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Abstract

We present a theoretical study of electronic
and thermal transport in polycrystalline het-
erostructures combining graphene (G) and
hexagonal boron nitride (hBN) grains of vary-
ing size and distribution. By increasing the
hBN grain density from a few percent to 100%,
the system evolves from a good conductor to an
insulator, with the mobility dropping by orders
of magnitude and the sheet resistance reaching
the MΩ regime. The Seebeck coefficient is sup-
pressed above 40% mixing, while the thermal
conductivity of polycrystalline hBN is found to
be on the order of 30 − 120Wm−1K−1. These
results, agreeing with available experimental
data, provide guidelines for tuning G-hBN
properties in the context of two-dimensional
materials engineering. In particular, while
we proved that both electrical and thermal
properties are largely affected by morpholog-
ical features (like e.g. by the grain size and
composition), we find in all cases that nm-sized
polycrystalline G-hBN heterostructures are not
good thermoelectric materials.
Introduction. Owing to a small lattice mis-

match (2%), graphene and hexagonal boron

nitride can be assembled in coplanar two-
dimensional heterostructures (1 ). Such atomic
sheets, covering a wide range of compositions,
result in new materials with properties com-
plementary to those of graphene and hBN,
such as tunable bandgap optoelectronic mate-
rials (2 ). Graphene is well appreciated for its
high electrical (3 ) and thermal conductivities (4 ),
whereas hBN is an electrical insulator with to
date an unmeasured thermal conductivity (5 ,6 ).
Large-scale coplanar G-hBN heterostructures
have been successfully fabricated using chemi-
cal vapor deposition (CVD), enabling the possi-
ble control of periodic arrangements of domains
whose sizes range from tens of nanometers to
millimeters (7–10 ). Their charge transport prop-
erties can be, however, quite surprising, such
as the prescence of a metal-insulator transi-
tion (11–13 ) and anomalous transport phenom-
ena, which are not fully understood. (14 ) Addi-
tionally, fast CVD growth results in polycrys-
talline materials with grains of varying sizes and
morphologies, and the electronic and thermal
properties of these materials are limited by the
presence of grain boundaries (GBs) (15–19 ).
In polycrystalline graphene, GBs are charac-

terized by Van Hove singularities near the Dirac
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point (20–22 ), whereas in hBN the GBs reduce
the bandgap and introduce gap states gener-
ated by the presence of B-B or N-N bonds (23 ).
The interface between G and hBN is also ex-
pected to give rise to local boundary states,
especially at low energies (24 ,25 ). GBs are also
usually accompanied by local structural defor-
mation, which enhances phonon scattering and
thus lowers thermal conduction. The ther-
mal properties of polycrystalline graphene have
been theoretically calculated using molecular
dynamics simulations as a function of average
grain size (17 ,18 ,26 ,27 ), in fair agreement with ex-
perimental results (4 ).
Recently, a sample of CVD-grown graphene

was gradually converted into hBN, and it was
observed that chemical substitutions are initi-
ated around structural defects. This process
of conversion demonstrated a fine tunability
between highly conductive graphene and insu-
lating hBN (13 ). To date however, the elec-
tronic and thermal properties of CVD-grown
hybridized G-hBN heterostructures are poorly
understood, and their potential use in energy
harvesting, optoelectronic, or nanoelectronic
applications remains unclear.
Here we use quantum transport and molec-

ular dynamics (MD) simulations to calculate
the electronic and thermal properties of poly-
crystalline G-hBN heterostructures with vary-
ing grain size and distribution. The electronic
mobility and sheet resistance are studied as a
function of the density of hBN grains, which
ranges from a few percent to full coverage. The
contribution of GB interface states to the trans-
port properties is also illustrated and quan-
tified. By performing a complete calculation
of thermal and electrical transport, we esti-
mate the thermoelectric conversion ratio and
find that it remains far too low to be useful for
energy harvesting applications.
Generation of samples. Polycrystalline

