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ABSTRACT 

Low-density polyethylene (LDPE)/carbon black (CB) composites were fabricated via melt-

compounding technique. The percolation threshold was found to be around 20 wt% CB, and an 

electrical network formed by conductive CB was proven by SEM investigation. Dielectric 

responses depicted an interfacial relaxation peak at 20 wt% CB content. LDPE/CB composites 

showed an electric field-dependent conductivity as well as a hysteresis behavior around the 

percolation threshold region. The CB particles with high thermal conductivity increased the heat 

conductance of the LDPE/CB20 up to 56%. The dynamic mechanical analysis (DMA) of the 

LDPE/CB composites exhibited a noticeable contribution of CB throughout the composites, 

increasing the storage and loss modulus. The physical interactions between CB particles in the 
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filler network enhanced the thermal degradation of the LDPE/CB25 composite for more than 76 

°C. The maximum breakdown strength of the LDPE/CB composites appeared with an 

approximately 10 % improvement for LDPE/CB5 than pure LDPE. 

Keywords: composites, dielectric properties, thermal properties, extrusion, conducting 

polymers. 

 



 

 

INTRODUCTION 

Carbonaceous conductive particles have attracted a vast part of composite research due to a 

large number of potential industrial applications. A range of applications dealing with 

electromagnetic radiation shielding, self-regulating heaters,1-3 high-voltage and high-temperature 

devices, high-performance EMI shielding materials,4-6 and electrical field grading have been 

proposed for polyethylene/CB composites.7 LDPE composites loaded with CB are attractive 

materials for electromagnetic interference (EMI) shielding applications thanks to their cost 

effectiveness, light weight, high resistance to corrosive conditions and easy processability.4 These 

composites, at low filler concentration, can also be used for applications where the material 

remains insulating but in which electrical charges are allowed to slowly leak out of the material 

bulk in order to avoid space charge accumulation.8,9 HVDC cables and spacecraft dielectrics are 

examples of such applications.10,11 Therefore, possible applications for LDPE/CB composites 

cover the whole range of concentrations from low concentration for dielectric applications to 

intermediate concentration (near percolation threshold) for stress grading applications and up to 

high concentrations for EMI-shielding or semi-conductive screen applications. 

Several studies have been conducted to investigate the electrical and thermal properties of 

LDPE/CB composites. Due to the role of finite and infinite CB clusters on the electrical 

conductivity of LDPE/CB composite, samples subjected to an electric field featured different 

behaviors. A non-ohmic trend at filler concentration close to the percolation threshold was 

observed due to the onset of current tunnels between CB clusters.12 At the percolation threshold, 

a conducting pathway was formed resulting in a sharp increase of electrical conductivity. The 

application of a magnetic field on LDPE/CB nanocomposites prepared by thermoforming 

technique was found to increase the degree of crystallinity and reduce the electrical 



 

 

conductivity.13 The DC electrical conductivity of PE/CB nanocomposites was also found to 

decrease with the increase of temperature, particularly near the melting point.14,15 These 

conductivity changes were linked to the positive temperature coefficient (PTC) factor of the 

composites, and affected by the filler concentration.14-16 The multiwalled carbon nanotubes-

core/thiophene polymer composite fabricated by chemical oxidative polymerization indicated a 

significant electrical and thermal conductivity enhancement as the results of π-π interaction 

between polymer and filler 17. The compounded composite with carbon nanotube (CNTs) and 

polycaprolactam (PA6) illustrated a lower percolation threshold than the one with thermally 

reduced graphene oxide (TrGO). Furthermore, due to the presence of impurities within the TrGO, 

the electrical conductivity of TrGO composites was found to be lower than that of CNTs 

composites 18. In the study done by Son et al., the thermally reduced graphene created an 

electrically conductive network throughout the polyester and poly(butylene terephthalate) (PBT) 

composite in which the electrical conductivity followed a power low at percolation threshold, 

leading to an increase of around 8 orders of magnitude with addition of ~ 0.2 -0.4 vol.% 19.   

