)|B, p〉 = 1

Z lim
T→∞ exp

(
ip4

T

2
− ip′

4
T

2

)∫
d3xd3y exp(−ip′ · y + ip · x)

×
∫

DU
∫

Dψ
∫

Dψ†JB(y, T/2)ψ†(0)γ4γμQ̂ψ(0)J †
B(x, −T/2)

exp
[
−
∫

d4zψ†iD(U )ψ

]
, (25)

where the baryon states |B, p〉 and 〈B, p′| are, respectively, defined by

|B, p〉 = lim
x4→−∞ exp(ip4x4)

1√Z

∫
d3x exp(ip · x)J †

B(x, x4)|0〉,

〈B, p′| = lim
y4→∞ exp(−ip′

4y4)
1√Z

∫
d3y exp(−ip′ · y)〈0|J †

B(y, y4). (26)

The heavy baryon current JB can be constructed from the Nc − 1 valence quarks

JB(x) = 1

(Nc − 1)!εi1···iNc−1�
α1···αNc−1
JJ3TT3Y ψα1i1(x) · · ·ψαNc−1iNc−1(x), (27)

where α1 · · ·αNc−1 represent spin-flavor indices and i1 · · · iNc−1 color indices. The matrices
�
α1···αNc−1
JJ3TT3Y are taken to consider the quantum numbers JJ3TT3Y of the Nc − 1 soliton. The cre-

ation operator J †
B can be constructed in a similar way. The calculation of the baryonic correlation

function given in Eq. (25) is a tedious one, so we will present here only the final expressions for the
E2 form factor. As for the detailed formalism, we refer to Refs. [15,16].
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The final expressions for the electric quadrupole form factors of the baryon sextet with spin 3/2
can be written as

GB6
E2(Q

2) = 6
√

5
M 2

B

|q|2
∫

d3z j2(|q||z|)GB
E2(z), (28)

where j2(|q||z|) stands for the spherical Bessel function with order 2 and the corresponding density
of the E2 form factors is given as

GB
E2(z) = − 2

(
3

I1
〈D(8)

Q3J3〉B − 1

I1
〈D(8)

Qi Ji〉B

)
I1E2(z)

+ 4m8

(
K1

I1
I1E2(z)− K1E2(z)

)(
3〈D(8)

83 D(8)
Q3〉B − 〈D(8)

8i D(8)
Qi 〉B

)
. (29)

The densities of E2 form factors I1E2 and K1E2 can be found inAppendixA. In the limit of mQ → ∞,
the charge distribution of the heavy quark becomes a point-like static charge given as ρQ(r) =
eQδ

(3)(r). This leads to Qij = ∫
d3rρQ(r)(3rirj − r2δij) = 0. This implies that the E2 form factors

of the singly heavy baryons are solely governed by the light quarks in the mQ → ∞ limit.
Having calculated the matrix elements of the collective operators in Eq. (29), we arrive at the final

expressions for the E2 form factors of the baryon sextet with spin 3/2:

GB
E2(z) = GB(0)

E2 (z)+ GB(op)
E2 (z)+ GB(wf)

E2 (z), (30)

where GB(0)
E2 , GB(op)

E2 , and GB(wf )
E2 denote, respectively, the symmetric terms, the flavor SU(3)

symmetry-breaking terms from the effective chiral action, and those from the mixed collective
wavefunctions, expressed explicitly as

GB6(0)
E2 (z) = 3

10

1

I1
QBI1E2(z), (31)

GB6(op)
E2 (z) = − 1

405
ms

(
K1

I1
IE2(z)− KE2(z)

)⎛
⎜⎝ 6Q�∗

c
+ 1

−24Q�∗
c
− 13

9

⎞
⎟⎠, (32)

GB6(wf)
E2 (z) = − 2

I1

⎡
⎢⎣q15

⎛
⎜⎝

− 2
9
√

5
(3Q�∗

c
− 4)

− 1
18

√
5
(15Q�∗

c
− 2)

0

⎞
⎟⎠ + q24

⎛
⎜⎝ − 1

180(3Q�∗
c
+ 5)

− 1
90(3Q�∗

c
+ 5)

3
40Q�∗

c

⎞
⎟⎠
⎤
⎥⎦ I1E2(z), (33)

where QB stands for the charge of the light-quark components of the corresponding baryons. We can
derive similar sum rules for the electric quadrupole moments of singly heavy baryons with spin 3/2
as follows [13]

