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Abstract— This paper investigates measures of centrality that power grids are more complex than small world graphs;
are applicable to power grids. Centrality measures are useth  in particular, we know that the node degree distribution is
network science to rank the relative importance of nodes and well fitted by a mixture distribution coming from the sum

edges of a graph. Here we define new measures of centrality for fat ted G tri d iabl d ) |
power grids that are based on its functionality. More speciftally, 9" @ truncated tseometric random variablié and an irreguiar

the coupling of the grid network can be expressed as the Discrete random variable. [4] highlighted that the topglog
algebraic equation YU = I, where U and I represent the robustness of a network is closely related to its node degree

vectors of complex bus voltage and injected current phasors  distribution. [6] investigated the deviation of the nodegce
and Y is the network admittance matrix which is defined not  yistripution of power grids from a pure Geometric distribu-

only by the connecting topology but also by the network's . . . .
electrical parameters and can be viewed as a complex-weight tion and concluded that it substantially affects the topudal

Laplacian. We show that the relative importance analysis bsed ~ Vulnerability of a network under intentional attacks. Treat

on centrality in graph theory can be performed on power grid compared to a network with a pure Geometric node degree
network with its electrical parameters taken into account. In distribution, the power grid appears to be more vulnerable

the paper we experiment with the proposed electrical centrity 4, jytentional attacks when nodes with large degrees become

measures on the NYISO-2935 system and the IEEE 300-bus .
system. We analyze the centrality distribution in order to first targets of the attack. Another less explored but eguall

identify important nodes or branches in the system which are important aspect that characterizes a power grid network is
of essential importance in terms of system vulnerability. Vi its distribution of line impedances, whose magnitude exhib
also present and discuss a number of interesting discovese a heavy-tailed distribution, and is well fitted by a clipped
regarding the importance rank of power grid nodes and double-Pareto-logNormal (dPIN) distribution [7].
branches. . . .
With recent advances in network analysis and graph theory
. INTRODUCTION many researchers have applied centrality measures to com-

The electric power grid is one of the most critical in_plex _networks in _order to study network properties an_d to
frastructures. The inter-connectivity of the power grig enidentify the most important elements of a network. Various
ables long-distance transmission for more efficient systefgntrality measures have been defined and used to rank the
operation; however, it also allows the propagation of distélative importance of nodes and edges in a graph. Girvan
turbances in the network. The non-decreasing frequency 8fd Newman (2002) investigated the property of community
large cascading blackouts in the United States reveals tRBUCtUre in many types of networks in which network
existence of intrinsic weakness in the large electric powdlodes are joined together in tightly knit groups, between
grids. Studies on the power grid system structures arnich there are only looser connections [9]. They also
vulnerability analysis have attracted many research tsfforProposed a method for detecting such communities based on
in the past years (see [1] [2] [3] [4] [5] [6)). a gen_erahzed cgntrallty measure of “gdge betweenness” .and

It has been observed that the electric power grid netwofPerimented with the proposed algorithm on a collabonatio
has a distinct topology. In [7] Wang, Scaglione and ThomaRetwork and a food web network. Newman (2005) proposed
(2010) provided a systematic investigation of the topaiabji another centrahty measure of vertex by net flow of random
and electrical characteristics of power grid networks Hasevalkers which does not flow along the shortest paths [10].
on both available real-world and synthetic power grid syste Th|s_ Centrallty is known. to be particularly useful fo_r findin
data. First, power grids have salient “small-world” prajess,  Vertices of high centrality that do not happen to lie on th_e
since they feature much shorter average path length (ﬁkportest paths and shown to ha\{e a strong correlation with
hops) and much higher clustering coefficients than that ¢tegree and betweenness centrality. o
Erdss-Rényi random graphs with the same network size Hines, Blumsack, anet al. (2008, 2010) provided insights
and sparsity[8]. Second, their average node degree does RBt the topological and electrical structures of electrical