The thermal conductivity of polymeric composites containing high thermally conductive 

particles, such as carbon nanotubes and graphene as well as carbon particles, has been widely 

investigated. The thermal conductivity of composites has been related to many factors such as 

filler morphology and concentration, the strength of bonding between polymer and filler, the 

volume of side groups of the host matrix, defects, inherent thermal conductivity of filler and host 

polymer and processing conditions.20,21 For example, the particle size of graphite in high-density 

polyethylene (HDPE) was found to play a predominant role on the thermal conductivity of the 

composite; graphite with diameter larger than 15 µm significantly intensified thermal 

conducting.22 



 

 

According to these studies, several drawbacks such as poor miscibility and inappropriate filler 

dispersion have been reported for polyolefin-based/carbon-based composites. In this regard, 

additives play a predominant role. Thus, in comparison to different allotropes of carbon, CB 

provided a more uniform distribution, higher apparent density and faster flow rate during 

manipulation 23. For this reason, the LDPE/CB remains an economical system that serves as a 

benchmark for polymer blends and nanoparticles. To the best of our knowledge, the hysteresis 

electrical effect and electrical field dependency of LDPE/CB composites as well as their thermal 

conductivity have been not so far reported. The aims of this study are to investigate the thermal 

conductivity of LDPE composite containing highly conductive CB and their dielectric response 

to different electric fields. In this regard, CB particle dispersion within the host matrix was 

investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). 

Electrical field dependency, composite’s memory behaviour subjected to the electrical field, and 

resistance of LDPE/CB composites at low CB content to high AC electrical fields were also 

examined. Thermal properties of the composites were assessed via differential scanning 

calorimetry and thermogravimetric analysis. Finally, dynamic mechanical properties of the 

composites were investigated. 

EXPERIMENTAL 

Materials 

LDPE powder (XDS34P500) with a density of 0.922 g.cm-3, a melt flow index of 0.4 g.10 

min-1 and an average molecular weight of 102,000 was purchased from Marplex (Australia). 

Commercial CB particles (VXC500) possessing excellent electrical and thermal conductivity and 

low sulfur content was provided from Cabot, with an apparent density of 1.7-1.9 g.cm-3 at 20 °C 

and an average particle size of 10 micrometers or less in diameter.  



 

 

Sample preparation 

The morphology of the composites was investigated by scanning electron microscopy (SEM) 

using Hitachi microscope (SU-8230 FE-SEM). The sample specimens were cryofractured by 

microtome in -100 °C liquid nitrogen and coated with a 2 nm platine using the turbo-pumped 

sputter (Q150T). 

CB additive with different concentrations was blended with LDPE and the samples were 

labeled according to Table I. All samples were fabricated with a twin screw co-rotating extruder 

(Haake MiniLab II) at a 140 °C melting zone temperature and a 110 rpm screw rate. To obtain a 

better dispersion, the extruded compound was recycled through the internal bypass existing in the 

extruder. Each batch of the compound was extruded and recycled for 5 min. Polymer films with 

an average thickness of 0.3 mm were subsequently prepared by hot pressing at 155 °C and 6.5 

MPa of loading pressure. 

Table I.  

Measurements 

The composite morphologies were analyzed by atomic force microscopy (AFM) using a 

digital instrument multimode AFM (Veeco multimode) on a cross-section thin film prepared by 

cryogenic microtoming. These observations were carried out at room temperature and the data 

were acquired in the height, amplitude and phase modes with a scan rate of 1 Hz and areas of 

4×4, 2×2 and 0.65 ×0.65 µm2.  

The dielectric response of LDPE/CB composites was measured using a flat disk with a 

diameter of 40 mm and an average thickness of 300 µm. The measurements were performed with 

a broadband dielectric spectrometer (Novocontrol) in a wide range of frequencies, ranging from 



 

 

0.01 Hz to 1 MHz at 20 °C with an AC excitation voltage of 3 Vrms. The real part ( ), the 

imaginary part ( ) and the complex permittivity ( ) are given by Equation 1:24 

 ( ) ( ) ( ) =  − ε ω ε ω jε ω  (1)  

The AC breakdown strength (ACBD) of LDPE/CB composites at low filler contents was 

obtained with a Bauer DTA100 tester. These measurements were conducted according to the 

procedures described in the ASTM D149-09(2013) standard. A thin sheet was positioned 

between two ball-tip electrodes with a diameter of 4 mm and immersed into dielectric mineral oil. 

A short-term test consisting of 60 Hz voltage at a rising rate of 2 kV.s-1 was employed for each 

measurement. The reported values were calculated from the average of ten trials in the same 

condition for each sample. 