G-hBN heterostructures with uniform average
grain size were generated using a Voronoi algo-
rithm, resulting in large square periodic sam-
ples containing up to 3 million atoms (17 ,28 ).
The algorithm starts with a random selection
of nucleation centers within a square cell of
predefined dimension, which dictates the aver-

age grain size as Lgrain =
√

L2/ngrains, where L
is the sample length and ngrains is the number
of grains. Next we set a random crystal ori-
entation for each nucleation site and we use a
Voronoi method to construct the grains. The
atoms along the GBs with separation below
0.1 nm are removed, and an MD annealing pro-
cess is used to construct the GBs, setting all
the atoms as carbon. We use the LAMMPS
simulation package (29 ), the second-generation
reactive empirical bond order potential (30 ), and
a small time increment of 0.1 fs. The annealing
starts with a 3-ps equilibration at room tem-
perature using the Nosé-Hoover thermostat,
continues with a heating up to 3000 K for 12 ps
and keeping this temperature for 3 ps, and ends
with a cooling back down to room temperature
for 10 ps. Finally, based the concentration of
hBN, we assign which grains are graphene and
which ones are hBN (Fig. 1).

20% hBN

40% hBN

60% hBN

Figure 1: Left panel: square periodic polycrys-
talline structures with three different concentra-
tions of hBN (20%, 40% and 60%). Right panel:
magnification of the polycrystalline structure
showing a typical interface between graphene
and hBN grains.

Electronic properties. We describe the
electronic properties of the G-hBN heterostruc-
tures with a tight-binding Hamiltonian

H =
∑

ri

εi(ri)|ri〉〈ri|+
∑

〈ri,rj〉

ti,j|ri〉〈rj| , (1)

where εi(ri) is the on-site potential of each atom
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and ti,j is the hopping between nearest neigh-
bors. In systems containing 1D interfaces be-
tween two different 2D materials, the electronic
properties are sensitive to the interface termi-
nation, and thus care must be taken when de-
scribing the GBs between graphene and hBN
grains. For example, zigzag BN nanoribbons
are polar, presenting bound charge of opposite
signs at the B and N edges. In hybrid systems,
mobile electrons from the graphene will tend
to screen the excess interfacial charge, which
changes the potential profile across the GB.
Therefore, we modify the on-site term of the
Hamiltonian to include a position-dependent
electrostatic potential, which can be derived
from the screened Poisson equation considering
point charges midway between the C-B or C-N
interfacial bonds. The on-site term of the TB
Hamiltonian can then be written as (31 )

εi(ri) = εi0 +

nq
∑

α

AB
i

|ri − rBα |
e
−

|ri−r
B
α |

λi

−

nq
∑

α

AN
i

|ri − rNα |
e
−

|ri−r
N
α |

λi , (2)

where εi(ri) denotes the on-site energy for an
atom of type i (either carbon, boron, or nitro-
gen) at position ri, εi0 is the on-site energy
of atoms far from the GBs, AB

i (AN
i ) is the

strength of the potential arising from the C-B
(C-N) interface, rBα (rNα ) is the position of the
excess charge at the C-B (C-N) interface, λi is
the decay length of the interface potential, and
the sum is done for all nq charges within a ra-
dius of 1 nm. The onsite potential and nearest-
neighbor hopping parameters have been derived
from a Wannierization of DFT calculations and
are given in Table 1 (see Supplementary Infor-
mation for more details). Finally, because the
GBs contain non-hexagonal rings, B-B or N-N
bonds will be present. For these bonds we set
tBN as the hopping parameter, while the on-site
energy is taken as 1.1εi0.
We calculate the electronic density of states

(DOS) using the Lanczos recursion method
with an energy resolution of η = kT = 26meV
(T = 300K). Figure 2(a) shows the DOS
with increasing hBN grain density in steps of

Table 1: On-site and nearest-neighbor tight-
binding Hamiltonian parameters.

On-site energy (eV)
εC0 εB0 εN0

0.0 3.09 -1.89
Boundary Electrostatic Potential parameters
λC λB = λN AB

i = AN
i

6.78 Å 12.56 Å 0.56 eV·Å
Nearest-neighbor hoppings (eV)
tCC tCB tCN tBN

-2.99 -2.68 -2.79 -3.03

20%, for an average grain size of 40 nm. The
gap is seen to progressively widen with increas-
ing hBN concentration, but with a faster de-
cay on the electron side of the spectrum. This
electron-hole asymmetry stems from the GB
states, which generate more resonances on the
electron side. This can be seen more clearly for
100% hBN, where the formation of boundary
states, with energy lying inside the gap, is illus-
trated by the local density of states projected
over all the GB sites (LDOSGB; Fig. 2(b)). The
energy resonances at -1.2 and 2 eV have been
observed experimentally, which can be associ-
ated to homoelemental bonds in the GB. (23 )

