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Abstract: Permanent magnet synchronous generator (PMSG)-based wind turbine systems have a
wide range of applications, notably, for higher-rated wind energy conversion systems (WECS). A
WECS involves integrating several components to generate electrical power effectively on a large
scale due to the advanced wind turbine model. However, it offers several glitches during operation
due to various factors, notably, mechanical and electrical stresses. This work focuses on evaluating
the mechanical and electrical characteristics of the WECS using two individual schemes. Firstly,
wind turbines were examined to assess the vibrational signatures of the drive train components for
different wind speed profiles. To apply this need, acoustic sensors were employed that record the
vibration signals. However, due to substantial environmental impacts, several noises are logged with
the observed signal from sensors. Therefore, this work adapted the acoustic signal and empirical
wavelet transform (EWT) to assess the vibration frequency and magnitude to avoid mechanical
failures. Further, a matrix converter (MC) with input filters was employed to enhance the efficiency
of the system with reduced harmonic contents injected into the grid. The simulated results reveal
that the efficiency of the matrix converter with input filter attained a significant scale of about 95.75%
and outperformed the other existing converting techniques. Moreover, the total harmonic distortion
(THD) for voltage and current were examined and found to be at least about 8.24% and 3.16%,
respectively. Furthermore, the frequency and magnitude of the vibration signals show a minimum
scale for low wind speed profile and higher range for medium wind profile rather than higher wind
profile. Consolidating these results from both mechanical and electrical characteristics, it can be
perceived that the combination of these schemes improves the efficiency and quality of generated
power with pre-estimation of mechanical failures using acoustic signal and EWT.

Keywords: acoustic sensors; empirical wavelet transform (EWT); matrix converter; input filter; power
quality; vibrational assessment

1. Introduction
1.1. Background

Due to continuous technological and population growth, the electricity demand is
augmenting day by day, and this affects the environmental conditions significantly because
of the higher proportion of the fossil-fuel-based power production adapted globally [1,2].
Notably, coal- and oil-based energy productions are worsening the situation, and it is
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essential to find a path to diminish their scales extensively at present and zero-scale in
the future [3,4]. Globally, nations have perceived these concerns recently, and assessment
has been carried out to increase renewable power generation rather than fossil fuel [5–7].
Several renewable sources are utilized around the globe, including wind, solar, hydro,
and biomass. Among them, wind sources are employed significantly using wind energy
conversion systems (WECS) and attract investors powerfully due to advanced techno-
logical feasibility (advanced-power electronic devices, turbines, and generators). Based
on the WWEA report, the total installed capacity across the globe is about 600 GW as of
2018, which is just 6% of global demand [8]. Contemporarily, wind power generation was
promoted by global nations and emphasized to install more wind farms with higher-rated
power generation in the future. Consequently, wind farmhouse lucrativeness should be
augmented by guaranteeing that turbines need to function at maximum capacity. How-
ever, appropriate operation and maintenance (O&M) is crucial for exploiting the wind
farm investment revenues by adapting an advanced monitoring system and sophisticated
converting schemes [9].

1.2. Need for Current Research

Based on the above inferences, it is imperative to sense abnormalities in the wind tur-
bine by aiming for reduced downtime and improved availability using advanced condition
monitoring. It is imperative to detect the abnormalities of the system to execute predictive
(condition-based) maintenance on wind farm units [10–14]. Much evidence from the wind
farm shows that the wind energy conversion scheme frequently affects premature turbine
mechanism failures. This is due to the exposure of extremely inconstant punitive meteoro-
logical conditions. Additionally, this system requires a higher intensity of maintenance to
warrant a safe, cost-effective, and stable energy harvest as it is commissioned at remote
and inaccessible locations. Furthermore, the complexity of maintenance and operation
happens due to continuous changes in loading conditions by means of time varying [15].
Due to advanced and higher-rated wind turbines, several mechanical stresses occur in
the overall system and its output. Furthermore, nature’s unpredictable and fluctuating
wind behavior offers several issues in the WECS [16]. Several schemes are adapted to
assess the turbine’s condition; however, vibrational measurement is one of the supreme
consistent methods because the vibrational frequency and its magnitude measurement are
significant parameters to evaluate mechanical stress and fatigue of the mechanisms [17].
The mechanical characteristics play a significant role, and must be monitored intensively
using sophisticated schemes and managed to maintain the vibration production of the
system within the optimal level [18,19].