The resistance of the neat LDPE and LDPE/CB5 to erosion due to exposure to corona 

discharges was investigated by a handy-setup erosion tester. This type of test consisted of 

applying 10 kV rms at a frequency of 300 Hz for 35 h on a titanium ball with a diameter of 4 mm 

that was separated from a disk-shape sample with a diameter of 40 mm by a gap of 10 m 

between the ball tip and sample surface. More information on this type of test and on the 

experimental setup can be found elsewhere.25 

The structure of neat LDPE and its composite comprising CB filler was characterized using an 

X-ray diffractometer (PANanalytical X’Pert Pro). The scanning was conducted with Cobalt tube 

with Kα radiation (λ = 1.792 Å) in the range of 2ɵ from 15 to 65°. An accelerating voltage of 40 

kV, a step size of 0.0668° and a counting time of 150 ms per step was applied.  

The degree of crystallinity and melting temperature of LDPE/CB composites were obtained 

using differential scanning calorimetry (DSC) (Q20, TA Instruments). To remove the thermal 



 

 

history of composites, the test specimen was first heated with a ramp of 10 °C.min-1 from 0 to 

150 °C. It was cooled down from 150 to 0 °C with a rate of 10 °C.min-1, and again, subsequently, 

the sample was heated similarly to the previous heating step. The DSC thermograms for the 

thermal properties assessment were obtained from the second heating cycle. The melting 

temperature as well as the specific fusion’s enthalpy ( m
H ) of the composites were extracted 

from the DSC thermograms, which allows the calculation of the degree of crystallinity ( c
X ) from 

Equation (2) 26 
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where w  is the filler content and o

m
H (293.6 J.g-1) is the specific fusion’s enthalpy of perfect 

crystal of PE27. According to the variant of the Thomson-Gibbs equation for a lamellar crystallite 

of large lateral dimensions, the lamellar thickness ( l ) of pure LDPE and its composites is given 

by Equation 3, as follows:28 
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where, is the thermodynamic melting point of infinite perfect crystals (418.6 K),  is the 

melting temperature, and is the fold-free surface energy (90.4 mJ.m-2).29 

Thermal stability of LDPE/CB composites as well as the content of CB in the samples were 

measured by thermogravimetric analysis (TGA) using a diamond TG/DTA instrument (Perkin 

Elmar). TGA experiments were carried out with samples around 10 to 13 mg in weight. The 

heating was performed with a ramp of 20 °C.min-1 from 200 to 800 °C under N2 atmosphere and 

then the temperature was kept at 800 °C under air for 10 min.  



 

 

The thermal conductivity of LDPE/CB composites was investigated using a guarded heat flow 

meter (DTC-25 TA instrument). Measurements were conducted according to the ASTM E1530-

11(2016) standard, by applying a pressure of 20 psi from the upper surface on the sandwiched 

disk placed between two heating and cooling brass plates. The differential temperature between 

the heated and cooled brass plates was set to 25 °C. For each sample, the measurement was 

conducted on two replicates consisting of a circular disk with a diameter of 50.8 mm and a 

thickness of about 300 µm. In order to ensure the thermal stabilization of the sample chamber, the 

thermal conductivity measurement was performed after 2 h. The heat flowing across the sample 

was measured by a heat flux transducer which is located in the lower plate, and the thermal 

conductivity can then be inferred by Equation 4:25 
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where Q  represents the heat flux through the sample, A  is the sample area, T is the differential 

temperature between upper and lower plates and t is the sample thickness.  

The dynamic mechanical properties of LDPE/CB composites were measured by a DMA Q800 

(TA Instruments). Measurements were carried out in the tensile mode with a standard rectangular 

sample having dimensions of 30×7×0.3 mm3 at a frequency of 1 Hz, deformation amplitude of 20 

μm and a force track of 120 %. Each measurement was performed in a temperature range from -

100 to 100 °C with a ramp of 5 °C.min-1.  

 



 

 

RESULTS AND DISCUSSION 

SEM imaging 

Figure 1 shows the cross-section morphology images of LDPE/CB composites at two 

magnifications. As indicated, the spheroid-shape CB particles throughout the LDPE/CB 

composites at below the percolation threshold (LDPE/CB15) were dispersed somehow 

uniformly, and the connections between particle-particle are not sufficient to form a conductive 

pathway (Figure 1a and 1b). The addition of more CB particles was found to form a connected 

network within the composite for LDPE/CB20 (at percolation threshold). At this filler content 

(LDPE/CB20) the chain-shape CB particles are seen clearly, leading bridges between the upper 

and lower electrode, and ease charge carrier (Figure 1c and 1d). At higher filler content 

(LDPE/CB25), a conductive network of the CB particles as well as several islands of the 

agglomerated CB particles were observed. Apparently, the CB particles acted as the nucleating 

agents in which caused some micron-sized filler agglomerations within the composite (Figure 1e 

and 1f).    

