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We investigate the influence of a periodic weak modulation along the x direction on the electrical and

thermal properties of a two-dimensional electron gas in the presence of a perpendicular magnetic field.

The modulation lifts the degeneracy of the Landau levels and leads to one-dimensional magnetic bands

whose bandwidth oscillates as a function of the magnetic field. At weak magnetic fields this gives rise to

the Weiss oscillations in the magnetoresistance, discovered recently, which have a very weakly

temperature-dependent amplitude and a period proportional to Qn„when n, is the electron density.

Diffusion-current contributions, proportional to the square of the bandwidth, dominate p„„,and col-

lisional contributions, varying approximately as the square of the density of states, dominate p» The re-

sult is that p„„and p» oscillate out of phase as observed. Asymptotic analytical expressions are present-

ed for the conductivity tensor. Similar oscillations, of much smaller amplitude, occur in the thermo-

dynamic quantities, such as the magnetization, the susceptibility, and the specific heat. We also predict

oscillations in the Ha11 resistance, the cyclotron resonance position, the linewidth, as well as in the

thermal conductivity and thermopower. The components of the thermal-resistance tensor have a

magnetic-field dependence similar to that of the electrical-resistivity tensor.

I. INTRODUCTION

A new type of magnetoresistance oscillation (hereafter

called Weiss oscillations) in a two-dimensional electron

gas (2DEG) modulated by a lateral periodic electric po-

tential has been observed recently. '
Experimentally,

two different techniques have been used to create the 1D
modulation: (1) Weiss et al. '

used a holographic tech-

nique to create, by illumination, a pattern of parallel

fringes as produced by two interfering laser beams. The

light pulses ionize DX centers in the A1& Ga„As layer

by means of the persistent photoconductivity effect. The

resulting stripe-shaped areas of ionized impurities modu-

late the electrostatic potential of the adjacent 2DEG; (2}

Winkler, Kotthaus, and Ploog produced a 1D superlat-

tice by depositing an array of parallel metallic strips on

the surface of the A1~ Ga As layer. By biasing these

stripes, an electrostatically induced ID potential is creat-
ed. Recently, this work was extended to a 2D modula-

tion with a square geometry and to a hexagonal

geometry with the aim to observe the Hofstadter lattice.
Such a weak one-dimensional periodic modulation in

the x direction introduces a length scale in the problem:
the period of the modulation a. The 2DEG is subjected
to a perpendicular magnetic field B=Be, with a natural

length scale: the cyclotron radius at the Fermi energy

R, =+2nn, 12, where. 1 =&Rc /eB is the magnetic

length. The oscillations in the magnetoresistance p„are
a consequence of the commensurability between those
two length scales and have the following characteristics:
(1) they are periodic in 1/B like the Shubnikov —de Haas

(SdH) oscillations~(2} their period varies with electron

density (n, ) as Qn„whereas that of the SdH ones as n, ;

(3) their amplitude depends on the temperature much less

than that of the SdH oscillations; (4} they are visible at

weak magnetic fields, 'typically 8 &0.4 T, and at higher

fields the SdH oscillations are modulated by these oscilla-

tions; (5) p„„and p oscillate out of phase and the magni-

tude of these oscillations
~
b,p„„~ is such that

I ~p„ I
«

I ~p, I.

At present, several theoretical calculations ' ' " exist

which are able to explain the oscillations in the magneto-

resistance component p„„perpendicular to the periodic

potential. Beenakker showed that these oscillations can

be understood as being a semiclassical effect: they are

due to guiding-center-drift resonances. The resistivity

component along the periodic p „shows weak oscillations

which are an order of magnitude smaller than those in

p, and they were not explained in the early theoretical

treatments. ' ' They have a quantum-mechanical origin

and were explained by us' and by Zhang and

Gerhardts. " In Ref. 11 a self-consistent theory was

presented, while we showed that such a complicated

theory is not necessary in order to explain the basic phys-

ics which is responsible for the oscillations in pyy Streda

and MacDonald' used the idea of magnetic breakdown

to explain the positive magnetoresistance in p „and
found that the oscillations are a consequence of oscilla-
tions of the breakdown transition probability. No at-

tempt was made in Ref. 12 to explain the oscillations in

The aim of the present paper is threefold. First of all,
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we want to give the details of our calculation which are

missing in Ref. 10. Second, explicit analytic expressions

are derived for the components of the resistivity tensor

which are valid when many Landau levels are occupied.
These expressions are able to reproduce the Weiss and

SdH oscillations and reduce to the known results in the

absence of modulation. Third, we present a detailed in-

vestigation of the thermodynamics of such a modulated

2DEG and calculate also the thermal transport

coefficients like the thermal conductivity and thermo-

power. A brief account of the latter was presented in

Ref. 13.
The paper is organized as follows. In Sec. II we calcu-

late the energy spectrum and the density of states (DOS).
A simple classical picture is given to illustrate the remo-

val of the degeneracy of the Landau levels. The thermo-

dynamic quantities such as the magnetization, the suscep-

tibility, and the specific heat are calculated in Sec. III.
Next, in Sec. IV, the electrical conductivity and resistivi-

ty tensors are calculated. Also, oscillations in the Hall

resistance are predicted which show up in a more pro-

nounced fashion in its derivative dRH/dB. Analytic ex-

pressions for the resistivity components p,„and pyy
are

presented which are valid in the asymptotic limit of many

occupied Landau levels. The calculation of the thermal

transport coefficients is presented in Sec. V, and of the cy-

clotron resonance absorption spectrum in Sec. VI. Finally

our conclusions are given in Sec. VII.