scale as the network size increases, which indicates tH@Wer grids, pointing out the differences of the topology
of power grids from that of Ers-Rényi random graphs,
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as “scale-free network” vulnerability. However, as we show Section VI concludes the paper.
in Section 1V, the proposed electrical centrality measure

is an incorrect one and the corresponding analysis on the Il. SYSTEM MODEL

vulnerability is misleading. The power network dynamics are coupled by its network
In [13] Rajashigh, Rajan, and Florence (2009) developedequation
formula to compute the betweenness centrality for a regular YU =1, 1)

grid network. Torres and Anders (2009) discussed different .
methods of graph theory, mainly the topology centralitieé’,VhereU and! represent the bus voltage and injected current

for ranking the relative importance of substations in a powe’€ctors; andy” is the network admittance matrix which is

grid and illustrated the procedure on a synthetic 5-node tedetermined not only by the connecting topology but also its

system [14]. In [15] Gorton, Huang, Jin, ameti al. (2009) electrical parameters. Given a network withhodes andn

proposed a new method for contingency selection based BAKS (Wh"ih, may also be referred to as “buses and branch"es
the concept of graph edge betweenness centrality which ¢ in€s)  in power grid analysis; or “vertices and edges
be used for the contingency analysis of large scale powi} 9raph theory and network analysis), each link (s, )
grids. In [16] Zio and Piccinelli (2010) improved the modelP&tWeen nodes andt has a line impedance,. (1) = (/) +
of power flow distribution in the power grid network. That/Z (1), wherer(l) is the resistance and|(l) the reactance.
is, the flows are not concentrated only along the shortestSually for high-voltage transmission network(/) > (1),
paths; instead, they are randomly distributed on all thagat!-€-» ItS réactance dominates. The line admittance is obtai
between nodes, as random walks. A centrality measure wi@Mm the inverse of its impedance, i.e.,
defined accor_dingly for the transmission network analysis Ypr(l) = g(l) + jb(l) o
and was applied to the IEEE 14-bus system. =1/2p0(1)

In this work we investigate the measures of centrality that ) )
are applicable to power grids and their meanings. We defifesSume that a unit current flows along the link= (s, )
new measures of centrality for a power grid that are based 8™ nodes to #; then the caused voltage difference between
its functionality. More specifically, the coupling of theigr 1€ €nds of the link equalaw = U(s) = U(t) = 2 (1)
network can be expressed as the algebraic equation= 7, " €quivalently Au = 1/_yprgl)-_ Thereforez,,(I) can be
whereU andI represent the bus voltage and injected currefdftérPreted as the “electrical” distance between nodedt
vectors: andY is the network admittance matrix which @1d¥pr(l) reflects the “coupling” strength between the two

is defined not only by the connecting topology but als¢nd nodes.

its electrical parameters and can be viewed as a complex-' "€ line-node incidence matrix of the network with

weighted Laplacian. A simple transformation allows us t&2€77 % 7, can be written as

compute a weighted adjacency matrix from the weighted Al,s)= 1
Laplacian Y. Therefore, the relative importance analysis A Al = -1 3)
based on centrality in graph theory can be performed on A(l,k)= 0, with k # s or t.

power grid network with its electrical parameters takem int The Laplaci it of th work. with si
account. In the paper we present and discuss some intgrestin be a& a_mag matrixt, of the network, with sizé > n,
discoveries on the importance rank of the power grid nodé&n b€ obtaned as
and branches which are obtained from the experiments on
the NYISO system and the IEEE 300-bus system. It has beggn
found that when electrical parameters are incorporated int
the centrality definition, the distribution of some cerityal
measures becomes very different from the original oneé’(s’t)
which were based on the topological structure alone; and
with some proposed electrical centrality measures, a Iar%\ﬁth s t—19 . n
amount of system centrality can reside in a small number o o o . .
. - . . .. The network admittance matriX’ of the network, with
nodes in the system. These findings will help us to |dent|fg. X
: " izen x n, can be obtained as

the electrically critical components of the system for the
vulnerability analysis and to search for ways of enhancing Y = Asz'ag(ypr)A (6)
system robustness. ] . ) )