These states are mainly localized at the GBs,
as visualized in the inset of Fig. 2(b), with
stronger energy resonances on the electron side
of the spectrum. The presence of such states
could be at the origin of the finite electrical
conductivity computed for polycrystalline hBN
(see below).
We next evaluate the electronic transport

properties using a real-space order-N wave
packet propagation method (32 ,33 ). The core of
this method is to calculate the time-dependent
diffusion coefficient as

D(E, t) =
∂

∂t
∆X2(E, t), (3)

where ∆X2 is the mean-square displacement of
the wave packet

∆X2(E, t) =
Tr[δ(E − Ĥ)|X̂(t)− X̂(0)|2]

ρ(E)
,

(4)
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Figure 2: (a) DOS of the polycrystalline lattice
with increasing hBN grain density, in steps of
20%, for an average grain size of 40 nm. Inset:
magnification of the DOS in the interval [-1,1]
eV. (b) LDOSGB for the same parameters. In-
set: LDOSGB projected around a Gr-hBN inter-
face, corresponding to the energy marked with
the dashed line in the main frame.

and ρ(E) = Tr[δ(E − Ĥ)] is the DOS. We eval-
uate the trace using the Lanczos recursion and
the same parameters as the DOS. We calculate
the energy-dependent semiclassical conductiv-
ity as σ(E) = e2ρ(E)D̃(E), where D̃(E) is the
value of the diffusion coefficient when the mean
displacement has reached six times the average
grain size (see Supplementary Information).
In Fig. 3(a) we report σ(E), where a drop of

more than two orders of magnitude is observed
near the charge neutrality point with increasing
hBN concentration. To further clarify the im-
pact of the density of hBN grains, we fix the car-

rier concentration to n = 0.3×1012 cm−2, which
is a typical value for graphene on SiO2

(34 ),
and evaluate the charge mobility µ = σ(n)/n,
shown in Fig. 3(b). The sheet resistance R is
shown in the inset of Fig. 3(b), where one can
see that the maximum value for 100% hBN is
about 1MΩ. Additionally, we estimate the GB-
resistivity, ρGB, using an ohmic scaling analy-
sis (16 ,19 ),

R = R0 +
ρGB

Lgrain

, (5)

where R and R0 are the sheet resistances of
the polycrystalline sample and the individual
grains, respectively. The estimated resistivity
for the G-G interface is 0.12 and for hBN-hBN
is 5.93 kΩ · µm (see Supplementary Informa-
tion).
To complement the information about the

electronic properties, we evaluate the Seebeck
coefficient

S(E) = −
1

|e|T

∞
∫

−∞

(E ′ − E)G(E ′)

(

−
∂f

∂E ′

)

dE ′

∞
∫

−∞

G(E ′)

(

−
∂f

∂E ′

)

dE ′

,

(6)

where G is the sheet conductance and f is
the Fermi distribution. As shown in Fig. 3(c),
the Seebeck coefficient of the polycrystalline
samples is reduced compared to pristine
graphene (35 ), but is insensitive to hBN con-
centrations below 40%. However, beyond 40%
the thermoelectric capability is strongly sup-
pressed.

Thermal properties. In order to eval-
uate the thermal conductivity as a function
of the grain size, we construct a finite ele-
ment (FE) model in the ABAQUS package with
4000 grains constructed as Voronoi cells (right
panel Figure 4(a)). Using six representative
pentagon-heptagon GB structures, we extract
the GB thermal conductance for G-G, G-hBN
and hBN-hBN interfaces by performing a non-
equilibrium molecular dynamics (NEMD) cal-

4



10−2

10−1

100

101

102
σ
[2
e2
/h
]

0 20 40 60 80 100

hBN [%]

0

1

2

3

4

5

6

µ
[×

10
3
cm

2
V

−
1
s−

1
]

(b)

−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

E [eV]

−4 −3 −2 −1 0 1 2 3 4
E [eV]

(a)
0%

100%

−50

0

50

S
[µ
V
/K

]

(c)

0 50 100

hBN [%]

100

101

102

103

R
[k
Ω
/�

]