II. ENERGY SPECTRUM

We consider a 2DEG, in the x,y plane, subject to a

magnetic field B along the z direction, and a 1D weak

periodic modulation U(x} along the x direction. The

one-electron Hamiltonian reads

2

H= p+ —A + U(x),
1 e

2m

where p is the momentum operator and m
* the effective

mass. In the absence of the modulation, i.e., for U(x) =0,
and for the vector potential chosen in the Landau gauge

A = (0,Bx,0), the normalized eigenfunctions of Eq. (1)

are given by 4„(x+xo)exp(iyk~)/QL», where C„(x)
are the harmonic-oscillator wave functions centered at

x 0
= I k with n being the Landau-level index,

1=&tie/eB the magnetic length, and L the length of

the 2DEG in the y direction. The corresponding eigenval-

ue is E„=(n+1/2}fico„which is degenerate with respect

to the wave vector k (co, =eB/m*c is the cyclotron fre-

quency).

The modulation potential is usually approximated by

the first Fourier component of the periodic potential, i.e.,
U(x)= Vocos(2vrx /a ), which is expected to be a good

approximation in particular for the electrostatically in-

duced 1D periodic potentials. In the presence of the

modulation U(x) the exact eigenstates of Eq. (1) are

difficult to obtain in closed analytical form. In the re-

ported experiments the amplitude of the modulation is

small. Therefore, we can evaluate the correction to the

energy levels by first-order perturbation theory using the

where u =IC I /2 and L„(u) is a Laguerre polynomial.

Since x0= I k we see that the presence of the modula-

tion lifts the ky degeneracy: the electron energy depends

on the position of the center of the cyclotron orbit x0.
This result should be valid as long as the separation be-

tween the Landau levels is larger than the broadening of
the levels. For completeness we mention that the energy

spectrum of such a one-dimensional weak potential

modulation has been calculated for a 3DEG in Refs. 14

and 15 and for a 2DEG in Refs. 16—18. In Ref. 18 the

energy spectrum with a Kronig-Penney 1D periodic po-

tential was also considered.

The qualitative differences in the energy spectrum with

and without a modulation are also reflected in the density

of states (DOS), D(E)=( I/2ml)g„. k 5(E E„k ), —

which is expressed per unit surface. With t =Ex0 the

DOS takes the form

%co

D(E)/Do=
'

g f dt 5(E E„,), — (3)
2' „0 0

with Do =m */M the DOS of a 2DEG at B =0. Numer-

ical results are given in Fig. 1 for the following parame-

ters: V0=1 meV, a=3500 A, and Ace, =1 meV. Note

that the 5 function DOS for V0=0 is broadened into a

band ' "" with van Hove singularities at the edge of
the Landau levels. The latter reflects the 1D nature of
the electron motion in the bands. This can be understood

by calculating the electron velocity corresponding to an

eigenstate ~n, k ),

BE„„2V
U

=— ' = — ue " L„(u)sin(Kxo),
~ ak,

(4)

3.5
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FIG. 1. The density of states (in units of zero magnetic-field

value) of a 2DEG modulated by a 1D potential with strength

Vo =1 meV and period a =3500 A. The magnetic field is such

that Acu, =1 meV.

unperturbed wave functions given above. In Ref. 2 an ex-

act diagonalization of Eq. (1) showed that this was an ex-

cellent approximation for n )4, while in the experi-

ments the relevant n is about 10. For U(x)
= Vocos(Ex), E=2'/a, we obtain

E„k =(n + ~

)Ace, + Vocos(E
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while v„=O. In the absence of the modulation v =v =0
for a Landau state, the DOS consists of 5 functions, and

the different Landau states can be interpreted as OD

states localized in space where transport will occur
through hopping between such states. Note that in Fig. 1,
for E (3 meV, the different Landau levels overlap and

the results should be considered only as indicative. In

practical expressions we need the DOS at the Fermi ener-

gy which is well beyond this regime, typically EF-10
meV.

The number of available states per Landau level

1/2n. l is the same for each Landau level independent of
the index n. As a consequence, the average amplitude of
the DOS of a Landau level will be small if it is consider-

ably broadened. Therefore quantities which depend on

the width of a Landau level will oscillate out of phase

with quantities which depend on the magnitude of the

DOS at a specific energy (i.e., the Fermi energy).

Recent magnetocapacitance measurements by Weiss

et al. reflect directly the oscillatory broadening of the

DOS as due to a 1D modulation potential. The width of
the Landau level n is given by 2Voe

"~
~L„(u)~ and is

plotted in Fig. 2 (solid curve) for n =nF where

nF =E~/fico, is the Landau level index at the Fermi ener-

gy. Because nF is taken as an integer, the plotted band-

width exhibits a step each time a new Landau level moves

through the Fermi level. For the system under con-

sideration the magnetic field is small, and in order to
make an estimate of the position of the minima and maxi-

ma of the bandwidth we will take the large n limit of the

Laguerre polynomial, i.e., e "~ L„(u )

=(n nu) '~ cos(2&nu —m/4)+0 (1/n ), which is

zero when u =(1/n)[n/2(i+ —,')], i=0, 1,2, . . . , and

maximum for u =(I/n)[m/2(i+ —,')] . Noting that the

cyclotron radius R, =l+2nF+1 with nF the Landau in-

dex at the Fermi level, we obtain 2R, /a =i+/, where

P= —,', for maximum bandwidth and P= —,
' for flat band.