The rest of the paper is organized as follows: Section Whereyp: is the line admittance vector. The entrieshirare
discusses the system model for power grid networks; Secti@§ follows:

L=ATA (4)

, if there exists links — ¢, fort #s
= k, withk=-%_ L(st), fort=s
0, otherewise,
®)

[l examines the definitions of four widely-used centrati Y (s, t) = —ypr(s, t), link s — ¢ exists, fort # s
and investigate how to extend the definitions to power grid) y (s ) = Zypr(&t)’ fort— s

functionality; Section IV gives some probing discussion on i

a previously proposed definition of electrical centralityda Y(s,t) = 0, otherewise.

point out its errors; Section V shows some experiments @)

results on the newly proposed centrality measures; andyfinalwith s, ¢t =1,2,---, n.



A close comparison of the matrix structureslofandY  network admittance matriX', we define the electrical degree
uncovers some interesting discoveries. It is known that theentrality C,, (v) as
Laplacian matrixL fully describes the topology of a network;
while the network admittance matriX not only contains Cay () = M (9)
information about the system topology but also information n—1
about its electrical coupling. The off-diagonal entries oB. Eigenvector Centrality

Y, Y(s,t) equals the line admittance of the link between Eigenvector centrality is a measure of the importance of
nodes andt (with a ‘-’ sign), whose magnitude reflects 3 node in a network according to its adjacency matrix.
the coupling strength between the two nodes. The diagonalGiven a network’ := (V, E), its adjacency matrix, one

entries of the Laplaciah represent the total number of links eigenvalue), and the corresponding eigenvectosatisfy
connecting each node with the rest of the network. Whereas a

diagonal entry ofY” represents the total coupling capability Ar = Az. (10)

one node has with the rest of the network. Therefore thenhe centrality of a node is defined as the-th entry of the

weighted Laplacian; and the Laplacidncan be equivalent N

ke, i1l H 4 H 1
toa ﬂat network admittance matrix, W_hlch_ assumes all the Co(v) = 2 = Alv, §)z;. (11)
links in the network have the same line impedance (with Amax = '

a common proportional factor). These analogies are ver earlv th litv of node i ional to th ;
important in the sense that, as shown in the next sectiofy,Sa"y the centrality of node is proportional to the sum o

they will help extend the centrality measures which werferIe centralities_ of all its neighboring_nodes. The defimit@o
originally defined on a network topological structure to bé:hooses the eigenvector corresponding to the largest-eigen

more appropriately defined on the electrical structure. Va'!le Amax N order to_ guf’:\rantee .aII the centrality Scores,
which are all the entries in the eigenvector, to be positive

[1l. CENTRALITY DEFINITIONS AND (see Perron-Frobenius Theorem [17]).
EXTENSIONS As stated in Section I, the off-diagonal entries in the

Centrality measures are used in network science to rafigtwork admittance matrix” can be viewed as the connec-

the relative importance of vertices and edges in a grapH\.’ity strength between neighboring nodes in the network.

Within graph theory and network analysis, there are varioys'eréfore, just as we extract the adjacency matrix from the

measures of the centrality of a vertex or an edge. In thg2Placian,A = —L + D(L), we can retrieve the complex-

following subsections, we examine the definitions of foutveighted electrical adjacency matrix as

widely used measures of central_ity, i.e., degree Cgryralit Ay = =Y + D(Y). (12)
betweenness, closeness, and eigenvector centrality. Then ) ) )

we discuss how to extend the definitions to correspondintfnereD(-) represent the diagonal matrix retrieved from the