∑
B∈sextet

QB = 0,

Q�∗0
c

= Q�∗0
c

= Q�∗0
c

= −2Q�∗+
c

= −2Q�∗+
c

= −1

2
Q�∗++

c
. (34)
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Even though the flavor SU(3) symmetry is broken, we still can find the following sum rules

Q�∗++
c

− Q�∗+
c

= Q�∗+
c

− Q�∗0
c

,

Q�∗0
c

− Q�∗0
c

= Q�∗0
c

− Q�∗0
c

,

2(Q�∗+
c

− Q�∗0
c
) = Q�∗++

c
− Q�∗0

c
. (35)

3. Results and discussion

In the χQSM, there are several parameters to fix. Since the sea-quark or Dirac-sea contributions
contain divergent integrals, one has to introduce a regularization to tame the divergences. In the
present work, we introduce the proper-time regularizations with the cutoff mass. This can be fixed
by using the pion decay constant fπ = 93 MeV. The average mass of the up and down current quarks
m is determined by the physical pion mass mπ = 140 MeV (see Appendix B for details). While the
mass of the strange current quark ms can also be fixed by reproducing the kaon mass, which gives
ms = 150 MeV, we prefer to use ms = 180 MeV, since this value of ms yields the best results for the
hyperon mass splittings [15,18]. The remaining parameter is the dynamical quark mass M , which
is the only free parameter of the model. However, M = 420 MeV is known to be the best value in
reproducing various observables in the light baryon sector [15]. Thus, we will also use this value in
the present calculation.

It was shown that in the calculation of the E2 form factors of the baryon decuplet the sea-quark
contributions turn out to be rather important; we will first examine the valence- and sea-quark
contributions separately. In Fig. 1, we draw the numerical results for the E2 form factors of the baryon
sextet with spin 3/2. As expected, the general behaviors of the valence- and sea-quark contributions
to the E2 form factors of the heavy singly baryons are rather similar to those of the baryon decuplet.
As shown in Fig. 1, the valence-quark contributions decrease mildly as Q2 increases, whereas the
sea-quark or Dirac-sea contributions fall off drastically in the smaller Q2 region, so that they govern
the Q2 dependence of the E2 form factors. In particular, the magnitudes of the sea-quark contributions
are considerably larger than in the region of smaller Q2. Thus, they provide the main contributions
to the electric quadrupole moments of the baryon sextet with spin 3/2. Considering the fact that the
electric quadrupole moment shows how the corresponding baryon is deformed, the present results
provide certain physical implications. Recent investigations into the gravitational form factors of
baryons within the χQSM indicate that the valence quarks are mainly located in the inner part of a
baryon, while the sea quarks lie in its outer part [19,20]. Thus, the sea-quark contributions, which
can also be interpreted as pion clouds, mainly describe how a singly heavy baryon with spin 3/2 is
deformed. The present results are in line with what was discussed in Ref. [12], where the significance
of the pion clouds in the electric quadrupole moment of the � isobar was studied.

In Fig. 2, we show how much the effects of flavor SU(3) symmetry breaking contribute to the E2
form factors of the baryon sextet with spin 3/2. As expressed in Eqs. (32) and (33), there are two
different ms corrections to the E2 form factors. The first one, GB6(op)

E2 (Q2), arises from the current-
quark mass term in the effective chiral action given in Eq. (7), whereas the second one comes from
the wavefunction corrections (20). Each correction affects E2 form factors in a different way, as
shown in Fig. 3. The wavefunction corrections to the E2 form factor of �∗++

c are negligibly tiny
and the corrections from the current-quark mass term are also small. As a result, the ms corrections
turn out to be negligible, as shown in the upper left-hand panel of Fig. 2. On the other hand, the
wavefunction corrections contribute noticeably to the E2 form factors of �∗+

c , while those from the
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Fig. 1. Valence- and sea-quark contributions to the electric quadrupole form factors of the baryon sextet with
spin 3/2. The long-dashed curves draw the valence-quark contributions to the E2 form factors, whereas the
short-dashed ones depict the sea-quark contributions. The solid ones represent the total results for the E2 form
factors.

current-quark mass term are of the same order as in the case of �∗++
c . In the case of �∗0

c and �∗0
c ,

the wavefunction corrections to G
�∗0

c ,�∗0
c

E2 are even larger than those from the mass term. This can be
understood by examining Eqs. (32) and (33).

In the left-hand panel of Fig. 4, we compare the results for the E2 form factors of the �∗0
c baryon

with that from the lattice calculation. We employ for this comparison the unphysical pion mass
mπ = 156 MeV that is used in the lattice calculation. Note that there is only one lattice data with
large uncertainty.
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Fig. 2. The effects of flavor SU(3) symmetry breaking on the electric quadrupole form factors of the baryon
sextet with spin 3/2. The dashed curves draw the results for the E2 form factors without the ms corrections,
whereas the solid curves depict the results with the effects of flavor SU(3) symmetry breaking taken into
account.