For the physical parameters of Fig. 2 (i.e., n, =3X10"
cm and a =3500 A) we obtain for the position of the

extrema B( T)=0.516/(i +P) which results into the

magnetic-field values (1) for maximum band width

B(T)=2.06, 0.413, 0.229, 0.159, 0.121, 0.0983,. . . ; and

(2) for minimum bandwidth B(T)=0.688, 0.295, 0.188,

0.138, 0.109, 0.0897,. . . . These values agree very well

with the position of the maxima and minima in the band-

width shown in Fig. 2. Even for large magnetic fields the

effect of the modulation potential on the Landau levels is

nonzero, i.e., in the limit a & )v'2n nl (or equivalently

a » n'R, ) the bandwidth is given by

2VonF![1 (n~—+1/2)u+ . ].
A more pictorial picture for the above resonance con-

dition can be presented by giving a classical description

in real space. The classical equation of motion of an elec-

tron in a magnetic field is x(t)=x 0+R,si neo, t, with R,
the radius and x0 the orbit center. For our purpose the

motion in the y direction is not relevant. The increase of
the average energy of this cyclotron motion due to the

periodic potential is

to

bE(xo)= —J dt Vocos[Kx(t)],
0

(sa)

where t0 is the period of the motion. Inserting the ex-

pression for x (t) into Eq. (5a) we obtain

bE(xo) = VOJO(KR, )cos(Kxo), (Sb)

with Jc(x) the Bessel function of order zero. Note that

the energy does not depend on the position of the center

of the cyclotron orbit when Jo(KR, ) =0. For KR,
))1 we obtain bE(xc) = Vo(2/mKR, )' cos(KR,
—n/4)cos(Kxo), which leads to the previous results for

the condition of maximum bandwidth and fat band.

This asymptotic expression is depicted in Fig. 2 by the

dashed line and is surprisingly very close to the

quantum-mechanical result.

In practical systems there will always be some broaden-

ing due to the presence of scattering centers. We assume

a Lorentzian broadening of the 5 function, i.e.,
5(E)~(1/n. )I /(E + I ), for simplicity of zero shift and

of constant width I since we are considering the experi-

mentally weak magnetic fields (B (0.4 T). Then Eq. (3)

becomes

trito~ r
D (E)=Do — dt (6)' 2~ .=0 ~ 0 (E E)'+I' '—

0.9
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0.8
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0 7 — ne=3x1 0 cm
11 -2

0.6
E

0.5

.2 04—

c 0.3
C3

cn
0.2

0.1

0 ~ I g

asymptotic

1.6

a=3500 A,

0 1.4
V0=1 meV

hm, =1 meV

0
1.0

Cl

0.8

s s ~ I i ~ ~ I0

iIIII

--
[ -2K

-, UQg

l

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Magnetic field B{T}

FIG. 2. The width of the Landau level at the Fermi energy as

function of the magnetic field.

0 2 4 6 8 10 12 14 16

Energy E {meV}

FIG. 3. The same as Fig. 1 but now for a nonzero broadening

of I = 1 K (solid curve) and I =2 K (dashed curve).
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where E„, is given by Eq. (2) with the substitution

t =2~1 k /a. Because we are not interested in effects re-

lated to localization we take D(E)=0 for E(0. The
effect of broadening on the DOS is shown in Fig. 3 where

D(E)/Do is plotted as a function of the magnetic field for

two values of the broadening I = 1 and 2 K (note that 1

K=0.086 meV/ks). The qualitative behavior of the

DOS is essentially the same if we assume a Gaussian

broadening.

III. THERMODYNAMICS

0.6
a=3500A

0 4
Vp= 1 fTleV

p =3x104

LLI 02—

—0.2
E

-0.4

T=6K

T=2K

Equilibrium thermodynamical properties provide in-

formation on the density of states, which does not direct-

ly involve any electron scattering mechanisms. The effect
of scattering on the DOS will be assumed to be of secon-

dary importance. The information on the DOS is in-

direct because any thermodynamic quantity involves an

integral over the DOS.
Consider a 2DEG of noninteracting electrons, in the

(x,y) plane, which is modulated periodically (along the x
axis) by a weak 1D electrical potential. The conduction

band is taken to be parabolic and spherically symmetric

and a magnetic field is applied to the 2DEG along the z

axis. Spin degeneracy is included but not spin splitting,

which is negligibly small for the considered 8 fields. In

the absence of any modulation potential a detailed study

of the magnetization, specific heat, magnetothermal

effect, and the thermoelectric power of a 2DEG in a

strong magnetic field was given by Zawadzki and

Lassnig. ' Here we will generalize this study to the case

where a 1D modulation potential is present and we will

be interested in not too large magnetic fields.

All thermodynamical properties of a system can be ob-

tained as derivatives of the free energy. For a system of
noninteracting Fermi particles the free energy per unit

volume is given by '

F=n,p" —2k&T f dE D(E)ln(1+e
" ), (7)

where the chemical potential p* is determined by the

electron density n, =2f 0"dE f(E)D(E), with f(E)
=1/(e~' " '+1) the Fermi-Dirac distribution func-

tion, P= 1/k&T the inverse temperature, and where the

factor 2 accounts for spin degeneracy. Using Eq. (3) for

D(E) we have

00

n, 7rl'= g —f dt f(E„,),
=o ~

s I s I s I i I s I i I s I a I i I I0 R
~ 'M

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Magnetic field B(T)

FIG. 4. The change of the Fermi energy due to the 1D modu-

lation as function of the magnetic field for two values of the

temperature.

which for T=6 K are all damped out, and their ampli-

tude is modulated by these oscillations; and (3) b,EF=0
when the bandwidth is zero (see Fig. 2) as one expects.

One period in bandwidth oscillation corresponds to one

period in AEF oscillation, and because hE~ oscillates

around zero we have the remarkable result that also

b,EF=0 when the bandwidth is maximum.

From Eq. (7) we calculate the electronic contribution

of the 2DEG to the magnetization M= BF/dB, —the

susceptibility g = "d F/dB, —and the specific heat
C= —Td F/dT . Any changes in the DOS due to the

1D modulation will be reflected in changes in the

different thermodynamical quantities. The results are

shown in Fig. 5. We scaled all quantities per electron and

in units of the effective Bohr magneton

iLts =etrt/2m *c=0.87 meV/T, which leads to the natural

units Mo =go= n, ps and which implies that M /Mo is

the magnetization per electron in units of the effective

Bohr magneton and y/yo is the susceptibility per elec-

tron in units of the effective Bohr magneton per tesla.