“electrical” measures of centrality for power grids. original matrix. - _ .
After performing the eigen-analysis ody, we take the
A. Degree Centrality magnitude of the entries of the eigenvector as the centralit
The simplest centrality for a vertex is its node degredn€asure.
i.e. , the total number of edges incident upon a node. This 1 <& )
centrality represents the connectivity of a node to the rest Cey (v) = [lzo]| = || A Ay (v, j)aill (13)
of the network and reflects the immediate chance for a node =1

to exert its influences to the rest of the network or to b€. Closeness Centrality

exposed to whatever is flowing through the network, such as compared to degree centrality, the definition of closeness
disturbances, shared information, power or traffic flows, ogentrality is more sophisticated. It is the mean geodesic
even a virus. For a grapi := (V, E) wit n vertices, where (jstance (j.e., the shortest path length in hops) between a
V represents the set of vertices alidhe set of edges, given yertexv and all the other vertices reachable from it:

its LaplacianL, the degree centrality of a vertex or node

is defined as ~ Yieviw da(v,t)

Ce(v)
deg(v) _ L(v,v) : : .
= = (8)  with dg(v,t) being the shortest path length between vertices

-1 -1’ . . .
_ " _ " ) v andt. Obviously definition (14) in fact measures how “far
wheren —1 is used as a normalization factor. ~away” a node is from the rest of the network instead of
For a node in the power grid network, its connectivityiis closeness. Therefore some researchers define clogeness

or “coupling” with the rest of the network is not only pe the reciprocal of this quantity, to make the name more
related to how many links it connects but also related tﬁppropriate [18], that is

the connecting strength of each link; and the admittance
of each link just reflects this coupling strength. Therefore C.(v) = n—1 (15)
by using the analogy between the Laplacianand the ¢ Yievip da(vt)

: (14)

n—1

Cd(’l})




The shortcoming of the definition of closeness centrality i®. Vertex and Edge Betweenness Centrality
that it does not properly reflect how vulnerable is a network ygrtex Betweenness is one of the most widely used
to becoming disconnected. In fact, the shortest path lengfantrality measure. It was first suggested by Freeman (1977)
d:(v, t) between vertices and? tumns out to be infinity if in [20]. This measure reflects the influence of a node over the
the network is disconnected and there is not a path betwegigy of information between other nodes, especially in cases

the two vertices. As a result the definitions of (14) andynere information flow over a network primarily follows the
(15) can only be applied to connected networks. In ordeortest available path.

to incorporate the disconnectivity and to more convenyent!  Gjyen a undirected grap&(V, E), the betweenness of a

[19] the definition of closeness to be: pairs of other vertices that run through
Colv) = 3 27a), (16) > oalv)/ow
teV\w Cp(v) = FUAIEY (20)

(n—1)(n—-2)/2
Because the power grid networks we are interested in ar

connected topologies, undirected with neither multiphgi w%((er()e T;ttfgget;lglmr?jrrng;rszgﬁeiag?;gsntggziéo ta t?]rs]dthat
nor self-loops, definition (15) above is still suitable fasro Tst\U p
purposes. pass through vertex.

_— . In order to find which edges in a network are most between
In all definitions above, the distance along a path from h s of ; ] d i
vertex v to ¢ is measured as in “hops”. That idg (v, ) other pairs of vertices, Girvan an Newman [9] generalize
equals the total number of hoos alon the ath: ’ Freemans betweenness centrality to edges and define the
q P 9 path: edge betweenness of an edge as the number of shortest paths
between pairs of vertices that run along it. If there is more
de(v,t) = Z L. (17)  than one shortest path between a pair of vertices, each path
(i.j) € ENpath(v—t) is given equal weight such that the total weight of all of

To adapt the definition of closeness centrality to noddde paths is unity. Note that the normalization factor ofeedg
in a power grid network, we define the “electrical distance®Petweenness is different from that of vertex betweenness.