Further, recent massive industrial growth has augmented with the widespread appli-
cation of regulated speed drives, digital computers, and microprocessor-based electronic
loads. This exacerbates the power quality issue, specifically, at the distribution side of the
grid. The presence of harmonic content and voltage fluctuation becomes more harmful to
the power grid; it also causes severe losses in the system with unstable grid behavior. For
instance, the immense dissemination of switched power loads in low-voltage networks
raises a huge concern by means of power quality [20–23]. Furthermore, the recent pene-
tration of distributed generation using renewable sources still worsens the power quality
due to their continuous variable feed to the grid. Owing to this, both transmission and
distribution networks become vulnerable to power-quality discrepancy. Significantly, wind
turbines are highly variable energy sources that cause severe problems to the existing grids.
To solve these concerns, the researchers introduce various converting topologies; however,
harmonic content and efficiency of the overall system still need noticeable improvement.
Therefore, this requires effective converting topologies to manage higher evacuated power
from the WECS that should meet the grid code of the utility with the least total harmonic
distortion (THD) with higher efficiency [9].



Sustainability 2022, 14, 4404 3 of 22

1.3. Existing Works Done

Considering the above backgrounds, this work aimed to study the existing works
already demonstrated by the researchers relating to converting techniques and vibra-
tional assessments. Therefore, a robust literature survey was carried out and is illustrated
in Table 1.

Table 1. Existing works relating to the converting techniques and vibration assessment.

Ref. No. Year Methods/Techniques Inferences Limitations/Research Gaps

Converting techniques

[9] 2018 NPC Back-to-Back
Power Converter

– Proposed and validated a robust FCS-MPC scheme with
modified predictions.

– Control variable ripples were condensed against
parameter variations.

– Implemented with fully
field-programmable-gate-array-based real-time hardware.

– The efficiency of the
converter was
not demonstrated.

[24] 2021
Simplified high-gain
quasi-boost inverter

(SHGqBI)

– The proposed converting technique reduced the number
of components.

– It also reduced the conduction and switching losses.
– The current and voltage THD of the suggested inverter

showed more miniature scale, about 2.7%, and 10.2%,
respectively.

– The efficiency of the system attained a value of 97%.

– Tested for SPV system but
no illustrations for wind
turbine system.

[25] 2021

Back-to-Back (BTB)
Converter with Fuzzy

Event-triggered
Control (ETC)

– Focused mainly on the dynamical investigation of
full-scale direct-driven PMSG-based WECS configured
with BTB.

– It was found to be cost-effective.
– The ETC is considered suitable control concerning the

lessening of packet losses and the capability to guarantee
steady enactment.

– Harmonic analysis was
not performed.

– Efficiency assessment was
not described.

[26] 2018

Cascaded Model
Predictive Control

with NPC
Back-to-Back (BTB)
Power Converter

– The proposed scheme alleviates the usage of weighting
factors that increases the robustness of parameters.

– The proposed converting scheme is compared with other
existing schemes and shows better performance.

– Power-quality assessment,
such as harmonic analysis
and efficiency of the
converter, was
not evaluated.

[27] 2018

BTB controller with
modified model

predictive control
(MMPC)

– Focused on the common-mode voltage on both sides of
BTB converter with less computation effort.

– Reactive power control, MPPT, DC-link voltage control,
voltage balancing, and common-mode voltage showed
better enhancement.

– Efficiency assessment of
the MMPC was
not described.

[28] 2019
Intelligent SVM

Inverter with Direct
Vector Control

– Suggested an enhanced direct vector command (DVC)
based on intelligent space vector modulation (SVM).

– This method reduced the ripples in active and reactive
powers and improved the performances of the
DVC method.

– Efficiency of the converter
was not computed.

[29] 2019

Back-To-Back Power
Converter without
Redundant Bridge

Arm

– BTB converter was investigated in detail for power loss
computation, and efficiency examination was
accomplished in different post-fault circumstances.

– Both objectives were assessed and validated using
simulation and experimental results.

– The efficiency of the
converter was just 88.99%.

– Harmonic contents were
not assessed.

[30] 2019 quasi-Z-source
inverter (qZSI)

– The interface between the permanent magnet
synchronous generator and the isolated load was
obtained by a qZSI with the energy storage system.

– The proposed scheme balanced the fluctuated injected
power with improved voltage and frequency.

– Stability of active power attained with the DC-link
voltage in the course of over-generation circumstance.

– Harmonic analysis was
not performed.

– Efficiency assessment was
not described.
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Table 1. Cont.

Ref. No Year Methods/Techniques Inferences Limitations/Research Gaps

Vibration assessment

[31] 2018
Digital signal

processing with
accelerometers

– Healthy wind turbines with the same sizes and designs
were examined to define the average vibrational signs of
the drive train mechanisms during the regular process.

– Fault-recognition occasion is demonstrated screening the
alteration of vibration sign persuaded by impairment in
the gearbox.

– The vibrational frequency
was not assessed.

– The magnitude of
vibration for transient
speed was not computed.

[20] 2011 Angular resampling

– Presented an angular resampling algorithm for a
high-speed variability wind turbine system.

– The results are obtained from a bearing-diagnostic test
bed and simulated signals.

– The observed results showed the algorithm’s accuracy
compared with a similar technique offered by the
consulted bibliography.

– Assessment was not
carried out for different
speed ranges.