For our numerical calculation we took the parameters for

GaAs with the effective mass m*/m, =0.066. The ex-

pression which was calculated numerically is the free en-

ergy per electron,

k~T (JM
—E )/k~ T)

Fln, =p' — g —f dt ln(1+e "' );
nenl~ n=o ~

which has to be solved numerically in order to obtain the

chemical potential p*. The magnetic-field dependence of
the correction to the chemical potential due to the weak

1D modulation: b,EF =@*(Vo)—p*(VO=O) is shown in

Fig. 4 for a =3500 A, Vo
= 1 meV, and n, =3X 10"cm

(for these values the chemical potential is about

p = 10.85 meV in the magnetic-field range shown in Fig.
4). From Fig. 4 we see that (1) the 1D modulation in-

duces weak oscillations in p' of order 0.1% for 8 & 0.3 T
whose amplitude has a weak temperature dependence; (2)

for B & 0.3 T the T=2 K result shows SdH oscillations,

its numerical differentiation gave the different thermo-

dynamic quantities.

A comparison between Fig. 4 and Figs. 5(a) and 5(b)

shows that (1) hE~ and the magnetization oscillate in

phase while the corresponding SdH oscillations for the

T =2 K curve are 180 out of phase, and (2) hE~ and the

susceptibility oscillations are shifted by 90 as well as the

corresponding SdH oscillations for T =2 K. The specific

heat is measured from the result at zero modulation. Be-

cause the electron contribution to the specific heat in-

creases with decreasing temperature we have plotted
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The corresponding result is shown in
F' . 5(c) where the oscillations are in phase wiFig. c, w

width.the oscillations in the bandwi

IV. ELECTRICAL MAGNETOTRANSPORT

A. Basic expressions

lds E i.e., for linear responses, andFor weak electric fields, i.e., o
t t nsorweak scattering potentials the conductivity e

0.3

(co) in the one-electron approximat'ation, has been eval-

(co) stems from the diagonal part p o e0 N s

' g, p
co =o '(co)+ "'(co)s where o„„co in

nd o"'(co) collisional contribu-d ffusion contributions and o.„„co c
tions. For dc conduction we have [cf. q.

0.2o

a=3500A

Vo=1 meV

n, =3x1 Oi 1 cm

'(0)= g f (1 f~)~—(E()u„v„,
2

pv (10)

0
0.0

lO

N
~ ~

-01—
C5
lg

=2K

T=6K

provided that the scattering is elastic o qor uasielastic, and

[cf. Eq. (2.84) of Ref. 22]

2

reefs)2"'(0)= g f (1 f( )W—(((a„—a„PP

C)
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'
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n char e, ~ E) the relaxation time, and

the electron is in state lg) andposition operator when t e e ec ron
'
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t u&=& lv lg).

Note that a diffusion contribution to e

zero for localized states. For
i.e. for free or nearly free electrons, q.

p
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'
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'
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'
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purity scattering.
o" (co) to the conduc-The nondiagonal contribution o„„co o

tivity is given y q.b E . (3.24) of Ref. 23 and reads

g f (1—fq)&flu„lg'&&('lu. lg

13(E(—E~ )

1 8
X

E(—E~

-0.05 I s I I a I s I s

0.1 0.2 0.3 0.4 0.5

I s I s I s I

0.6 0.7 0.8 0.9 1

Magnetic field B(T)

antities ( er electron): (a) theFIG. 5. The thermodynamic quanti ies p
fsusce tibility, and (c) the correction o

h 1D
modulation as function of the magnetic field for T=2 so i

curves) and T =6 K (dashed curves).

(12)
E —E +Ac@+i g6~0

If we use the identity ( 1 f )exp[@(E&
—E

&
—
) ]

=fg(1 fg, q. —
), E (12) takes the form of the well-known

Kubo-Greenwood formula.
s. (10)—(12) iftor of 2 has to be included in Eqs.

above formulas havep g y is assume . e a

been successfully applied to various si ua i
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tronic transport: ' hopping conduction and magneto-

phonon resonances, quantum Hall effect, Aharonov-

Bohrn effect, etc. . . .
The resistivity tensor p„„is given in terms of the con-

ductivity tensor p
=0. '. We will use the standard

expressions p„„=o /S, p
=0.„„/S, and p „=—

p„

X g [L„(u)]2
E =E„

(13)

to order Vo. For convenience we took a constant scatter-

ing time r=r(E)=pm'c/e ((((, is the mobility at zero
I

B. The conductivity tensor

First the diffusive contribution to the conductivity is

evaluated. We are interested in weak modulation poten-

tials, which implies that in Eq. (10) we may use

Ig &
=

In, k & as the unperturbed 2D Landau states with

the velocity given by Eq. (4). Since u„=0 we have

o „' =0, while

e 2m I2 2 2

tray =2
h A

2~Voe
a

In, y
&= In, ky &'+ g

"'"
In', ky &',

n'An n n'
(14)

with the matrix elements

V„„=Vo

1/2
n I) —u /2„( n —n ') /2

e

~
~ EKXp

XRe(i" "e ') .

In the following we will need the matrix elements

magnetic field) independent of energy and Landau-level

index n, which for weak magnetic fields is a reasonable

approximation. In our previous works, Refs. 10 and 13, a

factor of 2 was missing in the final expression for the

diffusion contribution to the conductivity. The corre-

sponding result of Ref. 2, to order Vo, reduces to Eq. (13).

Next we calculate the collisional contribution to the

conductivity. To be correct to order Vo we have to in-

clude the correction to the unmodulated eigenstate

In, k» & due to the weak 1D modulation; to first order in

perturbation theory the corrected eigenstate is given by

1/2
qnn )—ie y /2 — n nL n

' —n(' —

k, k —
q„ 2" n'!

(yi, k»Ie' 'In', ky'& = '

gn
e—r/2 2 n.