Figure 3: (a) Conductivity versus energy for
various hBN grain densities, with an average
grain size of 40 nm. (b) Mobility as a function
of hBN concentration for a fixed carrier density
n = 0.3×1012 cm−2. Inset: the sheet resistance
for the same carrier density. (c) Seebeck coef-
ficient with increasing hBN grain density, with
the dashed line showing the pristine graphene
value.

culation with LAMMPS (see Supplementary In-
formation for details); which are introduced as
contact conductances between interfaces. In
the FE model, we include two highly conductive
strips at the two ends of the structure (17 ,28 ) and
fix the ingoing (outgoing) heat flux on the left
(right) side, hf . Then, we evaluate the steady-
state temperature profile along the sample and
use the ∆T between the strips to evaluate the
effective thermal conductivity of the sample as

κ = hf
L

∆T
, (7)

where L is the sample length. We calculate the
themal conductivity for 16 grain sizes between
1-1000 nm while changing the concentration of
hBN (Fig. 4(b)). The scaling of κ shows that
the impact of the GBs on thermal transport be-
comes negligible for grain sizes above 100 nm.
Figure 4(c) displays the thermal conductivity as

a function of the hBN grain density where we
observe that, for small average grain size, the
minimum of thermal conductivity occurs near
70% hBN, similar to prior estimates (36 ). This
minimum can be rationalized by the fact that
the thermal conductance for the G-hBN inter-
face is lower than that of the hBN-hBN and
G-G interfaces. For larger grain sizes, where
the GBs no longer dominate the thermal trans-
port, we observe a monotonic scaling of κ with
hBN grain density, as the thermal conductivity
of pristine hBN is lower than that of pristine
graphene.
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Figure 4: (a) Heat flux (left panel) and tem-
perature profile (center panel) calculated with
FE for the granular mesh shown in the right
panel. (b) Thermal conductivity as a function
of the average grain size calculated with FE. In-
set: symbols show the polycrystalline graphene
(p-G) and hBN (p-hBN) thermal conductivities
calculated using AEMD, while the dashed lines
show the extrapolated scaling behavior using
the extracted GB conductance. (c) Thermal
conductivity as a function of the hBN grain
density for different average grain sizes using
the FE method.

In order to validate the above FE analysis we
perform an independent investigation based on
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MD simulations. The goal is to provide evi-
dence that the FE analysis, although missing
most of the atomic-scale details, nevertheless
provides the correct gross features on thermal
transport across hBN and graphene GBs. The
fully atomistic study of the thermal conductiv-
ity employs an approach-to-equilibrium molec-
ular dynamics (AEMD) method following the
same approach as in Ref. (18 ) using the Ter-
soff BNC potential (37 ) (see Supplementary In-
formation). While NEMD provides direct ac-
cess to the temperature drop across the GB,
which is the relevant quantity needed to cal-
culate the interface thermal resistance (and,
therefore, the GB conductance), the AEMD ap-
proach is better suited to calculate the effective
κ in a large system, since it requires a com-
paratively smaller computational effort (38 ). We
observe a quantitative difference between the
approach described above and AEMD, which
is reflected in the extracted value of the ther-
mal conductance of the hBN-hBN interface,
ChBN−hBN = 5.27GW/m2K. From the data re-
ported in Ref. (18 ), we also estimate the thermal
conductance of the G-G interface to be CG−G =
12.66GW/m2K. We attribute these lower val-
ues to the structure of the GBs investigated; the
GBs in the AEMD calculations tend to be disor-
dered and meandering, as shown in Fig. 1, while
the GBs used in the NEMD method were mir-
ror symmetric and perfectly periodic arrays of
pentagon-heptagon pairs. The inset of Fig. 4(b)
shows the thermal conductivity of polycrys-
talline graphene and hBN using the FE method
and the GB conductances extracted from the
AEMD method. The smaller values of GB con-
ductivity manifest themselves in a lower overall
thermal conductivity, but the main trend holds,
and a grain size of 100 nm still appears to be the
crossover where thermal transport is no longer
dominated by the GBs.
To summarize, we have presented an elec-

trical and thermal characterization of copla-
nar G-hBN heterostructures. The tight-binding
model includes a refined description of the G-
hBN interfaces, and is used to describe the
electrical properties of polycrystalline struc-
tures with varying percentages of graphene and
hBN. Our results reproduce the transition from