between the nodes dg (v, ) which is counted in “electrical Z ost(e) /o
hops” as Cyle) = s#teV 21)
b n(n—1)/2
dz(v,t) = || > Zpr (3,9, (18) Obviously, vertices or edges that occur on many shortest

(.)€ Enpath(v—t) paths have higher betweenness that those that do not. It

where Z,,(i,j) is the line impedance of the linki, ;). is found that rgmoval of the nodes or edggs with larger
Therefore the corresponding closeness centrality based Bgtweenness will put the network at higher risk to become

electrical distance is defined as discor_m.e_cted.
Definitions (20) and (21) are based on the shortest path
—1 i . Usi '
o, (0) n (19) counted in hops. Using the the shortest electrical path

= —Zte\/\v a7 (0,1)’ counted in electrical hops as (18), we can define the elattric

betweenness for nodes and edges in power grid networks,
It is worth noting that the line impedands,, in a power which are denoted aS},, (v) andCy,, (¢) respectively.

grid is a complex number, i.eZ,, = R+ jX, whereR is

the resistance ani the reactance. Therefore the electrical V- SOME DISCUSSION ON THE ELECTRICAL

distanced(v,t) is in fact a complex number though one CENTRALITY PROPOSED IN [11]

could take the magnitude @f; (v, t) to make a more “real” Hines and Blumsack (2008) proposed an “electrical cen-

distance measure. According to the definition in (18), the li trality measure” which is calculated based on #&* matrix

impedance of each link is in fact used as the edge weight [@1]. The Zb“s matrix is the inverse of th& matrix, which,

the search of the shortest path betweemd¢. However, this unlike theY matrix, is a non-sparse (dense) matrix. That is,

will complicate the shortest-path search algorithm beeausz®*s = Y ~!. This centrality measure has also been adopted

one can not compare or add up two complex-number weighlty other researchers [14].

so straightforward as with real-number weights. On therothe The principle of assigning this centrality measure is re-

hand, it is known that for the high-voltage transmissiorstated as follows (see [11][12]):

network in a power grid the reactanc€ is usually the It was claimed that the equivalent electrical distance

dominant component of a line impedance, wher&asnly  between nodé& and! is thus given by the magnitude of the

takes a trivial value which in many cases can even bg,!) entry in theZ"*s matrix. SmallerHZ};f‘lSH corresponds

neglected. Therefore for the purpose of simplicity, we cato a shorter electrical distances and a stronger coupling

only take the reactanck as the edge weights and hence thdetween these node hence a larger propensity for power to

distance evaluation can be approximated by real numbersflow between these nodes. From the non-zero off-diagonal



entries in theZ%s matrix, select only the same number V. EXPERIMENT RESULTS

of “links” (k,l) as that inY, which have the shortest

electrical distances (corresponding to the entries witn th Based on defined centrality measures in Section Ill, we
least|| Zb4*||'s ). With these newly selected “links”, one hasPerform experiments on the NYISO-2935 system and the
a different “electrical” topology from the original networ EEE-300 system. The NYISO-2935 system is a repre-
Then node degrees, counted on the newly formed electrici#ntation of the New York Independent System Operator's
topology, are defined as the electrical betweenness, or th@nsmission network containing 2935 nodes and 6567 links,
electrical degrees. with an average node degrég) = 4.47 and an average

With further analysis based on the electrical degrees, it f°rtest path lengtl) = 16.43 (in hops). The IEEE-300
found that although a power grid topologically does not haveyStém is a synthesized network from the New England
the properties of a scale-free netwhrlelectrically, there POWer system and has a topology with 300 nodes and 409
exist a number of highly-connected nodes in the electriclkS, With (k) = 2.73 and (I) = 9.94 . We evaluate the
topology (obtained fronZ?**) similar to what would be ex- rglauve |mporta_nce for the nodes and lines according to
pected from a scale-free network. That is, the electricaeno different centrality measures and normalize the results to
degree distribution has a “fat” tail. This finding, accorglin make sure the sum of all the vertex or edge _cer_1tra|_ities in
to [11], explains the relatively high vulnerability of powe & system equalg 1.0._ Then we ana.lyz.e. their dIStrIbu.tIOI‘l and
grid to failures at some “hub” buses (i.e., intentional ekta correlation, and identify the most “significant” nodes irclea
to high-degree nodes). system.

