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Abstract: Supercapacitors are energy storage devices with high electrical power densities and long
spanlife. Therefore, supercapacitor-based energy storage systems have been employed for a variety of
applications. The modelling and simulation of SCs have been of great interest to this objective. This
paper presents an electrical schema and mathematical modelling of three models of supercapacitors.
The first is the RC model, the second is the two-branch model and the third is the multi-branch model.
The objective of this modelling is to choose the best model that can respect the same behaviour of
the experimental model. These models are compared with an experimental model. This comparison
prove that the response voltage of the multi-branch model correctly describes the behaviour of the
experimental model of Belhachemi. The disadvantage of this model is the slow simulation duration in
MATLAB/Simulink. The RC model represented the faster model in terms of simulation. The choice
of 15 branches in parallel in multi-branch models gives good results and correctly describes the reel
model. The automatic charge and discharge voltage of SCs reduce by reducing the charge current.

Keywords: supercapacitors; RC model; two-branch model; multi-branch model

1. Introduction

Research on the development of high-performance technologies and power devices has
been extensively pursued by many researchers in recent years due to the global energy crisis
and deteriorating pollution [1,2]. Electrochemical energy storage devices are unavoidable
parts of a clean energy portfolio [3,4]. Among these devices, supercapacitors (SCs) are
electrochemical devices, electrochemical double layer capacitors or ultracapacitors are also
common names for energy storage devices, whose storage mechanisms are based on a
faradic process [5–8]. SCs are used for fast charging and discharging.

However, SCs are cited between traditional capacitors and batteries [8]. They represent
high power densities similar to battery. They are characterized by fast charge/discharge
rates and long lifespans similar to capacitors [9–11]. The charge/ discharge cycles of SCs
can exceed 100,000 cycles for short durations between 1 and 10 s under high currents
that exceed a few hundreds of amps [12–15]. Due to this property, they have various
applications such as in smart grids [15,16], electric vehicles, hybrid electric vehicles [17–21],
uninterruptible power supplies [22,23] and wireless sensor networks [24,25].

SCs are spatially used in applications that need a high power in a short time such
as vehicle acceleration. SCs are widely used in the recovery of energy during breaking
vehicles [21]. SCs are used for fast frequency support from hybrid wind power plants [26].

From this perspective, much effort has been devoted to the appropriate design and
the creation of new SC models with high energy densities [27–29].

This paper presents the mathematical modelling of three SC models. The first is the
RC model, the second is the two-branch model and the third is the multi-branch model.
These models are compared with the experimental model of Belhachmi. The electrical
schema and simulation model of SCs in MATLAB/Simulink will be presented.
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Some systems need a variable voltage ranging between tens and hundreds of volts.
However, the output voltage of an SC is between 2.1 V and 2.7 V. To achieve the appropriate
voltage for an application that needs a high voltage, SCs should be connected in series. To
improve the current, SCs should be connected in parallel [5].

The remainder of this paper is structured as follows: Section 2 develops the modelling
of RC model, the two-branch model and the multi-branch model of SCs. A comparison
and the simulation test results of the different models of the SC are presented in Section 3.
Section 4 provides the conclusions of the study.

2. Modelling of Supercapacitors
2.1. RC Model of the Supercapacitor

An SC can be schematized by a series resistance Rsc, a leakage resistance Rf and
a storage capacitor Csc, as illustrated in Figure 1a, where Rf describes the behaviour of the
component during the self-discharge [30].
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Figure 1. (a) RC model of the SC. (b) RC model of SC under MATLAB/Simulink by negleging Rf. 
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This basic representation is important. It provides a first idea about SCs. Calculating
the equivalent resistance and capacity at a simple discharge test with a constant current
is possible. The difference in voltage level between the end of the discharge phase is five
seconds and represents the image of the series resistance. The image of the storage capacity
is provided by the voltage drop between the initial state (state of rest before discharge) and
the final state (five seconds after the discharge).

The modelling of the RC model of the SC in the MATLAB/Simulink environment is
shown in Figure 1b by neglecting the leakage current.

2.2. Two-Branch Model of SCs

The RC two-branch model is used to describe the behaviour of the system by decom-
posing the response of the last into several parts. Every part is represented a different
constant time.

This model, developed by the Canadians Bonert and Zubieta, is composed of:

- A leakage resistance;
- Two branches in which capacity is not linear and the voltage is different (Figure 2a) [31,32].
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Figure 2. (a) SC model with two branches [31]. (b) Representation of the two-branch RC model in
MATLAB/Simulink.