Figure 1 

AFM imaging 

The cross-section cut surface morphology of LDPE/CB composites were observed by the 

AFM below (LDPE/CB15) and above (LDPE/CB25) the percolation threshold (Figure 2). The 

phase imaging in AFM showed rather uniform filler dispersion in the whole composite sample. 

The yellow and brown region in the phase images indicate the polymer matrix while the bright 

dots illustrate the CB particles. At filler concentrations below the percolation threshold (Figures 

2a and 2b) some agglomerations were observed but overall, the CB particles were still mostly 



 

 

isolated. Beyond the percolation threshold (LDPE/CB25), the CB particles were connected 

together, forming a conducting pathway in the polymer matrix (Figures 2c and 2d), and, as 

expected, a higher number of particle-to-particle connections were observed here than in the case 

of the composite containing 15 wt % CB. Further physically connected particles in the composite 

with high filler content (LDPE/CB25) will influence on electrical, mechanical and thermal 

properties of composites, as explained later.   

Figure 2. 

Dielectric properties 

The frequency-domain dielectric response of LDPE/CB composites at 20 °C is shown in 

Figure 3 (real part, 3a and imaginary part, 3b). At low filler concentrations (under 20 wt%), a 

conductive network bridging both electrodes was not achieved30, but at filler content around 20 

wt%, while the DC conductivity remained very low, some conductive structures within the 

composite bulk started to form and gave rise to high dielectric losses featuring an interfacial loss 

peak in the vicinity of 1 Hz. This was in good agreement with SEM and AFM observations 

explained previously. This interfacial polarization mechanism in the composite led to a stepwise 

increase of the real permittivity part, as imposed by the Kramers-Kronig relations.31,32 The 

interfacial relaxation mechanism, also known as Maxwell-Wagner-Sillars effect,33 was a result of 

the accumulation of charge carriers at the interface of the slightly conductive clusters within the 

composites that were not yet bridging both electrodes'3,34. When the filler concentration reached 

the percolation threshold (CB contents between 20-25 wt %), the electrical conductivity of the 

composite switched from that of an insulating material to a semi-conductive one35,36. Thus, the 

conductivity of the LDPE/CB25 composite was found to increase by about 11 orders of 

magnitude compared to that of pure LDPE, as can be seen in Figure 4. 



 

 

A comparative value of the electrical conductivity and the percolation threshold of several 

composites are presented in Table II. Composites prepared by solvent-casting were found to be 

conductive at extremely lower filler content than the melt compounding one. Due to the existence 

of some impurities such as oxygenated groups in the graphene-based fillers, composites with CB 

additive revealed higher electrical conductivity. In this regard, comparing our LDPE/CB 

composite with its counterparts indicate good electrical conductivity with respect to others 

referred composites.  

Table 1I. 

In order to better understand the origin and contribution of the charge carrier and charge 

accumulation in the interface of inclusions, the imaginary permittivity of the LDPE/CB20 

composite at 20 °C was fitted according to Equation 532, 
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where the first term represents the contribution from the charge carriers and the second term is 

the general empirical expression, the Havriliak-Negami function, used to model a relaxation 

process. o and N are the material’s parameters related to the conduction process, with N = 1 

leading to the special case of direct conduction,   denotes the dielectric strength of the 

relaxation peak, is the relaxation time and the parameters   and   are the slopes of the low 

frequency side of the relaxation peak and the asymmetry parameter, respectively32. As can be 

seen in Figure 5, the use of Equation 5 gave a reasonable fitting of the relaxation peak of the 

LDPE/CB20 composite with a time constant of 6.2 x 10-2 s and a dielectric strength of 8.2. The 

parameters   and   are given in Table III as well as o with N = 1 (direct conduction). At 



 

 

higher frequencies than the peak frequency of the relaxation process, Equation 5 predicts a rapid 

decrease to essentially zero of the dielectric losses and consequently cannot fit any more the 

experimental data that exhibits an unusual constant-loss dielectric response. The complete fitting 

of the dielectric spectrum shown in Figure 5 can be achieved by the addition to Equation 5 of a 

third term, similar to the first one but with a low value of N in the vicinity of  0.1. 

Figure 3. 

Figure 4. 

Figure 5. 

Table III. 