However, a deeper analysis of the impedance matrix FigL_Jre 1 compares t_he distribution of degree centrality
Zbus reveals that the definition of the electrical betweenne<¥d €igenvector centrality for the nodes in the NYISO sys-
(degree) and the corresponding analysis in [11] and [13¢™: and shows the correlation between Qiﬁerent cenyralit
are potentially misleading. The problem is that the entry diieasures. It can be seen that when electrical parameters are
the impedance matrixz?%*, does not represent the mutualincorporated into the centrality definition, the distrilout of
electrical distance between nodéieand . In fact, from the the degree centrality and the eigenvector centrality becom

network equationl/ = Z'*I, we can learn the physical Very different from the original ones which are based on

meaning of the entry of?“*: when only node: has a unit the topological structure alone. The correlation betwd®n t

injected current, the voltage increases occurring at node tOPOlogy” centralities and the corresponding electricen-
andk are Zb%s and Z%* respectively. That is tralities is very weak. However, there is a strong correfati

between the two electrical centraliti€;, andC.,, .

Table | ranks the first 10 most important nodes in the
NYISO system according to different type of centrality
measures. The bottom row gives the total centrality of each
And usually [|Zp4s]| > [ Z4°]l, which means theZ"“s  group of most important nodes. It shows that the degree
matrix is diagonally dominant. Only iZ};j‘ﬁ is close toZ};j‘,j, centrality distributes quite “flatly” among the nodes, hesm
which happens wherZ};}jS has a relatively large magnitude, the first 10 most important nodes sum only to 2% of system’s
does there exist a strong coupling between the two noddstal centrality. However, when the electrical parameser i
Whereas the mutual electrical distance between riodad taken into account, a large amount of centrality can be
[ equals the voltage difference caused by an injected urshifted into in a small number of nodes in the system,
current at nodek and an output unit current from node e.g., the first 10 most important nodes based the electrical
That is eigenvector centrality take more than 99.2% of the system’s

Zery = Z0Us 4 Zhus _ g zbus (23) total C(_anf[rality. This reveals that the eigenvector cdityra
’ ’ ’ vector is in fact a very sparse one. It also shows @at and
which also implies that a large entry @gj‘ﬁ, not a small C., are kind of consistent with each other in the sense that
one as shown in [11], gives a small mutual electrical distandhey are able to locate a very similar group of most important
and a strong coupling between the two nodes. nodes in the system (a 60% overlap) which however, is

On the other hand, for a connected power grid networiiuite different from the group identified by the topological
with grounding branches, its network admittance maifix centralitiesCy andC-.
is non-singular therefore the inverse Bt which is Z%%s, Figure 2 compares the distribution of different types of
exists. The network equatioi/ = I andU = Z%*] are centrality for the nodes in the IEEE-300 system. It can
equivalent to each other. That is, the matriteand Z*“* in  be seen that including electrical parameters causes a large
fact describe the same electrical and topological strectuchange in the distribution of the degree centrality and the
of the power grid. It is, however, misleading to interpretigenvector centrality (see (a) and (b)). However, theceffe
Z%#s as something that reveals a structurally different “newbf electrical parameters is not so evident in the distriouti
topology with denser connections or with a different nodef the closeness and betweenness centrality (see (c), ¢d) an
degree distribution. (e)). Figure 3 displays the correlation between each pair

of topological and electrical centrality measures. It show

li.e., its node degree distribution does not have a ‘fat’ pelaw tail. that strong correlations exist between the electrical and

AU(l) = 20y

AU(k) = Z5%. (22)



Distribution of degree centrality
5
Lo

—C

0 C

dy

10" 10°

10° 10°

The normalized degree centrality

@)

R =0.039305

The electrical degree centrality Cdv(v)
.
5

107
The degree cel

©

Fig. 1.