– Transient speed
assessment was
not performed.

[32] 2020
Empirical wavelet

thresh holding
method

– Initially, this study dealt with 15 years of operated wind
turbines with a naturally impaired large scale and
low-speed blade bearing.

– Two cases were examined to accumulate the vibration
data, namely, manual rotation and motor
driving condition.

– The proposed model removed heavy noises and extracted
fault signals effectively.

– Demonstration was not
performed for the
wide-ranging speed of
the WECS.

– The magnitude of the
vibration was
not assessed.

[33] 2020
Nonlinear

Frequency-Domain
Solution

– Investigated the aerodynamics and aero elasticity of the
wind turbine rotor for flow unsteadiness.

– Examined different material property effects along with
outsized vibration amplitude on the aerodynamic
damping of the wind turbine blade.

– Compared with the conventional time-domain method,
this method reduced the computational time.

– The frequency of the
vibration and
wide-ranging speed were
not presented.

[34] 2019 Discrete wavelet
transform (DWT)

– Laboratory-scale WT gearbox was examined for rolling
element bearing faults against non-stationary loads using
condition monitoring, namely, vibration analysis,
lubrication oil analysis, and acoustic analysis.

– Statistical structures were calculated from the wavelet
estimate coefficients; most noteworthy features were
recognized by employing a decision tree algorithm.

– Proved that the integrated control monitoring scheme had
offered improved classification interpretations compared
to single-control monitoring techniques.

– Wide-ranging speed
consideration was not
taken for the
simulation study.

[35] 2019 Novel Iterative
Nonlinear Filter (INF)

– Naturally harmed large-scale blade bearing,
15-years-operated WT was investigated.

– INF removed heavy noises effectively.
– The morphological transform-based envelope scheme

was also employed to recognize the bearing faults.

– Tested the proposed
scheme for vibrational
magnitude but not for
frequency and
wide-ranging speeds.

[36] 2019
Gaussian

model-based fusion
algorithm

– Examined the likelihood of employing acoustic signals to
perceive several WT drive train defects.

– To validate the proposed algorithm, a 25HP WT simulator
was set up in the laboratory.

– This model outperformed other solution methods,
notably, individual signals in sensing drive train gear and
bearing faults at various load and speed
action circumstances.

– Experimental setup was
completed, but vibrational
parameters were
not assessed.

[37] 2018 Cyclo-
stationaryanalysis

– Cyclic Spectral Correlation and Cyclic Spectral Coherence
were illustrated for observing rolling element notably
bearing condition.

– The novel diagnostic tool was employed considering the
cyclic speed coherence with the frequency band that
comprises the diagnostic data.

– This scheme chooses the filtering band automatically and
reduces the fault indicators.

– Simulation was not
performed for
wide-ranging speed of the
WECS.

– The magnitude of the
vibration was not
assessed.
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Consolidating the inferences and limitations of the literature report, it can be perceived
that the power-quality concerns and efficiency of the converting techniques need a sophisti-
cated model. Furthermore, evaluation of mechanical stress needs further investigation to
warrant the reliable operation of the WECS.

1.4. Objectives

The converting techniques studied from the literature survey show limited assessment.
Based on the inferences from the literature report, there are research gaps in condition moni-
toring of wind turbine systems, notably, vibration analysis and converting techniques for
power evacuation into the grid. Therefore, this work aims to execute the following objectives
to improve the overall performance of the WECS both mechanically and electrically:

• To measure the frequency of the vibration signal extracted from acoustic sensors using
empirical wavelet transform.

• To assess the magnitude of the vibration of WECS for various wind speed profiles.
• To improve the efficiency of the converter employed for WECS.
• To reduce the THD of both voltage and current components to ensure the power

quality of the generated power by WECS.

1.5. Organization of the Work

The rest of the article is organized as follows. Section 2 illustrates the modeling of the
wind energy conversion system, which involves a wind turbine and permanent magnet
synchronous generator; Section 3 demonstrates the proposed methodology, consisting of
vibration analysis using empirical wavelet transform and a matrix converter with input
filter; Section 4 describes the results and discussion of the considered system using the
proposed methodology; Section 5 concludes the work based on the attained results.