Effect of temperature on the electrical responses 

The electrical responses of the LDPE/CB composite at percolation threshold (LDPE/CB20) 

were investigated at different temperatures from 30 °C to approximately the polymer melting 

point (100 °C) (Figure 6). The findings showed a significant decrease of the dielectric losses with 

increasing temperature as well as a constant or “flat” dielectric loss behavior. This behavior, 

which has been known for decades for various solid materials, such as glasses and ferroelectric 

crystals37, is still poorly understood. One possible reason for the decrease of dielectric losses with 

the increase of temperature might be the release of the absorbed moisture forming an interlayer 

between the hydrophilic particles and the hydrophobic matrix38. However, when the 

measurements were conducted for the second run at 40 and 30 °C consecutively after the elevated 

temperature (100 °C) run, the dielectric losses were found to increase again at approximately the 

same level as for the first run. Accordingly, the main contribution of the lowering of the dielectric 

losses was found to be linked to the thermal expansion of the composite for which the increase of 



 

 

temperature (50 to 100 °C) causes a slight separation of previously connected particles14,39-42. 

When the dielectric response was measured for the second run (at 40 and 30 °C), due to the 

shrinkage of the composite, the electrical connectivity between closely located carbon particles 

increases, forming larger aggregates. As a result, both the real and imaginary parts of the 

complex permittivity of the LDPE/CB20 were found to increase significantly. Thus, the volume 

fraction of the CB particles ( CB
 ) within the composite, as well as the microstructure, was 

affected by thermal expansion, which plays a remarkable role on the electrical properties of the 

composite43-45. The changes in the location of the interfacial relaxation peak with increasing 

temperature can be explained in a similar fashion by the disruption of the previously conductive 

aggregates (for 40, 50 and 60 °C). At higher temperatures up to 100 °C, the contribution of 

charge fluctuations throughout the composite bulk starts to be predominant at low frequency and 

leads to the usual low-frequency dispersion behavior.46 

Figure 6 

Non-linearity and hysteresis  

Electrical field dependency of the dielectric response of pure LDPE and LDPE/CB composites 

was studied over the 10-1-10-4 Hz frequency range. Measurements were conducted using different 

electrical fields, ranging from 17 to 1100 V.mm-1 (first run) and then lowering the electrical field 

to the initial value of the electrical field (second run). For LDPE/CB25 and LDPE/CB30 the 

measurements were carried out only at 17 and 178 V.mm-1. The composites were found to exhibit 

significant electrical field dependency in their dielectric response in the vicinity of the percolation 

threshold, as illustrated in Figure 7a. In fact, the LDPE/CB20 composite featured a non-linear 

conductivity as well as a counterclockwise hysteresis behavior. Figure 7b illustrates the 

imaginary permittivity of LDPE/CB20 as a function of applied electric field. As can be observed, 



 

 

a low frequency interfacial relaxation peak occurred at low electrical field during the first run but 

then moved towards higher frequencies as the field was increased. The peak disappeared when 

the field was further increased and the contribution of the DC conductivity started to dominate 

the low-frequency dielectric response. This shift of MWS peak towards higher frequencies is due 

to the increase of the intra-cluster connections leading to a more conductive cluster and 

consequently a lower relaxation time.47 When the field reached values above 300 V.mm-1, 

cluster-to-cluster connections started to appear and ultimately charge transportation through the 

material occurred.48,49 

Figure 7. 

AC breakdown 

Dielectric AC breakdown strength was analyzed with the two-parameter Weibull distribution, 

and results are shown in Figure 8. According to this distribution, the failure probability under an 

increasing ramp of AC voltage is given by Equation 6: 

 

 
(6)  

where  represents the cumulative failure probability at an electrical field E,  is the scale 

parameter or the characteristic breakdown strength, which is the field for which 62.3 % of the 

samples have failed, and  is the shape parameter which is related to the scattering of the data 

obtained during the BD measurements25. A characteristic breakdown strength ( ) of 117 kV.mm-

1 was found for the LDPE/CB5 sample which was about 10 % higher than the one obtained for 

pure LDPE. This increase can be linked to the trapping of charge carriers, generated in the 

composite matrix at high electrical field31,50. Further additions of CB nanoparticles led to a 



 

 

reduction of dielectric breakdown strength due to the formation of conductive clusters and 

consequently tunneling current between particles and clusters51. 

Figure 8. 

Resistance to corona discharges 

The eroded volume after exposure to corona discharges was subsequently evaluated by the use 

of a mechanical profilometer for the neat LDPE and two composite samples (LDPE/CB5 and 

LDPE/CB10). The erosion test was stopped after 10 h for LDPE/CB10 due to sample failure. 