We anticipate more accurate lattice data in the near future, so that one can draw a clear conclusion.

In the right-hand panel of Fig. 4, we depict the results of G
�∗0

c
E2 as a function of the pion mass mπ

with Q2 = 0.183 GeV2 fixed. As expected, the present results fall off slowly as mπ increases.
For completeness, we present the results for the electric quadrupole moments of the baryon sextet

with spin 3/2. Table 1 lists those of the QB in the second and third rows, which correspond to the
SU(3) symmetric and breaking cases, respectively. As already shown in Fig. 2, those of the charged
baryon sextet have negative values of QB, which indicates that the positively charged singly heavy
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Fig. 3. Linear ms corrections from the current-quark mass term in the effective chiral action GB∗
c (op)

E2 and from
the collective wavefunctions GB∗

c (wf )
E2 , which are drawn using short-dashed and long-dashed curves, respectively.

baryons with spin 3/2 take oblate shapes. On the other hand, those of the neutral ones get positive
values, so they are distorted in prolate forms. It is interesting to see that the QB of the doubly positive-
charged�∗

c is approximately 8 times larger than that of the singly positive-charged one. This can be
understood by examining Eq. (30).

4. Summary and conclusion

In the present work, we have investigated the electric quadrupole form factors of the lowest-lying
singly heavy baryons with spin 3/2 in a pion mean-field approach, also known as the SU(3) chiral
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Fig. 4. Electric quadrupole form factors of the baryon sextet with spin 3/2 in comparison with the data from
the lattice QCD. The data of the lattice QCD is taken from Ref. [9].

Table 1. Electric quadrupole moments of the baryon sextet.

QB [e· fm2] �∗++
c �∗+

c �∗0
c �∗+

c �∗0
c �∗0

c

ms = 180 MeV −0.0490 −0.0058 0.0373 −0.0234 0.0330 0.0286
ms = 0 MeV −0.0518 −0.0129 0.0259 −0.0129 0.0259 0.0259

quark-soliton model. In the limit of an infinitely heavy quark, a heavy quark inside a singly heavy
baryon can be regarded as a mere static one. This means that the Nc − 1 light valence quarks govern
the quark dynamics inside a heavy baryon. The presence of the Nc −1 light valence quarks make the
vacuum polarized, which produces the pion mean fields. The Nc −1 valence quarks are bound by the
attraction provided by the pion mean fields self-consistently, from which a soliton consisting of the
Nc −1 valence quarks arises. We call this soliton an Nc −1 soliton. The singly heavy baryon can then
be constructed by coupling the Nc − 1 soliton with a heavy quark. This is called the pion mean-field
approach for the singly heavy baryons. Based on this pion mean-field approach, we computed the
electric qudrupole form factors of the baryon sextet with spin 3/2, taking into account the rotational
1/Nc and linear ms corrections.

We first examined the valence- and sea-quark contributions separately. As in the case of the baryon
decuplet, the contributions from the sea quarks or the Dirac-sea level quarks govern the electric
quadrupole form factors, in particular, in the smaller Q2 region. Considering the fact that the electric
quadrupole moment of a baryon provides information on how the baryon is deformed, we can
draw the following physical implications: the deformation of a singly heavy baryon is also mainly
governed by the sea-quark contributions or the pion cloud effects. We found a similar feature in the
case of the baryon decuplet. The effects of the explicit flavor SU(3) symmetry breaking are also
sizable except for the case of the �∗++

c and�∗0
c . Since there are two different linear ms corrections,

we have scrutinized each effect in detail. To compare the present results with those from the lattice
calculation, we have computed the electric quadrupole form factor with the adopted unphysical value
mπ = 156 MeV, which was used by the lattice work. We also showed how the value of the form
factor at a fixed Q2 is changed as the mπ increases. As expected from previous works, the value of
the form factor falls off as mπ increases. We also presented the results for the electric quadrupole
moment. The charged singly-heavy baryons have consistently negative values of electric quadrupole
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moments. This indicates that the charged baryons take oblate shapes. On the other hand, the neutral
baryons take prolate shapes, having positive values of electric quadrupole moments.