2. Modelling of WECS
2.1. Wind Turbine Configuration with PMSG

A wind energy conversion system comprises several components such as turbine,
generator, converter, controller, transformer, and grid [38]. The integrated arrangement of
the complete system is illustrated in Figure 1. The primary process begins with generating
torque by the wind turbine utilizing the wind. Then, the generated torque is transported to
the generator rotor through the shaft, and the generator generates electrical torque. The
generated electrical energy is fed into the three-phase converting system, which pulses the
electrical quantity through control schemes and energizes the power transformer tied with
the grid system. To attain the optimum control scheme for the converting element, a digital
signal processing system is used.
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2.2. Wind Turbine Model

The primary function of a WT is to convert wind energy to mechanical energy. The
fundamental relationship to computing the mechanical power (Pm) of the aerodynamic
wind turbine power is derived as follows:

Pm = 0.5× ρ× A× u3 × Cp(λ× β) (1)

Then, the power coefficient (λ, β) can be evaluated using the below equation:

Cp(λ× β) = 0.22
(

116
λ
− 0.4× β− 5

)
×
(
−12.5

γ

)
(2)

1
γ
=

1
λ− 0.089

− 0.035
β3 + 1

(3)

Tip-speed ratio (λ) of the system is defined as the ratio of wind and rotor speed, and
derived as follows:

λ =
R×ω

u
(4)

Mechanical torque (Tm) on the shaft can be computed using the below equation.

Tm =
Pm

ω
(5)

where: ρ denotes the air density,

A = π × R2 represents the turbine’s blade swept,
V is the speed of the wind,
(λ, β) signifies the power coefficient of the turbine,
λ is the tip speed ratio,
β terms the pitch angle,
ω denotes the blades angular velocity,
R defines the rotor radius.

Based on these formulas, it can be concluded that the wind’s velocity can generate
mechanical torque according to the wind characteristics. It is evident that the role of power
coefficient is essential for wind energy conversion systems, and the sample plot for a wind
turbine power coefficient (0.8) is presented for better understanding in Figure 2.

Sustainability 2022, 14, x FOR PEER REVIEW 7 of 24 
 

ߛ1 = ߣ1 − 0.089 − ଷߚ0.035 + 1 (3)

Tip-speed ratio (λ) of the system is defined as the ratio of wind and rotor speed, and 
derived as follows: ߣ = ܴ × ݑ߱  (4)

Mechanical torque (Tm) on the shaft can be computed using the below equation. 

௠ܶ = ௠߱ܲ (5)

where: ρ denotes the air density, 
A = π × R2 represents the turbine’s blade swept, 
V is the speed of the wind, 
(λ, β) signifies the power coefficient of the turbine, 
λ is the tip speed ratio, 
β terms the pitch angle, 
ω denotes the blades angular velocity, 
R defines the rotor radius. 

Based on these formulas, it can be concluded that the wind’s velocity can generate 
mechanical torque according to the wind characteristics. It is evident that the role of power 
coefficient is essential for wind energy conversion systems, and the sample plot for a wind 
turbine power coefficient (0.8) is presented for better understanding in Figure 2. 

 
Figure 2. Output power versus turbine speed (pu. represents per unit). 

2.3. PMSG Modeling 
PMSG is modeled using d–q coordinates in a virtual platform, and there are no AC-

states for the developed model. It is modeled using DC parameters, for instance, voltages 
and currents in a rotor-fixed revolving coordinate arrangement. The fundamental deriva-
tions to evaluate the ݀-axis and ݍ-axis currents are described in the below equations: ݀݅௦ௗ݀ݐ = ܴ௦௔ܮ௦ௗ ݅௦ௗ + ߱௦ ௦ௗܮ௦௤ܮ ݅௦௤ + ௦ௗܮ1 ݐ௦ௗ (6)݀݅௦௤݀ݑ = ܴ௦௔ܮ௦௤ ݅௦௤ − ߱௦ ቆܮ௦ௗܮ௦௤ ݅௦ௗ + ௦௤ܮ1 ߮௣ቇ + ௦௤ܮ1 ௦௤ (7)ݑ

Then, the electromagnetic torque generated form the rotor is derived as follows: 

Figure 2. Output power versus turbine speed (pu. represents per unit).



Sustainability 2022, 14, 4404 7 of 22

2.3. PMSG Modeling

PMSG is modeled using d–q coordinates in a virtual platform, and there are no AC-
states for the developed model. It is modeled using DC parameters, for instance, voltages
and currents in a rotor-fixed revolving coordinate arrangement. The fundamental deriva-
tions to evaluate the d-axis and q-axis currents are described in the below equations:

disd
dt

=
Rsa

Lsd
isd + ωs

Lsq

Lsd
isq +

1
Lsd

usd (6)

disq

dt
=

Rsa

Lsq
isq −ωs

(
Lsd
Lsq

isd +
1

Lsq
ϕp

)
+

1
Lsq

usq (7)

Then, the electromagnetic torque generated form the rotor is derived as follows:

Te = 1.5
P
2
[
ϕpisq + isdisq

(
Lsd − Lsq

)]
(8)

where: isd is the d-axis current,

isq is the q-axis current,
usd is the d-axis voltage,
usq is the q-axis voltage,
ωs is the angular frequency (electrical) of the generator,
Lsd is the d-axis inductance of generator,
Lsq is the q-axis inductance of generator,
ϕp denotes the permanent flux,
Rsa represents the stator resistance,
P indicates the number of poles.

The complete parameter description of the WECS considered for this study is illus-
trated in Table 2.