Zubieta and Bonert used this idea to model the SC. They decomposed the response of
a SC into two cells:

- The first cell is the fast branch, which takes into account the charging phases instead
of a propagation system. It models this phase by a resistance R1 and a non-linear
capacitance C1 (no phenomenon of propagation of charges).

The main capacitance C1 is composed of a constant capacitance C0 and a constant
parameter Cv. This capacity is given in terms of the voltage between its terminals v1 by the
following equation:

C1 = C0 + Cv.v1. (1)

where v1 is the voltage of C1.

- The second cell is the slow branch that represents the redistribution phase of the
charges during the rest phase. This phase is modelled by an R2–C2 branch with larger
time constants than those taken for the fast phase.

The leakage resistance Rf symbolizes the self-discharge of the SC, which takes place
after the charge redistribution phase.

By neglecting the leakage current, the voltage across the SC can be described by the
following equation [22–32]:

USC = Ns−scvsc = Ns−sc

(
v1 + R1

ISC
NPSC

)
(2)
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where USC and ISC are the voltage and current of the SCs, respectively. Ns−sc and Np−sc are
the number of parallel and serial connections of the SCs, respectively. The voltage v2 is
given by:

v2 =
1

C2

∫
i2dt =

1
C2

∫ 1
R2

(v1 − v2)dt. (3)

Current i1 is expressed in terms of instantaneous charge Q1 and C1 as follows:

i1 = C1
dv1

dt
=

dQ1

dt
= (C0 + Cv.v1)

dv1

dt
(4)

where the charge Q1 is given by:

Q1 = C0.v1 +
1
2

Cv.v1
2 (5)

The voltage v1 is defined as follows:

v1 =
−C0 +

√
C02 + 2CvQ1

Cv
(6)

The modelling of the two-branch model of SC in the MATLAB/Simulink environment
is shown in Figure 2b.

2.3. Multi-Branch Model of SC

The multi-branch model shown in Figure 3 complements the previous two-branch
model, including the charge propagation phenomena appearing on the component voltage
just after the sudden changes in current. This method uses a simplified model of the
transmission line to represent the propagation of charges during the transient (fast phase)
and attempts to better take into account the slow behaviour of SCs [32–36].
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This model consists of the following:

- An access resistor R1 for to the transmission line;
- A non-linear transmission line of n branches in parallel, a total resistance R and a total

capacitance C for a fine description of the electrical and energetic behaviours of SCs in
short times;

- Some RC cells to apprehend the longer times.
- Complementary branches with capacitances Cm and resistances Rm, which will be

identified by means of a constant-current partial-charge test, and phases of internal
redistribution of energy.

The capabilities of this model vary depending on the voltage at these terminals. The
nonlinear capacity model represented in MATLAB/Simulink is depicted in Figure 4.
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3. Comparison of the Different Models of the SC

The purpose of this section is to validate the modelling of the different models (RC
constructor, two-branch and multi-branch models) by comparing the results obtained by
these models to those obtained experimentally by [36]. The SC type used in these simulation
tests was the 2700 F Maxwell PC7223.

3.1. Parameters of Different Models

• RC model of the constructor:

The characteristics given by the constructor are:
The total capacity is Csc = 2700 F;
The total resistance is Rsc = 0.85 mΩ;
The leakage current is Rf = 0 Ω.

• Parameters of the two-branch model

The extraction of the two-branch model parameters for the Maxwell PC7223 SC, based
on the fully charged test with a constant current at 100 A, produced the parameters shown
in Table 1.

Table 1. Parameters of the two-branch model of the SC.

Parameters Values

R1 0.8 mΩ
C0 2170 F
Cv 520 F/V
R2 1 Ω
C2 150 F

• Parameters of the multi-branch model

Fifteen branches (n = 15) were proposed for the simulation of the multi-branch model.
The identification parameters of a PC7223 SC are given in Table 2. The MATLAB function
program is shown in Figure 5.
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Table 2. Identified parameters of the multi-branch model of SC PC7223 [35].

Voltage (V)
Transmission Line

R = 1.1 mΩ

Branch R2C2
R2 = 100 mΩ

Branch R3C3
R3 = 1 Ω

Capacity C (F) Capacity C2 (F) Capacity C3 (F)

0 V, 0.5 V C = 2000 + 700 v C2 = 90 + 30 v C3 = 31 + 11 v
0.5 V, 1 V C = 2350 + 700 (v − 0.5) C2 = 105 + 30 (v − 0.5) C3 = 36.5 + 30 (v − 0.5)
1 V, 1.5 V C = 2700 + 500 (v − 1) C2 = 120 + 22 (v − 1) C3 = 42 + 8 (v − 1)
1.5 V, 2 V C = 2950 + 200 (v − 1.5) C2 = 131 + 5 (v − 1.5) C3 = 46 + 3 (v − 1.5)
v > 2 V C = 3050 C2 = 133.5 C3 = 51

Energies 2022, 15, x FOR PEER REVIEW 6 of 12 

• Parameters of the multi-branch model

Fifteen branches (n = 15) were proposed for the simulation of the multi-branch model.