U y e Ik, k —
q 2" nt

1/2

(
—u')" "L„", "(y), n &n'

(16)

o&n, k IxIn, ky &O=xo

o(n, k Iu„In', ky &

1/
AN

2'

(17a)

(
—i/n +15„„+,+i/n 5„„,),

(17b)

'(n, k, Iu, In, k, &'

1/2
'AEO2

( v'n + 15„„~,+v'n 5„„,) .
2m

(17c)

with y=l (q„+qy )/2=1 q /2, 8=1 q„( k+q /2), —
u =l(qy+iq„)/2, and L„"(x) is the Laguerre polynomial.

For completeness we mention that

dielectric constant of the material the electron is moving

in.
The scattering rate W'«, appearing in Eq. (11), is given

by

X5(E„k E, k, ) . — (18)

Now we perform an average over a random distribution

of impurities and denote Ni as the 20 impurity density.

As an example we calculate the contribution of the un-

perturbed part of the wave function In, k & to the

scattering rate

pr(0) pr(0)
nk, n'k

v'

We assume that electrons are scattered elastically by

randomly distributed impurities. This type of scattering

is dominant at low temperatures. For the evaluation of

the relevant matrix elements, which enter the conductivi-

ty expressions (10)—(12), we use the electron wave func-

tions (14) in the absence of any impurity scattering. We

take the screened impurity potential U(r —R)=(e /

eIr —RI)exp( —k, Ir —RI) and we write it in terms of its

Fourier transform U =(2me /e)Qq +k, , where r and

R are the position of the electron and of the impurity, re-

spectively, k, is the screening wave vector, and e is the

with

E k)5 k-k ~

q
(19)

,
'

e yy" "[L„"."(y)], n' n~,
n'!

(20)

where Ao =L L is the surface area of the 2D system.

Inserting Eq. (19) into Eq. (11) we obtain (with

0~
A o ) for elastic scattering (f&

=f&
)
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Pe'I' g g & IU I'IJ..(y)I'q„'f.» (1 f—.» )5(E.»
—E„.„)5, „

y n, k„q

(21)

with f„» =f(E„„)the Fermi-Dirac distribution function. This expression can be cast into the familiar form of DOS
1

y
7

y

squared by noting that 5(E„» E—,„,)= fdE 5(E E—„» )5(E E—,„,) and consequently Eq. (21) contains a product of
nky n'k nk„

two density of states, D (E}-g„k5(E E—„» ). The factor exp( —y), in Eq. (20), favors small values of q„and q . Ex-
n, k nk„

panding the 5 function in powers of q, we find that all terms proportional to q
+' vanish identically and that the first

significant term (q» ) is about an order of magnitude smaller than the term with q =0. With gq~( Ao/4m 1 )fdP du,

where q»=qrsinP, and the small-q limit for U, i.e., U = Uo=(2me /ek, ), which is valid for q «k„we obtain

cot o e r o
( +,+1) Bf(E)2NU2

Ao „„,k BE
n, n, k

5((n n'—)fico, +6» [L„(u)—L„(u)]),
n, k

c k (22)

(23)

where hk = Voexp(
—u/2)cos(Exo). We now replace

the 5 function by a Lorentzian of zero shift and of con-

stant width I „and from the sum over n' we keep only

the dominant term n
' =n The.n with g» ~f dk,

L„=Na, and 0(xo &L„we get

e' NIUo
2

1
o„"„' = g (2n+1} I„,

h ma n

I

frequency. Inserting Eqs. (17b) and (17c) into Eq. (12}

and using the identity f&(1 f&
)ex—p[P(E&

—
E& )]

=f& ( 1 fr. ), we o—btain

fn, k fn+1, k

o „= (n+1) dk»
h a [1+A,„cos(Kxo ) ]

(28)

with

—Bf(E)
BE E=E (24)

where A, „=(Vo/fm, )exp( —ul2)L„+, (u). In the limit

T~O and for E„&EF&E„+,, Eq. (28) gives approxi-

mately 0'» = (e /h )(n + 1)(1+3A,„/2) when the denomi-

nator is expanded in powers of A.„.

Nl Uo
a'„'„'= g [(2n + 1)I„+b,„],

h mI a
(25)

with
2

h„=2
Vo

'flCO

ue "[[L„',(u)] +[L„'(u)]

+L„',(u)L„'(u)]J„, (26)

which is a reduced form of Eq. (6) of Ref. 13. In Eq. (26)
we introduced

a/IJ„=f dk»sin (Exo)
0

—Bf(E)
BE E=E (27)

Next we evaluate the Hall conductivity (12} for zero

and this is the result reported in Ref. 10. In the absence

of any modulation and in the limit T=O, Eq. (23) be-

comes c»„„=(e /AH)(nz+ I/2) when the Fermi energy

is in the rniddle of Landau level nF. This result was origi-

nally derived by Ando, Fowler, and Stern. In the fol-

lowing we will take I „=I independent of the Landau

quantum number.

The perturbed wave function (14) will give an addition-

al contribution to the scattering rate of order Vo, which

must be included. This additional contribution was

neglected in our earlier work' and leads to the dominant

Vo contribution to o."„'. Noting that the Landau levels at
the Fermi energy are well separated, we include only the

contribution from the nearest-neighbor Landau levels. A
similar calculation as above leads to the final result

C. Numerical results

The above expressions for the conductivity, Eqs. (13),
(25), and (28), are evaluated numerically and shown in

Fig. 6(a) for two temperatures T=2 and 6 K for a 2DEG
with electron density n, =3.10" cm, mobility 1M=10

cm /Vs, 1D modulation strength Vo=0. 5 meV, and

period a =3500 A. Note that o„=cr'„", and

cryy cryy + cTyy The cprrectipn tp the cpnductivity due

to the modulation potential b,o „„=0 „„(Vo )
—0 „„(Vo = 0 )

is shown in Fig. 6(b). The different plots of ho„are
offset and the zero is indicated by the position of the hor-

izontal arrows.