Table 2. Parameters of the turbine and generator.

System Parameters Unit Range

Wind turbine

Power rating kW 2000

Radius of blade Meter 35

Tip-speed ratio 8

Power coefficient 0.4

Air density kg/m3 1.225

Wind cut-in speed m3 3

Wind speed (rated) m3 12

Wind cut-out speed m3 25

Permanent magnet synchronous
generator (PMSG)

Rated voltage V 5000

Frequency Hz 50

Torque N-m 450

Stator resistance Ohms 0.01

Armature Inductance H 0.03

Lq mH 3.75

Ld mH 5.5

Poles Nos. 56

3. Proposed Methodology

This section illustrates two different approaches; the first scheme describes a method
to evaluate the vibration magnitude of the wind turbine system and the other approach pro-
vides a detailed description of the converter modeling to enhance the electrical parameter
of the WECS. The complete description of the proposed model is shown in Figure 3.
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3.1. Vibration Analysis Model

Faults in the WECS can be identified at earlier stages by observing the operational
settings of the turbine system unceasingly; the occurrence of substantial deviations in
the system helps for pragmatic maintenance. Several analyses can be carried out, such
as vibration evaluation, acoustic emission analysis, and oil and temperature monitoring.
Among these evaluations, vibration analysis is a vital part in the condition monitoring
system of the WECS. It is an effective evaluation due to its direct measurement of machine
dynamics and helps to diagnose the faults incurred in the system. The possible reasons for
vibration generation in WECS are the surface wear and misalignments of rotating parts.
The complete evaluation process to estimate the vibration is illustrated in Figure 4.
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It is known that the recent advancements in sensors allow generation of more reliable
data acquisition. For WECS, acoustic sensors are installed on the WT drive train that
computes the vibration signal. It is an electronic component, and it could measure the
vibration signals through sound levels produced by the generator. It can be mounted over
the surface of a material/generator. During the operating time, if the sensor observes
variations in the features of the traveling path, it generates the amplitude and/or velocity
of the signals. Then, this observed feature is transformed into an output signal employing
transducers. These deviations are supervised by assessing the frequency/phase features of
the acoustic sensor.

3.1.1. Empirical Wavelet Transform

The empirical wavelet transforms the process algorithm to evaluate the vibration using
acoustic sensors. The following steps are essential to assess the vibration of the WECS:

Step 1: Find out the frequency instruments of the input signal using FFT.
Step 2: Segmentation needs to be carried out for different modes by Fourier signal.
Step 3: Employ scaling and wavelet functions matching each detected region.
Further, it is essential to perform segmentation of the Fourier spectrum, and it offers

better adaptability to the considered signal. For instance, frequency (f s) samples the discrete
signal x (k). Then, it employs the FFT and accepts the frequency band, regulates the set of
maxima (M = {Mi} i = 1, 2, . . . ,), and decreases their associated frequency (ωi).

Again, maxima are matched with a set of frequencies (ω = {ωi} i = 1, 2, . . . , M) and
accept the boundaries Ωn of all distinct sections as the midpoint of two consecutive maxima.

Ωi =
ωi + ωi+1

2
(9)
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where ωn+1 signifies the frequencies; M represents the number of frequency instruments
presented in the actual signal; Ωn denotes the matching boundary and the respective set is
Ω = {Ωi} i = 1, 2, . . . , M−1.

The derivation for Fourier transform for the empirical wavelets and scaling function is:

ϕ(ω) =


1 i f (1 + γ)Ωi ≤|ω|≤ (1− γ)Ωi+1

cos
(

π
2 β(γ, Ωi+1)

)
i f (1− γ)Ωi+1 ≤

∣∣ω∣∣≤ (1 + γ)Ωi+1
sin
(

π
2 β(γ, Ωi)

)
i f (1− γ)Ωi ≤

∣∣ω∣∣≤ (1 + γ)Ωi
0 otherwise

 (10)

and

O(ω) =


1 i f |ω|≤ (1− γ)Ωi

cos
(

π
2 β(γ, Ωi)

)
i f (1− γ)Ωi ≤

∣∣ω∣∣≤ (1 + γ)Ωi
0 otherwise

 (11)

β(γ, Ωi) = β

(
1

2γΩi
([ω])− (1− γ)Ωi

)
(12)

where γ is an overlap between the two back-to-back transitions areas and (x) is an arbitrary
function and derived as follows:

β(γ, Ωi) =


0 i f x ≤ 0
1 i f x ≥ 0
β(x) + β(1− x) = 1 i f xε[0, 1]

 (13)

The estimated coefficients of wavelet transform are taken by the internal product of
the applied signal (x), with the empirical scaling function as follows:

Wx(1, t) = x,∅1 =
∫

x (τ)∅1(τ − t)dτ (14)

Wx(i, t) = x, ϕi =
∫

x (τ)ϕi(τ − t)dτ (15)

3.1.2. Acoustic Recording Modes

Recording schemes are required to observe the regular and anomalous situations of
the WECS. This arrangement covers a wide range of data, from hundreds of samples per
cycle to several minutes. To perform these functions, the signal’s waveform needs to be
sampled. These recording schemes are arranged in various types using acoustic sensors
with recording feasibility that can monitor a variety of faults or power quality. Two vital
classifications are transient and speed-disturbance recording.