graphene to insulating hBN, with an electrical
conductivity change of more than two orders of
magnitude and a strong suppression of the See-
beck coefficient. Additionally, the thermal con-
ductivity of these polycrystalline structures has
been investigated using a combination of atom-
istic MD simulations and a FE evaluation of
the heat equation. We find that for small-grain
structures, the thermal conductivity is mini-
mized for a hBN grain density of 70%. From our
study, we can evaluate the upper value of the
thermoelectric figure of merit, ZT = σS2T/κ.
For example, in the case of 40 nm average grain
size and 20% hBN, ZT ∼ 1 × 10−4 for a car-
rier concentration n = 5 × 1012cm−2, which is
quite small. Even for energies near the edge of
the gap, where the Seebeck coefficient should
be maximized, the value of ZT only reaches
∼ 1× 10−2.
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Tight-Binding Model

In systems containing 1D interfaces between two different 2D materials, the electronic prop-

erties are sensitive to interface termination. Zigzag edges of both graphene and hBN should

be treated carefully when modeling in a phenomenological way. On the one hand, zigzag

graphene nanoribbons (ZGNRs) can become half-metals by the effect of a transverse electric

field.1 On the other hand, zigzag hBN NRs are polar, presenting bound charge of opposite
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signs at the B and N edges.

For zigzag interfaces, the gap of the hybrid system will depend on the widths of both

the graphene and the hBN, becoming smaller for wider ribbons (with a more important

contribution from graphene for the closing of the gap, since its gap decays to zero more

quickly than in ZBNNRs). Since ZBNNRs and polar and ZGNRs nonpolar, there is a

polar discontinuity at the interface, which gives an excess interfacial bound charge that can

be calculated by the interface theorem formulated by Vanderbilt and King-Smith,2,3 which

states that

(P1 −P2) · n̂ = σb. (S1)

As graphene has inversion symmetry, the bulk polarization is taken as zero. Thus, the bound

charge at the interface is σint = ±ea0, being positive at the C-B interface and negative at

the C-N edge. This form of determining the interface charge of coplanar hybrids of polar

compounds with hexagonal lattices has been used previously, showing that at the zigzag

edges there forms a one-dimensional electron/hole gas.4 Mobile electrons from the ZGNR

will tend to screen this excess charge at the interface by transferring electrons from one

edge to the other, which will change the potential profile across the ribbon and produce an

effective electric field capable of inducing half-metallicity when it is strong enough to produce

a Zener-like breakdown. For wider ZGNRs, the gap is so small for both spins that it is very

easy to close in the hybrid systems, which then become metallic.5

To model the effect of polarization produced by edge effects in BNNRs, the on-site term

is modified to include an electrostatic potential. In this way, the new position-dependent

on-site energy becomes

εα(r) = εα0 − eΦ(r) (S2)

where Φ is an effective potential6 that is considered to be a decaying function that vanishes
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in the centre of the ribbon.

The parameters for the tight-binding (TB) model are computed from a Hamiltonian ex-

pressed in the basis of Wannier functions (WF), which are obtained via wannierization of

the Bloch states calculated from first principles. The density functional theory (DFT) cal-

culations are done using norm-conserving Troullier-Martins pseudopotentials.7 and the PBE

generalized gradient approximation8 as implemented in the Siesta code.9 The wavefunc-

tions for the valence electrons are described using a linear combination of pseudo-atomic

numerical orbitals with a double-ζ polarized (DZP) basis.10 A vacuum space of ∼40 Å is

taken to prevent interactions between between layers under periodic boundary conditions.

The atomic positions are relaxed until the forces are smaller than 0.01 eV/Å. Once the den-

sity matrix is converged the expansion coefficients of the Bloch wave functions obtained from

the Siesta Kohn-Sham Hamiltonian, cµn, can be used to obtain the unitary matrix Umn(k)

necessary for the construction of the WF.11

For both graphene and hBN, a good choice for the trial functions gn(r) is to represent

the electronic orbitals as sp2 and pz. Then, for each unit cell with two atoms, there are three

sp2 and two pz orbitals. This gives a total of five basis functions, of which four are occupied

states and one is an empty state, enough to achieve a good description of the valence bands

and the first conduction band. Since the first conduction band crosses higher energy bands,

a band disentanglement procedure is used12 following the prescription implemented in the

Wannier90 code13 for maximally localised WF (MLWF). The Hamiltonian in the basis of

MLWF can be seen as a representation of the interactions between localized functions that,

by construction of the trial orbitals, have great resemblance with the chemical σ- and π-bonds

of graphene and hBN. Consequently, the relevant TB parameters can be straightforwardly

extracted from this Hamiltonian.