10° 10”

ntrality C d(v)

Distribution of eigenvector centrality
5

e

0..C

ey

Yoo

10"

10° 107 10" 10°

The normalized eigenvector centrality

(b)

R =-0.0049471

The electrical eigenvector centrality Cev(\

10

107 10" 10°

The eigenvector centrality Ce(v)

(d)

R=0.7923

The electrical degree centrality CdY(v)

10°% 107 107 10°
The electrical eigenvector centrality CeY(v)

(€)

The Distribution of Centrality Measures and the Elation

Between Different Centrality Measures — the NYISO-2935t&ys (a)
degree centralityCy and Cy,,; (b) eigenvector centralityCe and Ce,, ;
(c) correlation betwee; andCy,, ; (d) correlation betweed. andCe,
(e) correlation betweety,, andCe,, .

TABLE |
THELISTOFNODES IN THENYISO-2935 & STEM THAT CARRY THE
MOSTSIGNIFICANT CENTRALITIES

ranking order Cy Ce Cay Cey
1 2773 2622 9 9
2 2622 2614 8 8
3 2516 2606 1312 15
4 2511 2619 17 17
5 2894 2605 15 11
6 2728 2613 234 12
7 2435 2608 233 84
8 2614 2601 12 29
9 2481 2610 11 27
10 2409 2609 1518 26

total centrality | 0.021471| 0.40277 | 0.22631| 0.99227

topological closeness centrality; and between the etzdtri

and topological betweenness centrality as well.
Table Il ranks the first 10 most important nodes in thdor a power grid that are based on its functionality rathanth

TABLE I
THELISTOFNODES IN THEIEEE-300 STEM THAT CARRY THE
MOSTSIGNIFICANT CENTRALITIES

ranking order Ce Cey Ce Cey
1 31 266 36 36
2 35 31 40 40
3 32 270 16 16
4 15 35 39 33
5 43 32 4 28
6 27 34 35 4
7 75 43 15 3
8 74 75 3 7
9 34 15 68 129
10 44 74 31 39
total centrality | 0.51401 | 0.99818 | 0.046687 | 0.046551

IEEE-300 system according to eigenvector centrality and
closeness centrality. The bottom row gives the total cen-
trality of each group of most important nodes. The same
concentration of the eigenvector centrality can be obskrve
here as is observed with the NYISO system. It is interesting
to notice that both the topological and electrical clossnes
centrality distribute very “flatly” among the nodes and the
groups of important nodes located by the pair have a 60%
overlap. Table Il ranks the first 10 most important nodes and
branches in the IEEE-300 system according to betweenness
centrality. The bottom row gives the total centrality of eac
group of most important nodes or branches. Similarly we
see that both the topological and electrical betweenness
centrality distribute quite “flatly” among the nodes or eslge
and each pair of centrality measures are very consisteht wit
each other. This indicates that the inclusion of electrical
parameters in the betweenness centrality does not cause
much difference in identifying the most important nodes
or branches. In fact there are 80% overlap between the
nodes groups and 70% overlap between the branch groups
respectively, according to the the topological and eleatri
betweenness measures. The reason for this strong consis-
tence in identification of most important components or the
strong correlations observed in the closeness or betwesnne
centrality distribution can be interpreted as follows: thot
closeness and betweenness centrality measures are defined
based on the shortest path count; the transmission network
of power grids is sparsely connected, therefore the shortes
path between any two nodes tends to include a large number
of hops (e.g., on average about 10 hops in the IEEE-300
system and 16 hops in the NYISO system); as a result the
differences among individual line impedances averagerout i
the evaluation of centrality measure based on the shortest
path count.