Transient signal recording:

– Records voltage and current samples recognized from sampling rate to the acous-
tic sensor.

– The typical sampling level is 128 samples/cycle. This mode is generally utilized for
the verification of transient signal analysis.

– It can also trigger low-and high-speed disturbance with different operating settings.

Speed-disturbance recording:

– Low-, medium-, and high-speed disturbance recording can be carried out on the
complete system in this recording scheme.

– The observed results are updated every quarter of a cycle or one cycle.
– The user could sample the recorded disturbances through maximum, minimum, and

average values.

3.2. Proposed Matrix Converter

A matrix converter with an input filter circuit incorporated with WECS delivers power
to the grid through a power transformer. The comprehensive sketch of the recommended
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matrix converter and input filter is presented in Figure 5. It injects alternating voltage and
current to the grid, and they can be computed using the expression mentioned below [39]:

V0=

 Vr
Vy
Vb

=
 SRr SYr SBr

SRy SYy SBy
SRb SYb SBb

 ×
 VR

VY
VB

= S×Vi (16)

Ii=

 IR
IY
IB

=
 SRr SRy SRb

SYr SYy SYb
SBr SBy SYb

 ×
 Ir

Iy
Ib

= ST × I0 (17)

where ST denotes a transpose of matrix S, and states of each bidirectional switch are
represented as Sab (x indicates R, Y, and B and y denotes a state r, y, and b) that can be
derived as follows:

Sab =

{
0 i f Sab is open
1 i f Sab is close

(18)
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This converter is designed with a space vector modulation (SVM) control algorithm; it
characterizes the three-phase voltage and current on the vector plane. Then, the state of
different switches is provided for every output phase that can be fed as an input to the stage.
Significantly, to restrict abnormal operations, namely, open and short circuits, twenty-seven
switching states are permissible using the above functions. Different combinations are
considered with three clusters depending on the output phases involving the corresponding
input phases.

SVM parameters decide the output of the matrix converter, notably, instantaneous
current and voltage, and input phase angle (∝i) and output phase angle (∝0). Furthermore,
the desired output voltage and frequency scale associated with the converter hinge on the
duty period for each switching operation. The switching times associated with two-phase
angles are computed based on the following equations:

δ+1 =
2√
3

Tsq sin
(

α0 +
π

6

)
sin
(π

3
− αi

)
(19)
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δ−3 =
2√
3

Tsq sin
(

α0 +
π

6

)
sin(αi) (20)

δ−4 =
2√
3

Tsq sin
(π

6
− α0

)
sin
(π

3
− αi

)
(21)

δ+6 =
2√
3

Tsq sin
(π

6
− α0

)
sin(αi) (22)

δ+1 + δ−3 + δ−4 + δ+6 ≤ Ts (23)

Further, the MC input current and the output voltage are estimated using the be-
low equations.

V0 =
2
3

(
Vr + a·Vy + a2·Vb

)
= V0 max·ej∝0 (24)

Ii =
2
3

(
IR + a·IY + a2·IB

)
= Ii max·ejβi (25)

where V0 represents the output voltage of the matrix converter,

Ii denotes the input current of the matrix converter,

‘a’ is the operator, and it can be represented as ej( 2π
3 ),

Vr and Ir are the output voltages and input currents of the matrix converter, respectively,
V0 max and Ii max represent the output voltage and input current, respectively, and
∝0 and βi denote the voltage and current angles.

Additionally, parameters capacitor (Cf), inductor (Lf), and resistor (Rs), are employed
to design the input filter circuit, and the equivalent model is exemplified in Figure 6.
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The output current and voltage of the filter circuit are derived below:

Ii(s) =
1

R f C f
+ 1

L f C f

s2 + s
R f
L f

+ 1
L f C f

IMC(s)|Vi(s) = 0 (26)

Vc f (s) = −R f

s 1
L f C f

s2 + s
R f
L f

+ 1
L f C f

IMC(s)|Vi(s) = 0 (27)

Then, the canonical illustration of the above equations is stated as:

a(s) =
ω2

n
s2 + 2ξωns + ω2

n
b(s) (28)

c(s) =
s ωn

αξ + ω2
n

s2 + 2ξωns + ω2
n

b(s) (29)
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ωn =

√
1

L f C f
, ξ =

R f

2

√
C f

L f
, Q =

1
R f

√
L f

C f
(30)

where ωn, ξ, and Q signify the natural frequency, damping factor, and quality factor,
respectively. This can be derived using a DSP-based control scheme, as illustrated in
Figure 1. Furthermore, different switching states that provide the associated output voltage
and the input current are exemplified in the below table (Table 3).