Acknowledgements

The authors are grateful to Gh.-S. Yang for valuable discussions. They want to express the gratitude to M.
Oka and K. U. Can for providing us with the lattice data. The present work was supported by Basic Science
Research Program through the National Research Foundation of Korea funded by the Ministry of Education,
Science and Technology (2018R1A2B2001752 and 2018R1A5A1025563). J.-Y. Kim acknowledges partial
support by the Deutscher Akademischer Austauschdienst (DAAD) doctoral scholarship.

Funding

Open Access funding: SCOAP3.

Appendix A. Densities for the E2 form factor and moments of inertia

In this Appendix, we provide the explicit expressions for the I1E2 and K1E2 densities of the electric
quadrupole form factors in Eq. (29):

I1E2(z) = −(Nc − 1)

2
√

10

∑
n=val

1

En − Eval
〈val|τ |n〉 · 〈n|z〉{√4πY2 ⊗ τ1}1〈z|val〉

+ Nc

4
√

10

∑
n,m

R3(En, Em)〈n|τ |m〉 · 〈m|z〉{√4πY2 ⊗ τ1}1〈z|n〉,

K1E2(z) = −(Nc − 1)

2
√

10

∑
n=val

1

En − Eval
〈val|γ 0τ |n〉 · 〈n|z〉{√4πY2 ⊗ τ1}1〈z|val〉

− Nc

4
√

10

∑
n,m

R5(En, Em)〈n|γ 0τ |m〉 · 〈m|z〉{√4πY2 ⊗ τ1}1〈z|n〉, (A.1)

where the regularization functions are defined by

R3(En, Em) = 1

2
√
π

∫ ∞

0
φ(u)

du√
u

[
e−uE2

m − e−uE2
n

u(E2
n − E2

m)
− Eme−uE2

m + Ene−uE2
n

En + Em

]
,

R5(En, Em) = sign(En)− sign(Em)

2(En − Em)
, (A.2)

with the proper-time regulator φ(u) [15]. Here, |val〉 and |n〉 denotes the state of the valence and
sea quarks with the corresponding eigenenergies Eval and En of the single-quark Hamiltonian h(Uc),
respectively.

The moments of inertia (I1, I2) and anomalous moments of inertia (K1, K2) are expressed
respectively as

I1 = (Nc − 1)

6

∑
n=val

1

En − Eval
〈val|τ |n〉 · 〈n|τ |val〉 + Nc

12

∑
n,m =n

〈m|τ |n〉 · 〈n|τ |m〉R3(En, Em),

I2 = (Nc − 1)

4

∑
n0

1

En0 − Eval
〈val|n0〉〈n0|val〉 + Nc

4

∑
n0,m

〈m|τ |n0〉〈n0|m〉R3(En0 , Em),

K1 = (Nc − 1)

6

∑
n=val

1

En − Eval
〈val|τ |n〉 · 〈n|γ 0τ |val〉 + Nc

12

∑
n,m =n

〈m|τ |n〉 · 〈n|γ 0τ |m〉R5(En, Em),
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K2 = (Nc − 1)

4

∑
n0

1

En0 − Eval
〈val|n0〉〈n0|γ 0|val〉 + Nc

4

∑
n0,m

〈m|τ |n0〉〈n0|γ 0|m〉R5(En0 , Em).

(A.3)

Appendix B. Fixing the model parameters

The chiral condensate and the pion decay constant can be derived from the effective chiral action
given in Eq. (7). The chiral condensates are written as

〈ψψ〉 = −
∫

d4pE

(2π)4
8NcM

p2
E + M 2

∣∣∣∣
reg

= M
Nc

2π2

∫ ∞

0
φ(u)

du

u2 e−uM 2
, (B.1)

and the pion decay constants are given by

f 2
π = −

∫
d4pE

(2π)4
4NcM 2

(p2
E + M 2)2

∣∣∣∣
reg

= M 2 Nc

4π2

∫ ∞

0
φ(u)

du

u
e−uM 2

, (B.2)

with proper-time regulator φ = cθ(u − �−2
1 ) + (1 − c)θ(u − �−2

2 ). The pion mass is determined
by the pole position of the pion propagator that is obtained by a low-energy effective chiral theory
given by Eq. (7):

m2
π = m〈ψψ〉

f 2
π

+ O(m2). (B.3)

The above expressions satisfy the Gell-Mann–Oakes–Renner (GMOR) relation. With
Eqs. (B.1), (B.2) and (B.3), one can determine the cut-off mass. The average value of the up
and down current quark masses is obtained as m = 6.13 MeV. The strange current quark mass
ms is fixed by the hyperon mass splittings, by treating ms perturbatively up to the second-order
corrections [15,17,18]. The preferable value of ms is found to be ms = 180 MeV.
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