Figure 9 shows the profiles of the eroded surfaces for LDPE and LDPE/CB5 after the erosion test 

was completed. As can be observed, the eroded areas were highly symmetrical around the tip of 

the HV titanium electrode. The resistance to corona discharges was evaluated based on the 

calculation of the eroded volume and it was found to decrease when 5 wt% CB was added to the 

LDPE polymer matrix. Indeed, the eroded volume, as measured by the profilometer, was found to 

be 3.05 ×109 µm3 and 3.88 ×109 µm3 for LDPE and LDPE/CB5, respectively, corresponding to a 

decrease of about 27 % in erosion resistance.  

Figure 9. 

Dispersion of CB in LDPE investigating by XRD   

XRD experiment was carried out to evaluate the CB dispersion in LDPE polymers. As 

indicated in Figure 10, the XRD patterns did not feature any diffraction peaks derived from CB in 

the LDPE/CB composites, illustrating suitable dispersion of CB particles in the matrix. CB 

illustrated two broad reflections at 28.5° and 52°, revealing extremely lower crystallinity with 

respect to the observed sharp peak for the semicrystalline LDPE polymer at 24.3°.52. 

Additionally, due to high surface specific areas of the CB, restacking of the CB was occurred, 



 

 

and resulted broad reflection peak. The broad peak at 28.5° corresponds to the (002) of the CB. 

Pure LDPE and its composites with CB indicated two peaks at 24.3° and 27.5° corresponding to 

(110) and (200) lattice planes. The appeared peaks were found to be fixed in their locations, 

indicating adequate exfoliation of polymer chains and poor particles agglomerations. 53   

Figure 10 

Thermal properties 

The incorporation of CB into the pure LDPE was not found to significantly alter the 

composite’s melting point (Tm), indicating a broad melting range, commencing from ~ 40 °C 

(Figure 11). Furthermore, the addition of CB particles did not increase the degree of crystallinity 

(Xc), as the crystallinity percentage was found to remain almost constant with a negligible change 

within two percent with respect to the pure LDPE. The lamellar thickness ( l ) of the ordered 

regions was deduced from the melting temperature and calculated according to Equation 3. 

Similar values of lamellar thickness were found for pure LDPE and their composites, which 

again corroborates the fact that the incorporation of CB did not lead to significant change in the 

matrix morphology (Table IV). TGA measurements were conducted showing that pure LDPE 

started to undergo pyrolysis at about 375 °C and then undergoes a rapid decomposition down to 

basically no ash content.54 The onset temperature (T5%), corresponding to 5 % of the sample 

weight loss, the T50% corresponding to 50 % of the sample weight loss as well as the final 

remaining mass at 550 oC are given in Table IV for each composite. CB loading was found to 

increase the onset decomposition temperature, particularly in the case of the LDPE/CB25 sample. 

This enhancement of the thermal properties can be explained by possible weak physical 

interactions between particles55,56 as well as the formation of a filler network within the 

composite. Decomposition temperature was also found to increase by the addition of CB, from 



 

 

464 °C for the pure LDPE to about 500 °C and 492 °C for the LDPE/CB25 and LDPE/CB30 

composites, respectively. This increase may due to the high thermal stability of CB itself57 as 

well as the lower mobility of the polymer chains close to the additives58,59. The residual content 

at 550 °C was in good agreement with the nominal values, initially calculated during the 

formulation. 

Figure 11 

Table IV. 

Thermal conductivity 

Thermal conductivity measurements of LDPE/CB composites were in good agreement with 

what was found for the electrical conductivity, featuring a significant increase only for 

concentrations at or above the percolation threshold (Figure 12). Neat LDPE showed a thermal 

conductivity of 0.28 W.m-1K-1, which is mainly due to phonon transportation as the electronic 

contribution is negligible. The amorphous regions and free volumes in the LDPE scatter phonons, 

which reduces thermal transportation60. Since the DSC results did not show much change in the 

polymer morphology for the composites, it was expected that the thermal transportation done by 

the crystalline regions would also be predominant for the composite below percolation and would 

increase due to the contribution of the CB conductive network from the percolation point. In fact, 

the thermal conductivity of LDPE/CB composites at low filler content up to 15 wt% was found to 

slightly decrease (Figure 12), probably due to the thermal resistivity at interfacial layers between 

the particles and the host polymer and due to the additional scattering of the phonons.33,61 

Increasing CB content above 15 wt% was found to raise the thermal conductivity significantly as 

can be seen for the LDPE/CB20, LDPE/CB25 and LDPE/CB30 composites. The enhancement of 



 

 

the thermal conductivity at high filler content was observed due to the dominant contribution to 

the thermal conductivity of electronic transport and phonons transportation through the network 

formed within the composite.  