Note that the 1D modulation (1) gives a positive con-

tribution to hcr„„and ho.
yy

while ho. „oscillates around

zero; (2) ho» »b, o„„,which is a consequence of the fact

that o has only collisional contributions, while cTyy in

addition to the collisional part, has contributions due to
band conduction which are much larger; and (3) the oscil-

lations in hoyy and ho are 180' out of phase, while

Ac7 „oscillates in phase with ho.

The components of the resistivity tensor are shown in

Fig. 7(a) for T =2 and 6 K. The contribution to p„„due
to the modulation is shown in Fig. 7(b). Note that (1) the

Weiss oscillations in p„„and p are out of phase; (2) the

amplitude of the pscillations in hp„are considerably

larger than those in b,p»» and b,p„; (3) the T=2 K re-

sults exhibit SdH oscillatipns on tpp of the Weiss oscilla-

tions for 8 & 0.3 T; (4) b p„oscillates in phase with b p„„,
and (5) for small magnetic fields the minima in b,p„„are
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nonzero and thus the modulation gives an overall positive
contribution to the resistivity wh' h

'
bic is a sent in, e.g. , the

is e ect is similar tosemiclassical treatment of Ref. 9. Th ff

t e positive magnetoresistivity discussed b Streda
MacDonald ' who attributed this to magnetic break-

down. This effect was also abs t
t10

en in our earlier treat-

ment where only the contribution 0."' t '0. ' was taken into

account in our calculation.

The present theory also predicts Weiss oscillations in

the Hall resistance as is shown in Fig. 7(b). They are pro-

nounced when we plot the slope of the Hall resistance as

function of the magnetic field which is shown in Fig. 8.
At present no experimental results on dR /dB

a e. uc oscillations in RH are not in contradiction

with the fact that the small magnetic-field Hall resistance

is independent of scattering. The periodic mod 1

should not be v'
io ic mo uation

nism

no e viewed as an additional scattering h-'
~mec a-

trum w

ut rather as a means of modifying th
'

g e energy spec-

rum which in turn will have an inQuence on the value of

where it wa

R~. A simi ar situation occurs in heterostr ts ruc ures,

w ere it was shown in Ref. 28 that doping with addition-

al Be or Si impurities near the 2DEG is able to shift the

quantum Hall plateaus. The underlying reason for such a
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FIG. 7. The same as Fig. 6 but now for the resistivity tensor.

shift was the modification of the shape of the DOS of the

Landau levels.

It should be noted that the effect of the 1D modulation

potential on the electrical transport d t d'oes not isappear

with increasing magnetic field. To illustrate this we have

shown in Fig. 9 the components of the conductivity ten-

sor in the magnetic-field range B: 1 —3 T. There is a

a=3500A

v, = O. smev

he=3x1 0 cm

C:

2

O -0.05

-0.10

-0.1 5 s I s I

0 0.1 0.2

~&yx (b)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Magnetic field B{T)
0.1 0.2 0.3

T=2K

T=6K

0.4 0.5

FIG. 6. The ccomponents of the conductivity tensor (a) as

function of the magnetic field for T=2 K (s 1'dso i curves) and

T =6 K (dotted curves). The contribution due to the modula-

tion is shown in (b), where the different curves are shifted verti-

cally and the zero position is indicated by the arrows.

Magnetic field B(T)

FIG. 8. The derivative of the Hall resistance with respect to

the magnetic field for T =2 K (solid curve) and T =6 K (dashed

curve).
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100 where we defined the amplitude

80

C:

60

A(x)=

the characteristic temperature

(32a)

40
O

2c I

0

1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3

Magnetic field B{T}

FIG. 9. The high magnetic-field behavior of the different

components of the conductivity tensor for T=2 K (solid

curves) and T=6 K (dotted curves).

strong asymmetry in the conductivity tensor where

0
yy
» 0 zz The reason is that the contribution to O.

yy
due

to band conduction is much larger than the collisional

one which decreases with increasing magnetic-field

strength.

D. Asymptotic expressions

&dif 2 P'
Qutrt~,

cos (2+u /Ace, &E —m. /4)
X

0 v'E
cosh (E E)— —213

F

(29)

which under the assumption that EF »k~T can be per-
formed analytically and results in

0yy Vo ~o 2 F,
~o EF A'co, akF

with

F=—,'[1—A(T/T, )]+A(T/T, )cos 2n
R, —m/4

(31)

In this subsection we will look for simple analytic ex-

pressions for the results of the magnetoresistivity tensor.
In view of the very good agreement, shown in Fig. 2, be-

tween the asymptotic result for the bandwidth and the

quantum-mechanical result, we will be able to present

asymptotic expressions for Eqs. (13) and (25) which ap-

proach our numerical results of Sec. IVC very closely.
Furthermore, some of the existing results in the literature
will be obtained as limiting cases.

In the asymptotic limit of many filled Landau levels

(i.e., n »1) we may replace e "~ L„(u) by

(m nu )
' cos(2&nu —m/4) and take the continuum

limit g„" o~ f o"dE/%co, with the substitution

E=fico, (n+ —,'), nu =m (R, /a), and E /R,2=
,'m~~. —

First we consider the diffusion contribution Eq. (13)
and obtain after the above substitutions

Aco

k~T, = akF
4~

(32b)

and kz=+2nn, =. +2m*E+lR the Fermi wave vector

In the T/T, ~0 temperature limit the above expression,

Eq. (30}, was first obtained by Winkler, Kotthaus, and

Ploog. The generalization to nonzero temperature was

given by Davison et al. who obtained Eq. (31) except

for the nonoscillating term. In Ref. 29 it was found that

the amplitude of the Weiss oscillations in the magne-

toresistivity p„„/po=(co, r) o~„/oo was accurately de-

scribed by Eq. (30) where crn=n, calm
The above expression is valid for ks T)&fico, /2m and

is not able to account for the SdH oscillations which are

apparent in the numerical results for T=2 K as depicted
in Figs. 6 and 7. Therefore we use the well-known DOS
(Ref. 27) for small magnetic fields,