The systems considered to make the parametrization were constructed by joining graphene

and BN nanoribbons so that heterojunctions with zigzag or armchair interfaces were ob-

tained. A diagram of the systems is shown in Figure S1(a). The number of C zigzag or
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armchair chains in the system is labeled nC, while nBN designates those for hBN. Systems

with compositions in the range of 5 ≤ nC ≤ 9 and 5 ≤ nBN ≤ 12 were studied in the case

of zigzag interfaces. For armchair systems, values of 9 ≤ nC ≤ 12 and 12 ≤ nBN ≤ 15 were

used.
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Figure S1: (a) Diagram of the hybrid systems consisting of nanoribbons of graphene and
hBN joined by the zigzag (left) and armchair (right) interface. The systems are defined by
the number of rows of each material, denoted nC for graphene and nBN for hBN. The unit
cell is enclosed in the dashed green box. (b) Macroscopic average of the electronic charge
density (blue) and effective potential (red) across the y direction for the armchair system
with nC = nBN = 12. (c) The same as (b) for the zigzag system with nC = nBN = 9.

The macroscopic average of the electronic charge density14 and the effective potential are

displayed for an armchair and a zigzag system, in Figure S1(b) and Figure S1(c), respectively.

At the interface of armchair ribbons, there is a soft change in the charge density due to charge

redistribution at the C–B and C–N bonds. In the zigzag case, abrupt changes in the charge

density can be observed at the interface. The accumulation of electrons in the C-N side and a

depletion in the C-B interface comes from the bound charges of the polarization discontinuity.

To counteract the effect of hBN polarization, free carriers from graphene must screen out

the bound charges by moving electrons from the C–N side to the C-B side. The result is

a lack of electrons in the net charge at the C–N interface and an excess of electron in the

net charge at the C–B interface. The localized charges at the interface cause a change in
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the potential as seen in Figure S1(c), and is essential to model the electronic properties of

hybrid systems with zigzag interface. The potential has a maximum at the C–B interface,

with less charge, and a minimum at the C–N interface, with more charge.

The charges at the 1D interfaces can be simplistically seen as two lines of charge, placed at

±L/2 and having a linear charge density ±Qλ. This is shown schematically in Figure S2(a).

The problem of a line of charge is well known in electrostatics,15 that in this case with two

oppositely-charged lines results in the potential

Φ(x) =
Qλ

2πǫ0
ln

(

L+ 2x

L− 2x

)

, (S3)

where ǫ0 is the vacuum permittivity. This potential is plotted in Figure S2(a), and has

a similar shape to the one shown in Figure S1(c). The differences in the functional shape

come from the fact that the potential from the DFT calculation corresponds to a periodically

repeated array of linear charges, which have some spatial spread (more similar to a cylindrical

charge distribution) and act over different materials, each one with its own permittivity,

which leads to a different screening due to valence electrons in each region. For the model to

be computationally efficient, instead of considering an infinite line it is better to discretize

the problem considering an infinite array of point charges along the interfacial axis, as shown

in Figure S2(b). The position of the point charges is taken to be midway between the C–B

and C–N interfacial bonds.

Due to the semi-metallicity of graphene, the electric field in this region will be damped by

the redistribution of valence electrons. The screened Poisson equation describes systems with

this kind of screened Coulomb interaction, and here is considered to model the interfacial

potential. The screened potential for an arrange of point charges has the form

Φ(r) =
∑

i

Qi

4πǫ0ri
e−

ri
λ , (S4)

where Qi are the charges, ri is the distance between r and the charge Qi, and λ is a damping
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Figure S2: (a) Parallel charged lines with opposite charges (±Qλ) situated at ±L/2. (b)
Discretized problem with point charges ±Q situated at ±L/2. At each side, the charges are
equally spaced at a distance a. The value L = 8a is considered. Two different damping
factors (λ) of the screened potential are used, λ = 7a (red) and λ = 2a (blue). (c-e) On-site
energy values as a function of the atomic positions for the systems (c) Z9,9, (d) Z5,5 and (e)
A12,12. Black circles correspond to C atoms, red circles to B and blue circles to N. Green
squares are the on-site terms εα(r) with the functional form in Eq. (5) and the parameters
from Table S1.
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factor related to the mobility of electrons in the material. The potential profile in the

graphene part in Figure S1(b) looks more like the screened potential with short λ, since the

availability of electrons to screen the potential is large. The effect of the potential can be

included in the on-site term of the TB Hamiltonian by considering the sum of two screened-

like potentials with opposite signs, corresponding to both interfaces. This gives