Figure 12. 

Dynamic mechanical properties 

The influence of CB inclusions on dynamic mechanical properties was investigated in terms of 

storage modulus (E'), loss modulus (E") and damping factor ( ), and the results are shown in 

Figure 13. The storage modulus that expresses the stiffness of the composite, and the loss 

modulus that is related to the absorbed energy are shown as a function of temperature. Both 

properties were strongly temperature-dependent. The reduction of storage modulus with 

increasing temperature is related to the increase of the mobility of the amorphous regions within 

the semicrystalline composites.62 Addition of CB to pure LDPE increased the storage modulus of 

composites. This can be attributed to the possible Van der Waals interactions between CB 

particles.4  The loss modulus and damping factor (tan ) (Figures 13b and 13c) showed two 

relaxation peaks over the temperature range from -100 to 100 oC. The first relaxation peak, 

around 60 °C (Figure 13c), is due to the fading of crystalline regions, and consequently the loss 

of the composite’s mechanical strength. The second relaxation peak (Figure 13b) at about -25 °C, 

is related to the mobility of entire polymer chain motions in the amorphous regions.63 The loss 

modulus of all LDPE/CB composites were higher than that of the pure LDPE, which might be 

because of the mesophases created between CB particles and polymer that causes the applied 

external energy by frictional forces between polymer and particles to dissapate.63 The 

enhancement of the mechanical properties of composites with higher filler content with respect to 



 

 

their counterparts with lower contents showed the contribution of the CB particles to the 

material’s mechanical strength.64,65. 

Figure 13. 

  

The comparison of the storage modulus of several polymeric composites compounded with 

carbonaceous fillers is reported in Table V. As indicated, different carbon-based fillers revealed 

different values of storage modulus at the same filler content. In comparison with the reported 

references, our CB/LDPE composite illustrated higher mechanical storage modulus than its 

counterparts; possibly to better dispersion, higher intrinsic mechanical properties of the filler or 

greater mechanical strength of the matrix. 

Table V.   

CONCLUSION 

In summary, LDPE/CB composites compounded by means of melt compounding featured a 

sharp increase in electrical conductivity with the addition of 20 wt% or more of CB particles. 

SEM investigation and AFM phase imaging showed the formation of conducting pathways 

within the LDPE/CB composite at high filler concentration, while at low filler content, no 

connected pathways were observed. The storage modulus of LDPE/CB composites increased 

with the incorporation of CB within the polymer matrix. The composite thermal decomposition 

temperature increased considerably thanks to the high thermal stability of CB and formation of 

CB network in LDPE polymer. LDPE/CB composites showed electrical field dependency as well 

as hysteresis in their electrical properties at filler concentration around the percolation threshold. 

The dielectric breakdown strength was found to increase by around 10% with the addition of 5 



 

 

wt% CB, which makes LDPE/CB composites a suitable material at low concentration for 

applications requiring insulation. The addition of CB to LDPE did not enhance the resistance of 

the composite to erosion due to corona exposure. LDPE/CB composites with electrical 

conductivity of about 10-4 S/m (above the percolation) are suitable materials for semiconductive 

applications, having appropriate mechanical and thermal properties.    
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Figure 1. SEM images of the cross-sectioning cut of the LDPE/CB composites: (a, b) 

LDPE/CB15, (c, d) LDPE/CB20 and (e, f) LDPE/CB25 at 10k and 50k magnifications, 

respectively. 



 

 

 

Figure 2.  AFM phase images at different magnifications: (a, b) LDPE/CB15, (c, d) 

LDPE/CB25. 

 



 

 

 

Figure 3. Real (a) and imaginary permittivity (b) of LDPE/CB composites at 20 °C as a 

function of frequency. 

 

 

Figure 4. Charge carrier diagram and electrical conductivity of LDPE/CB composite as a 

function of CB concentration. 



 

 

 

Figure 5. Imaginary permittivity of LDPE/CB20 as a function of frequency at 20 °C, fitted 

with Equation (5), the black curve representing the sum of the contribution from the DC 

conductivity and the interfacial relaxation process. 

 



 

 

 

Figure 6. Real and imaginary parts of the complex permittivity of LDPE/CB20 as a function 

of frequency at various temperatures. 



 

 

 

Figure 7. Real part of the complex conductivity at 0.1 Hz for several LDPE/CB composites as 

a function of the electrical field for the first two runs (a) and imaginary permittivity of the 

LDPE/CB20 composite at various electric fields (b). 