D (E}= [1 2e — '
cos(2m E/%co, )+ ],2~2

(33}

with ~f the quantum lifetime, also called single-particle

relaxation time, which, depending on the type of scatter-

ers, can be different from the scattering time obtained
from the mobility. Using similar approximations as
above and inserting the continuum approximation
g„" o~2m I f 0"dE D(E), we obtain the result

dif y y
F 2e ' f A—(TlT, )

0 p EF %co akF

2n EF
Xcos

c

Rc
X cos 2m. —n. /4

a

(34)

where the amplitude of the SdH oscillations are deter-
mined by the well-known characteristic temperature

Ado

k~T, =
27T2

(35)

In the usual experimental situations we have
T, /T, = ,'ak~ )) 1 (e.g., fo—r n, =3 X 10" cm and
a =3500 A, akF/2=24) and as a consequence the SdH
oscillations disappear much faster with temperature than
the Weiss oscillations. For small magnetic fields, but
such that m, ~&&1, the main contribution of the 1D
modulation to the magnetoresistivity is given by

The physical reason for the difference in temperature
scale between the amplitude of the Weiss oscillations and
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g (2n +1)I„=— —ln(1+e F)a 2 1 I3EF

(A'co, )' P

2EF
EF »k~T,

(i)ico, )

(36)

which leads to the standard expression a „'„'/cr =1/(co, ~)

in the limit co, ~ &&1 for zero modulation.

the SdH oscillations can be understood as follows. At
nonzero temperature, electrons with an energy kz T
around the Fermi energy EF contribute to conduction.

SdH oscillations are a consequence of the discreteness of
the Landau levels and thus they will be observable as long

as the thermal broadening is smaller than the distance be-

tween two Landau levels, i.e, , k~ T &&Ace, . The Weiss os-

cillations are determined by the size of the cyclotron or-

bit versus the period of the potential. The thermal

smearing of the Fermi level 5EF=kii T will result in a

smearing of the Fermi wave vector 5kz=mk&T/i)'i kF,
and consequently the relevant cyclotron radius

R, =Ak I; /eB will be smeared over the range

M, =ki)T/fico, kF. The Weiss oscillations will be ob-

served as long as the spreading in the diameter of the

contributing cyclotron orbits to the conduction is smaller

than the period of the potential, i.e., 25R, «a, which re-

sults in the following condition on the temperature:

ks T « i)i(o, kFa /2. This explains the factor kza /2

difference in the temperature scale between the SdH and

the gneiss oscillations.

For the collisional contribution to the magnetoconduc-

tivity, Eq. (25), we are able to obtain similar asymptotic

expressions. The main contribution to the gneiss oscilla-

tions in (r'„o', are from the b, „ term in Eq. (26). Therefore

we take VO~O in Eq. (25) and apply the continuum limit

to obtain

Usin the corresponding asymptotic expression

e
"

u L„'(u) =1/V ir(n/u)' sin(2v'nu m—./4) for

the term b,„, given by Eq. (26), and proceeding in the

same way as for the diffusion contribution, we obtain

Vp Vp 3akF
~xx o xx =~xx 1+

E~ %co,
(37)

where

C =
—,
'
[ 1

—A ( T /T, ) ]+A ( T /T, )sin (2irR, /a —ir /4),

which is of a siinilar form as Eq. (31}but the oscillatory

term is now a sin 8 instead of a cos 8.
For the yy component of the conductivity we have an

additional contribution due to diffusive conduction,

dif
Oyy=oxx+Oyy ~ (39)

and consequently O.
yy

0 xx f which implies p» pyy.

that py
=p„„when cr

yy
0& which occurs for

2R, /a=i +3 /4. The contribution due to the modula-

tion to the collisional conductivity is related to the

diffusion one by the factor

0"'/0' ' —
1 1 3a kF g

4'O.
yy

O
C

which for @=10 cm /V s, a =3500 A, and n, =3X 10"
cm becomes 5=1.7, 0.75, and 0.20 for B=0.1, 0.2,
and 0.3 T, respectively.

In Eq. (37) we took the limit ki)T))iri(o„and as a

consequence all SdH oscillations are completely damped

out. Introducing Eq. (33) as the DOS and using the same

asymptotic expressions for L„'(u} and the continuum lim-

it for the discrete sum over the Landau levels results in

Op

1 7T/CO
E

1 —2e ' I A(T/T, )cos 2n
(co, r) 'RN

Vp Vp 3ak
+ C —2e ' fA(T/T, )cos 2n

Acoc EF AN~

R,
sin 2' —ir/4 (40)

At extremely small magnetic fields such that co,~&1
the above approach is no longer valid because (1) intra-

Landau-level scattering becomes important; and (2) the

distance between the Landau levels will be so small that

A~, & Vp, and we are no longer allowed to apply pertur-

bation theory for the modulation potential. An approach

based on a Drude model as given by Streda and Mac-
Donald' would be more appropriate in this case.

V. THERMAL MAGNETOTRANSPORT

(L (0)—)L () )
)

lMV pv ~

[L' „' (L"'S ) ], (M—, v=x, y,1

Pv 2T

(41)

eral expressions for these quantities were derived in Ref.

31 from linear-response theory in combination with the

phenomenological transport equations for the electrical

and thermal (energy) currents. For the 2DEG these ex-

pressions can be written in tensor form as follows:

In this section we calculate the thermal conductivity

()(„,} and thermopower (S„„}of the 2DEG modulated by

a 1D potential at very low temperatures when the impuri-

ty contribution to these coefficients is more important

than the corresponding phonon contribution. The gen-

where

L„'„'=f dE — (E—p*) cr„(E),Bf(&)
(42)
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and o is the zero-temperature ener -de

ductivity. Note th t

the same f
a o =L . Th ese expressions have

e orm as the standard tex

Both are valid f
textbook expressions.

va i or independent ele

scattering. The diff

electrons and elastic

e i erences are that the for

quantum mechanical d

e ormer are fully

whereas the latter are va id in

nica and valid for weak eelectric fields

er are va id in k space only, but for arbi-

trary electric fields.