εα(r) = ε̄α0 +

nq
∑

i

AB
α

|r− rBi |
e−

|r−r
B

i |

λα −
nq
∑

i

AN
α

|r− rNi |
e−

|r−r
N

i |

λα , (S5)

which represents the diagonal term for an atom of species α at position r, where ε̄α0 is the

on-site energy in absence of the potential, AB
α and AN

α are the amplitudes of the potential

for that species in the B and N interfaces, respectively, rBi and rNi are the positions of the

charges at the C–B and C–N interfaces, respectively, λα is the damping factor, and the sum

is done for all nq charges in the unit cell and in all periodically repeated neighbour cells

within the cutoff radius rcut. The parameter rcut is taken so that changes in the on-site term

due to point charges far away are less than 0.02 eV, which gives rcut ∼10 Å. The amplitudes

of the potential for B and N are taken to be equal (AB
B = AB

N and AN
B = AN

N), and so are

their damping lengths (λB = λN).

The parameters AB
α , AN

α , λα and ε̄α0 are fitted to the data from the diagonal of the

Wannier Hamiltonian using the simplex algorithm.16 As shown in Figure S2(c-e), the on-site

energies from this Hamiltonian are in good agreement with the form of the potential in S5,

and the fitted values reproduce well these on-site energies. The obtained parameters for the

on-site potential are shown in Table S1. Although the on-site energies are fitted from zigzag

Table S1: Parameters obtained from the fit to the on-site energies of the zigzag systems.

C B N
ε̄α0 (eV) 0.00 3.09 −1.89

AB
α (eV·Å) 0.61 0.46 0.46

AN
α (eV·Å) 0.54 0.62 0.62

λα (Å) 6.78 12.56 12.56
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systems, they also give a good description of armchair systems.

Electrical properties

The local density of states of the grain boundary (LDOSGB) shows several main peaks as

the concentration of hBN is increased (Figure 2(b) in the main text), these peaks corre-

sponds to E = −1.2,−0.5, 0.0, 0.76 and 2.05 eV. In order to understand the origin of the

peaks we plot the LDOSGB projected around a G-hBN interface (Figure S3). The peaks at

E = −1.20 and 2.05 eV are close to the energies experimentally observed for grain boundaries

in hBN17. Furthermore, the peaks at E = 0.0 and 0.76 eV are found for graphene and hBN,

which suggest specific fingerprints of the structural morphology of grain boundaries.

In the real-space order-N wave packet propagation method18,19 we evaluate the time-

dependent diffusion coefficient using the mean-square displacement of the wave packet, ∆X2,

D(E, t) =
∂

∂t
∆X2(E, t), (S6)

where

∆X2(E, t) =
Tr[δ(E − Ĥ)|X̂(t)− X̂(0)|2]

ρ(E)
, (S7)

and ρ(E) = Tr[δ(E− Ĥ)] is the density of states (DOS). Ambiguity in the time dependency

can be avoided by noting the convergence of the diffusion coefficient as the wave packet is

spreading. This convergence depends on the mean displacement of the wavepacket,
√
∆X2,

which is energy dependent. We use six times the average grain size (6Lgrain) as the point of

convergence, and at that particular mean displacement we extract the diffusion coefficient

D̃(E) and we evaluate the semiclassical conductivity, σ(E) = e2ρ(E)D̃(E). As an example,

we show in Figure S4 the conductivity as a function of the mean displacement. It is worth
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Figure S3: LDOSGB projected around a G-hBN interface, corresponding to a fix energy
labeled in each frame.
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mentioning that the time to reach 6Lgrain is highly dependent on the concentration of hBN;

a lower conductivity corresponds to a longer time to reach a particular mean displacement.
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Figure S4: Electrical conductivity (σ) as a function of normalized mean spreading√
∆X2/Lgrain for E = 0.