Table 3. Switching states and their outcomes.

On the States of Switches V0 ∝0 Ii βi

SRr SYy SYb 2/3VRY 0 2/
√

3Ir −π/6
SYr SRy SRb −2/3VRY 0 −2/

√
3Ir −π/6

SYr SBy SBb 2/3VYB 0 2/
√

3Ir π/2
SBr SYy SYb −2/3VYB 0 −2/

√
3Ir π/2

SBr SRy SRb 2/3VBR 0 2/
√

3Ir 7π/6
SRr SCy SBb −2/3VBR 0 −2/

√
3Ir 7π/6

SYr SRy SYb 2/3VRY 2π/3 −2/
√

3Iy −π/6
SRr SYy SRb −2/3VRY 2π/3 −2/

√
3Iy −π/6

SBr SYy SBb 2/3VYB 2π/3 2/
√

3Iy π/2
SYr SBy SYb −2/3VYB 2π/3 −2/

√
3Iy π/2

SRr SBy SRb 2/3VBR 2π/3 2/
√

3Iy 7π/6
SBr SRy SBb −2/3VBR 2π/3 −2/

√
3Iy 7π/6

SYr SYy SRb 2/3VRY 4π/3 2/
√

3Ib −π/6
SRr SRy SYb −2/3VRY 4π/3 −2/

√
3Ib −π/6

SBr SYy SBb 2/3VYB 4π/3 2/
√

3Ib π/2
SYr SYy SBb −2/3VYB 4π/3 −2/

√
3Ib π/2

SRr SRy SBb 2/3VBR 4π/3 2/
√

3Ib 7π/6
SBr SBy SBb −2/3VBR 4π/3 −2/

√
3Ib 7π/6

SRr SRy SRb 0 - 0 -
SYr SYy SYb 0 - 0 -
SBr SBy SBb 0 - 0 -
SRr SYy SBb Vimax αi I0max β0
SRr SBy SYb Vimax −αi I0max −β0
SBr SRy SYb Vimax αi + 2π/3 I0max βi + 2π/3
SYr SRy SBb Vimax −αi + 2π/3 I0max −βi + 2π/3
SYr SBy SRb Vimax αi + 4π/3 I0max βi + 4π/3
SBr SYy SRb Vimax −αi + 4π/3 I0max −βi + 4π/3

4. Results and Discussions
4.1. Vibration Assessment

As mentioned earlier, three different modes of recording can be carried out, and these
can be modeled in the Sigview software, which could routinely sample and store the
disturbance records. For some scenarios, these recording modes are employed to find
the power quality of the prototypes employed for dynamic or steady-state short-circuits
studies. This evaluation allows the users to find the varied range of fault voltages and
current with time which is usually not considered for performance evaluation. In this work,
four different modes of vibration assessment are carried out as follows:

– Low-speed system,
– Medium-speed system,
– High-speed system,
– Transient signal system.

The simulated outputs of all four systems are illustrated in Figures 7 and 8. It comprises
different plots, namely, frequency versus time, magnitude versus normalized frequency,
the amplitude of vibration versus time for the first set region, and amplitude of vibration
versus time for the second set region.
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From the plots, it is perceived that the low wind speed generates a lesser rate of
vibration frequency of about 0.036 Hz as maximum attainment, which is much less than
medium (0.47 Hz), high (0.33 Hz), and transient (0.06 Hz) wind speed. It is also noted that
the vibrational frequency of a medium wind speed profile is more significant than a higher
wind speed profile.

Moreover, the magnitude of the vibration against the normalized frequency shows
similar trends across frequency plots. Low wind speed profile shows a magnitude scale of
about −45 dB; on the other hand, medium, high, and transient wind profiles offer about
−15 dB, −20 dB, and −28 dB, respectively.

Further, the vibration amplitude for the first set regions is noted for low, medium,
high, and transient wind profiles. Again, low wind profile offers the least scale of am-
plitude, of about 0.0375 RMS (m/s3), which is comparatively less than other wind pro-
files. It is observed that the medium wind speed profile generates a larger scale of about
0.47 RMS (m/s3).

Furthermore, the second set region sensor also shows a similar trend to the first set
region but with different magnitude scales. The amplitude of low wind profile provides
trivial scale of about 0.003 RMS (m/s3), which is better than medium (0.06 RMS (m/s3)),
high (0.013 RMS (m/s3)), and transient (0.0038 RMS (m/s3)) wind profile. The overall
comparison of the inferences is illustrated in Figure 9.
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Figure 9. Comparative investigation of vibration assessment.