The finite terntemperature conductivit c
have been evalu t d

'
ivi y components cr

ua e in the precedin s
p,v

~

g ection for scatter-

y istributed impurities.

t rt li it of hi o t ese conductivities

th io fo L( '

tain

or „„,is evaluated to order Vz we ob-

"g [L„( )]'(E„—p, ')
n=0

e I 0
2 2

,OI= „g[(2II + 1 )I„' '+6'
a n=0

n

&f(E)
E =E„

(43)

(~) 28 I
dky 2 J dE(E —p')

M E=E
n, k

a y

here we introduced th e notation

I( )
' 'dk(E -„)- -'f'E'

y nk, P ~E —Enk
(44a)

I

thermal conductivit . Th

the one correspond' t h

y. ese results are v

n t h
'

al conductivity [seen ing to the electrical

observe that th SdH

r ig er magnetic fields

oscillations have th f 11e o owing

2

g(a) —2
~~c

ue "I[L„',(u)] +[L„'(u)] 0.05
a=3500A

where

+L' &(u)L'(u)]J' ' (44b)

ysm (Ex0)(E —tu')

Bf(E)
E=E

n, k

(45)

The final r
L a) — (a)
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VI. MAGNETO-OPTICS

The average power absorbed from a circularly polar-

ized light of microwave frequency co andand electric-field

strength F. is given by

P(co) =
,'E o+(co)—

=—'E Re[o (co)+oyy(co) io„y(ar)+i—oy„(co)],2

(46)

~ ~

here the frequency-dependent conductivity tensor con-w ere e
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h' h
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where 5„+i k
='flpi + Vpe L +i(li)cos(&xp) and a

y

collisional broadening was introduced with zero shift of

the energy levels. If we assume I „„+,k =I'„k we can

estimate I „k from I „k =Pi/~=(NI Up~I )' . The re-

sult for the corresponding term in i»„"„"(co)is given by Eq.

(47) multiplied by i—and the change b,„+,„k

~fico b„+—, „k . Combining these results with Eq. (46)
S

y

we obtain

&(pi) =

the absence of modulation), and gk ~g„k . When the
y S

sum over k is replaced by an integral, Eq. (48) becomes

identical to Eq. (11)of Ref. 10.

The shift of the cyclotron resonance peak position due

to the 1D modulation is shown in Fig. 13(b) for Vp=0. 5

meV. The corresponding linewidth (FWHM stands for

"full width at half maximum") is depicted in Fig. 13(a}.

We see that (1) the cyclotron peak shift oscillates in phase

with p„„and p„„;(2) the linewidth oscillates in phase with

pyy
and is consequently 180' out of phase with the shift in

the cyclotron peak position; and (3) only the peak posi-

tion exhibits SdH oscillations at higher magnetic fields.

X
Tl

(b,„+,„„—A'co)~+I'~ „

(48}

In the absence of modulation 6„+,„I, =A~„
I „k =I'„, the sum over k» gives a factor A pal, and Eq.

(48) becomes identical to the well-known expression

(3.36} of Ref. 36. We notice in passing that the above

derivation misses the so-called "quantum" oscillation

[due to neglect of cr»»(ni)] but it is also valid in three di-

mensions with the changes Ap ~Op 6 + i k ~%co (in
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VII. CONCLUSION AND DISCUSSION

We have performed a detailed investigation of the elec-

trical and thermal properties of a two-dimensional elec-

tron gas which is modulated by a weak one-dimensional

periodic potential. Such a periodic potential broadens

the Landau levels into bands, the width of which is an os-

cillating function of the magnetic field. This leads to an

extra conduction mechanism where electrons are chan-

neled along the 1D potential and they can move through

the system by diffusive scattering on impurities. The

strength of this band conduction is proportional to the

square of the bandwidth of the Landau level at the Fermi

energy and thus oscillates as function of the magnetic

field. The position of the maxima and minima in the resis-

tivity are determined by a commensurability condition

between the period a of the 1D potential and the diame-

ter of the cyclotron orbit 28, . The resistivity perpendic-

ular (p„„}to the 1D periodic potential shows pronounced

TABLE I. Characteristics of the Weiss oscillations in a

2DEG of density 3 X 10"cm and mobility p= 10 cm /V s for

a 1D potential modulation of strength V0=0.5 meV and period
0

a =3500 A. The percentage magnitude of the amplitude of the

Weiss oscillations of the different physical quantities is taken

around B=0.2-0.3 T. The phase shift of the oscillations is re-

ferred to the one of the resistivity p„„.
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oscillations with period -Qn, /B, where an increase of
the resistivity by a factor of more than 2 is easily attain-

able. Weaker oscillations in the resistivity component

parallel to the 1D potential are observed which exhibit

minima when p „ is maximum. The reason behind this

difference is that the resistivity
pyy

is determined by the

value of the DOS squared at the Fermi energy, while p „
is mainly determined by the width of the Landau level at

EF. Similar Weiss oscillations were found in (1) the Hall

resistance; (2) the thermodynamic quantities like the

magnetization, the susceptibility, and the specific heat; (3)

the thermal transport coefficients like the thermopower,

the thermal conductivity and the thermal resistivity; and

(4) the position and width of the cyclotron resonance line.

The magnitude and the phase of the Weiss oscillations of
the different physical quantities are summarized in Table

I. The percentage magnitude of the amplitude of the os-

cillation of the quantity X is defined as

100[X(max) —X(min)]/X(max) where the values of X
are taken at the extrema near B-0.2 —0.3 T with the

minima taken at a lower B value. For the present situa-

tion of weak modulation strength, the amplitude of the

Weiss oscillations of the different physical quantities is

proportional to Vo. The phase of the oscillation of the

different quantities is compared to the one of p „. In

Table I we also give the phase of the SdH oscillations.
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