VI. CONCLUSIONS AND FUTURE WORKS

This paper investigates measures of centrality that are ap-
plicable to power grids. We define new measures of centrality
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THELIST OFNODES ANDBRANCHES IN THEIEEE-300 SYSTEM THAT

TABLE Il

CARRY THE MOSTSIGNIFICANT BETWEENNESSCENTRALITIES

ranking order |  Cy(v) | Gy, (v) Cyp(e) Cy, (e)
1 3 36 | 68—40 40—36
2 40 40 | 40—36 36—16
3 68 3 16—4 16—4
4 36 16 4 —3 4—3
5 16 4 129-3 68—40
6 31 68 | 129109 | 129-3
7 109 109 | 266—31 | 129-109
8 4 129 36—16 7—3
9 266 7 52—39 36—35
10 129 35 | 173-68 35-31

total centrality | 0.27490| 0.36570| 0.20520 0.29115

just its topology. More specifically, the coupling of thedyri
network can be expressed as the algebraic equation= I,

V)

e

S,

! R =0.33581 " R=0.45903

The electrical degree centrality Cdv(v)

1
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Fig. 3. The Correlation Between Different Centrality Me&su— the IEEE-
300 System: (a) degree centrality; and Cy,, ; (b) eigenvector centrality,
Ce andCe.y ; (c) closeness centrality,. andC., ; (d) vertex betweenness
centrality, C (v) and Cy, , (v); (e) edge betweenness centralify, (e) and
Cy,, (e).

defined not only by the connecting topology but also by its
electrical parameters and can be seen as a complex-weighted
Laplacian. We show that the relative importance analysis
based on centrality in graph theory can be performed on
power grid network with its electrical parameters takem int
account.

Based on defined centrality measures, we have performed
experiments on the NYISO-2935 system and the IEEE-
300 system and obtained some interesting discoveries on
the importance rank of the power grid nodes and lines.
It has been found that when the electrical parameters are
incorporated into the centrality definition, the distrilomt of
the degree centrality and the eigenvector centrality becom
very different from the original ones which are based on the
topological structure alone. With the electrical degrer-ce
trality and the electrical eigenvector centrality a largeoant
of centrality can reside in a small number of nodes in the
system and help locate of a quite different group of impdrtan

whereU andI represent the bus voltage and injected curremtodes. From the experimental results of IEEE-300 system, it
vectors; andY is the network admittance matrix which isis shown that the effect of including electrical parametsrs



not so evident in changing the distribution of the closenegss] E. Zio and R. Piccinelli, “Randomized flow model and eafity mea-

and betweenness centrality. And strong correlations exist sure for electrical power transmission network analysiefiability

. . . Engineering and System Safety, vol. 95, no. 4, pp. 379 — 385, Apr.
tween the electrical and topological closeness centralitg 2010.
between the electrical and topological betweenness digytra[17] R. Horn and C. JohnsorMatrix Analysis, chapter 8. Cambridge
as well. University Press, 1990.

. . 18] G. Sabidussi, “The centrality index of a graphPsychometrika,
Although the proposed electrical centrality measures can’! vol. 31, no. 4, pp. 581-603, gec 1966. grapisy

locate a quite different group of “important” nodes or veg8 [19] C. Dangalchev, “Residual closeness in networRyisica A, vol. 365,
in the system from the topological centrality measurej.% no. 2, pp. 556-564, 2006.

H d Vsi dto be d . d 0] L.C. Freeman, “A set of measures of centrality basedeiwbenness,”
owever, more tests and analysis need to be done in orderto’ gyometry, vol. 40, no. 1, pp. 35-41, 1977.

validate the proposed measures, to further understand thei
physical meaning, and to apply the findings to search for
ways of enhancing system robustness.
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