Consolidating the inferences, it is observed that the medium wind profile generates
more vibration frequency and amplitudes compared with high, low, and transient wind
profiles. The EWT technique effectively extracted the vibrational frequency and magnitude
by creating a multi resolution analysis of an observed signal using an adaptive wavelet
subdivision scheme. It starts with a breakdown of the signal’s spectrum and provides a
perfect reconstruction of the input signal. Therefore, EWT can be used for large-scale WECS
effectively compared with other existing schemes.

4.2. Performance of Proposed Converter with WECS

The proposed model is designed in the MATLAB Simulink platform based on the
parameters depicted in Table 2. The concept of the subsystem mask is adapted for some
components such as control schemes, pulse generators, and filter circuits. To measure the
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output from the various configurations, scope and display blocks are used at appropriate
locations. The WECS model accomplishes the wind speed during the simulation process
based on the input data that give reference speed to the control scheme optimally.

The proposed system accomplishes the optimal speed of PMSG when the speed of
the wind reaches 12 m/s. Furthermore, it is essential to obtain optimal tip-speed ratio and
power co-efficient, and this is accomplished at 8 m/s and 0.4, respectively, with the help of
pitch-angle controller and MPPT. The matrix converter functioned with a duty cycle (δ) rate
of 0.68 at a switching frequency of 500 Hz that generates the output. The simulated results
show that the waves of DC-link voltage maintained by the inverter offer smooth output
and attain stable operation, as illustrated in Figure 10. It is also perceived that DC voltage
is controlled well and stably without significant distortion, with a magnitude of 1496 V.
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Moreover, the voltage and current at the grid side are observed and illustrated in
Figures 11 and 12, respectively. The voltage magnitude is maintained at a good scale of
about 505 V, and the current scale is noted to be 994 A. Lastly, the real and reactive power
of the inverter at the output side is evaluated (Figures 13 and 14) and found to be 0.383 MW
and 0.52 MVAR, respectively. Further, the total harmonic distortion (THD) is performed
using Fast Fourier transform (FFT) analysis; current and voltage THDs are measured to be
3.16% and 8.34%, respectively (Figure 15).
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Based on the real power output of the inverter, the efficiency of the matrix converter is
computed with reference to 0.4 MW as the input to the converting system. Based on this
computation, the efficiency of the matrix converter is measured to be 95.75%. Therefore, to
warrant the effectiveness of the matrix converter, existing inverting schemes are compared
and illustrated in Table 4. It is detected that the recommended converting system accom-
plishes a greater efficiency rate of 95.75%, which is greater than other converting techniques
except for buck-boost and split-inductor differential type, but both of them demonstrated
for constant sources. This is due to the direct AC-to-AC power converters that help to
handle the variable voltage and variable frequency effectively compared with traditional
rectifier–inverter-type power frequency converters. Since it offers sinusoidal output and
input waveforms, with marginal higher-order harmonics with bi-directional energy flow
capability, it can be concluded that the proposed converter shows better performance
for WECS.

Table 4. Comparison of different inverter configurations.

Ref. No. Configuration Efficiency (%)

[40] Quasi Z-source inverter 90.20
[41] Differential boost inverter 83.33
[42] Switched-coupled inductor inverter 90.50
[43] Improved DBI 92.60
[44] Buck-boost inverter 96.10
[45] Split-inductor differential boost inverter type-I 96.50
[45] Split-inductor differential boost inverter type-II 97.00
[46] Split-source inverter 95.50

Proposed method Matrix converter 95.75

Based on the above inferences, it is observed that the proposed system offers better
results while assessing the mechanical and electrical characteristics of the wind energy
conversion system. Therefore, this model can be extended for higher-rated wind turbine
systems for better evaluation of mechanical (vibration assessment) and efficient electri-
cal output.
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5. Conclusions

This work attempted to evaluate the mechanical and electrical characteristics of the
wind turbine system by employing empirical wavelet transform (EWT) based on acoustic
sensors and a matrix converter with input filter. The complete system was modeled and
simulated to obtain various mechanical and electrical parameters. Based on the attained
results, the following conclusions are made:

• The acoustic sensors employed with EWT identified the vibrational magnitude for
low, medium, high, and transient wind speed profiles effectively.

• The frequency of the vibrational signal observed a lower scale for low wind profile
and higher value for medium speed rather than high wind profile.

• The amplitude of the sampled vibrational signal was found to be low for low wind
profile and higher amplitude for medium wind speed profile rather than high wind
profile; there were similar trends for frequency characteristics.

• The matrix converter with input filter provided significant improvement in its effi-
ciency and outperformed other existing schemes.

• THDs of voltage and current were also small, which warrant the better power quality
of the WECS connected to the grid.

In a nutshell, this work proposed best methodologies to assess the electrical and me-
chanical characteristics of the WECS that lead to reducing mechanical failure and improving
power quality in the overall system. Therefore, the suggested scheme can be employed
for conditional monitoring of wind turbine systems and power-quality improvement for
large-scale systems where turbines are placed in remote zones.
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