 

 

 

Figure 8. Weibull plots of the breakdown strengths with 95 % confidence intervals for the 

pure LDPE, LDPE/CB5 as well as LDPE/CB10 composite. 

 

 

Figure 9. Eroded areas of the samples subjected to corona condition: a) pure LDPE, b) 

LDPE/CB5 composite. 

 



 

 

 

Figure 10. XRD patterns of CB, pure LDPE and its composites at different CB contents. 

 

Figure 11. The heating thermograms of the pure LDPE and LDPE/CB composites, featuring 

the onset temperature and melting points. 



 

 

 

Figure 12. The thermal conductivity of LDPE/CB composites at different carbon black 

contents. 



 

 

 

 Figure 13. The log scale of the storage (a), loss (b) modulus and the tan  (c) of LDPE/CB 

composites as a function of temperature (°C). 

 

 

 

 



 

 

 

Table I. Formulations of the low-density polyethylene/carbon black composites prepared by 

melt compounding technique. 

Sample LDPE (wt %) Carbon Black (wt %) 

Pure LDPE 100 0 

LDPE/CB5 95 5 

LDPE/CB10 90 10 

LDPE/CB15 85 15 

LDPE/CB20 80 20 

LDPE/CB25 75 25 

LDPE/CB30 70 30 

 

Table II. Comparison of electrical conductivity of various composites with different 
carbonaceous fillers. 

Composites Mixing procedure Percolation 
threshold 

Electrical conductivity 
(S.m-1) 

Reference 

PA6/CNT Melt blending ~ 2-3 wt% 10-5 at 2 wt% 18 

PA6/TrGO Melt blending ~ 5-10 wt% 10-5 at 10 wt% 18 

TRG/PBT Solvent-casting 0.22 vol% 10-2 at 0.4 vol% 19 

TRG/PEE12 Solvent-casting 0.27 vol% 10-3 at 0.7 vol% 19 

TRG/PEE30 Solvent-casting 0.31 vol% 10-3 at 0.7 vol% 19 

TRG/PEE35 Solvent-casting 0.36 vol% 10-3 at 0.7 vol% 19 

CPE/CB  Solvent-casting 10 wt% 10-2 at 10 wt% 4 

LDPE/CNT Roll mixing - 10-9 at 2 wt%, 0.1 
kV/mm 

13 

HDPE/CB Grinding mill 0.1 vol% 10-1 at 0.11 vol% 14 

LDPE/CB Melt blending 2-7 wt% 10-7 at 7 wt% 16 

PEDOT/ MWCNTs Solvent-casting - 293 S/m at 27 wt% 17 

LDPE/CB Melt compounding 20-25 wt% 10-1 at 25 wt% Our work 

*PA6 = Polycaprolactam, PEE = Polyester elastomer, PBT= Poly(butylene terephthalate), CPE = 
Chlorinated polyethylene, PEDOT= polyethylene dioxy thiophene.  



 

 

Table III. Fitting parameters for dielectric response of LDPE/CB20 composite at 20 °C 
according to the Equation (5). 

DC conductivity (S.cm-1) Exponent N   at 20 °C  (s)     

8.50 x 10-14 1.0 8.20 0.065 0.854 0.955 

 

Table IV. The melting point, degree of crystallinity, lamellar thickness, onset temperature as 

well as the degradation temperature of the LDPE/CB composites measured by DSC and TGA. 

DSC results TGA results 

Sample Tm (°C ) Xc (%) l (nm) 
T at 5 wt% 

loss (°C) 

T at 50 wt 

%  (°C) 

Residue (wt) %  

at 550 °C 

Pure LDPE 111.61 41 7.62 376 464 0.26 

LDPE/CB5 111.39 41 7.57 401 491 5.90 

LDPE/CB10 111.30 40 7.55 404 479 9.11 

LDPE/CB15 111.15 42 7.52 403 493 15.39 

LDPE/CB20 110.80 43 7.44 401 498 20.16 

LDPE/CB25 111.02 40 7.49 452 501 24.13 

LDPE/CB30 110.85 40 7.45 409 492 29.37 

 

Table V. Comparison of storage modulus of different carbonaceous-based composites with 
different matrices. 

Composites Mixing procedure Storage modulus Reference 

PA6/TrGO Melt blending ~ 3.6 GPa at 10 wt% 18 

PA6/CNT Melt blending ~ 2.8 GPa at 10 wt% 18 

CPE/CB Solvent-casting ~ 2.5 GPa at 10 wt% CB 4 

LDPE/CB Melt compounding ~ 4.2 GPa at 10 wt% CB Our work 
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