The identification parameters of a PC7223 SC are given in Table 2. The MATLAB function 

program is shown in Figure 5. 

Figure 5. MATLAB function program. 

Table 2. Identified parameters of the multi-branch model of SC PC7223 [35]. 

Voltage (V) 

Transmission Line 

R = 1.1 mΩ 

Branch R2C2 

R2 = 100 mΩ 

Branch R3C3 

R3 = 1 Ω 

Capacity C (F) Capacity C2 (F) Capacity C3 (F) 

0 V, 0.5 V C = 2000 + 700 v C2 = 90 + 30 v C3 = 31 + 11 v 

0.5 V, 1 V C = 2350 + 700 (v − 0.5) C2 = 105 + 30 (v − 0.5) C3 = 36.5 + 30 (v − 0.5) 

1 V, 1.5 V C = 2700 + 500 (v − 1) C2 = 120 + 22 (v − 1) C3 = 42 + 8 (v − 1) 

1.5 V, 2 V C = 2950 + 200 (v − 1.5) C2 = 131 + 5 (v − 1.5) C3 = 46 + 3 (v − 1.5) 

v > 2 V C = 3050 C2 = 133.5 C3 = 51 

• Parameters of the Belhachemi experimental model
Table 3 shows the parameters measured several times by Belhachemi [36]. 

Table 3. Parameters of supercapacitor Maxwell PC 7223 [36]. 

Voltage (in V) 
The Capacity of the 

Transmission Line 

First Complementary 

Branch 

Second Complementary 

Branch 

0 2000 90 31 

0.5 2350 105 36.5 

1 2700 120 42 

1.5 2950 131 46 

2 3050 133.5 51 

2.5 3050 133.5 51 

where: 

- The access resistance is R1 = 0.5 mΩ;

- The total resistance R = 1.4 mΩ;

- The resistance of the first complementary branch R2 = 100 mΩ;

- The resistance of the second complementary branch R3 = 100 mΩ.

Figure 5. MATLAB function program.

• Parameters of the Belhachemi experimental model

Table 3 shows the parameters measured several times by Belhachemi [36].

Table 3. Parameters of supercapacitor Maxwell PC 7223 [36].

Voltage (in V) The Capacity of the
Transmission Line

First
Complementary Branch

Second
Complementary Branch

0 2000 90 31

0.5 2350 105 36.5

1 2700 120 42

1.5 2950 131 46

2 3050 133.5 51

2.5 3050 133.5 51

where:

- The access resistance is R1 = 0.5 mΩ;
- The total resistance R = 1.4 mΩ;
- The resistance of the first complementary branch R2 = 100 mΩ;
- The resistance of the second complementary branch R3 = 100 mΩ.
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3.2. Simulation and Validation of the Different Models of the SC

A simulation test with a constant current, 100 A for the charge and −100 A for the
discharge were proposed to compare the different models. This comparison is shown
in Figure 6. The obtained results indicated that the response voltage of the multi-branch
model correctly describes the behaviour of the experimental model of Belhachemi. When
we increase the number of branches, the precision increases. Fifteen branches is not a fixed
number. The simulation time of this model in MATLAB/Simulink was approximately half
that the multi-branch model.
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3.3. Calculation of the Error between Different Models of the SC

The difference in errors between the experimental model and the RC, two-branch and
multi-branch models is given by Figures 7–9, respectively. The RC model represents the
very high error of 0.125 V. The two-branch model represents a medium error of 0.09 V. The
multi-branch model represents the low error of 0.08 V. The jumps at t = 5, t = 65, t = 100
and t = 155 of voltage are caused by the sudden change of current represented in Figure 6a.
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3.4. Influence of the Charge Current on the Voltage

The charge and discharge of the SC with a current of 100 A and 10 A is given in
Figures 10 and 11, respectively. With the discharge current of 100 A, the automatic discharge
and charge have an important value at t = 65 s, t = 100 s and t = 155 s. The charge and
discharge of an SC with a current of 10 A represent a very low automatic charge and
discharge. The automatic charge and discharge voltage reduce by reducing the current.
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