In order to extract the GB resistivity, ρGB, we evaluate the electrical conductivity in

polycrystalline samples with three different average grain sizes (Lgrain = 10, 20 and 40 nm)

for different concentrations of hBN (0, 20, 40, 60, 80 and 100%). The polycrystalline samples

are square, so the sheet resistance R = (1/σ) × L/W = 1/σ. We use the ohmic scaling

analysis of Cummings et al.20 in order to fit ρGB (Figure S5),

R = R0 +
ρGB

Lgrain

, (S8)

where R and R0 are the sheet resistances of the polycrystalline sample and the individual

grains, respectively. Applying the scaling analysis to the 0% and 100% cases, we find the

GB resistivity and sheet resistance of graphene to be 0.12 kΩ · µm and 1.1 kΩ, respectively.

The values for hBN are 5.93 kΩ ·µm and 608.87 kΩ. Owing to the large bandgap in the hBN

grains, charge transport through the polycrystalline hBN sample will be primarily through

the disordered network of GBs, explaining the large values of sheet resistance and GB resis-

tivity.
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Figure S5: Sheet resistance as a function of the grain size Lgrain, for different values of hBN
grain concentration.

Thermal properties

Thermal conductance of individual GBs

The repesentative GB conductance is an arithmetic average of the six type of GBs shown in

Figure S6. These GBs are constructed for G–G, hBN–hBN and G–hBN interfaces and are

periodic along the GB direction. We evaluate the GB conductance for each GB using a non-

equilibrium molecular dynamics (NEMD) calculation using the Tersoff potential developed

for boron, carbon and nitrogen interactions.21 To perform a NEMD calculation, we first fix

the borders and divide the simulation box (excluding the fixed atoms) along the length into

22 slabs. Second, we thermalize the structure using NVT at room temperature, and then we

apply a 20 K temperature difference between the first (hot slab) and the 22nd slabs (cold

slab). Third, we let the system evolve using an NVE ensemble and we keep the borders,

hot and cold, at the desired temperature difference using an NVT thermostat. Fourth, we
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evaluate the heat-flux using,

qx =
1

A

dq

dt
, (S9)

where A is the cross sectional area of the sheet and q is the energy added or removed from

the system. The steady state process is achieved after around 500 ps of simulation time.

Finally, we evaluate the thermal conductivity κs using the one-dimensional Fourier law,

κs = qx
dT

dx
. (S10)

The temperature profile is linear along the sample except in the middle where there is a

jump, ∆T , due to the GB resistance. Therefore, the GB conductance, CGB, is evaluated as

CGB =
qx
∆T

. (S11)

In Table S2, the conductances of the G–G, hBN–hBN and G–hBN GBs at room temperature

are presented.

Table S2: Calculated GB conductance for different grain boundary types (as shown in Fig-
ure S6) and for G–G, hBN–hBN and G–hBN interfaces. The results are for a temperature
of 300K.

GB type CG−G [GW/m2K] ChBN−hBN [GW/m2K] CG−hBN [GW/m2K]
1 (symmetric) 36.5± 3 14.5± 1.5 8.5± 1.5
2 (symmetric) 49± 3 19± 1.5 10± 1.5

3 (non-symmetric) 48± 3 18.5± 1.5 9± 1.5
4 (symmetric) 68± 4 25.5± 2 11± 1.5

5 (non-symmetric) 48± 3 21± 1.5 10± 1.5
6 (symmetric) 69± 4 29.5± 2 11.5± 1.5
Defect-free - - 15± 1.5

In order to extract the thermal conductance from approach to equilibrium molecular

dynamics (AEMD) calculations, we fit the thermal conductivity as a function of the average
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Figure S6: Atomic structure of 6 different grain boundaries consisting of pentagon/heptagon
pairs with various concentrations. These models were constructed for G–G, hBN–h-BN and
G–hBN grain boundaries.
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grain size using,22

1

κ
=

1

κc−hBN

+
RGB

2Lgrain

, (S12)

where κc−hBN is the thermal conductivity of the pristine hBN and ChBN−hBN = 1/RGB is the

thermal conductance. In Figure S7 we show the fit for hBN–hBN interface. For graphene

we extract the values from Ref.22, which are also shown in Figure S7.
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Figure S7: Thermal resistance estimation using AEMD calculations. The graphene calcula-
tions are values extracted from Ref.22 and the hBN values are results from this work.
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