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Abstract— This paper investigates measures of centrality that
are applicable to power grids. Centrality measures are usedin
network science to rank the relative importance of nodes and
edges of a graph. Here we define new measures of centrality for
power grids that are based on its functionality. More specifically,
the coupling of the grid network can be expressed as the
algebraic equation Y U = I , where U and I represent the
vectors of complex bus voltage and injected current phasors;
and Y is the network admittance matrix which is defined not
only by the connecting topology but also by the network’s
electrical parameters and can be viewed as a complex-weighted
Laplacian. We show that the relative importance analysis based
on centrality in graph theory can be performed on power grid
network with its electrical parameters taken into account. In
the paper we experiment with the proposed electrical centrality
measures on the NYISO-2935 system and the IEEE 300-bus
system. We analyze the centrality distribution in order to
identify important nodes or branches in the system which are
of essential importance in terms of system vulnerability. We
also present and discuss a number of interesting discoveries
regarding the importance rank of power grid nodes and
branches.

I. INTRODUCTION

The electric power grid is one of the most critical in-
frastructures. The inter-connectivity of the power grid en-
ables long-distance transmission for more efficient system
operation; however, it also allows the propagation of dis-
turbances in the network. The non-decreasing frequency of
large cascading blackouts in the United States reveals the
existence of intrinsic weakness in the large electric power
grids. Studies on the power grid system structures and
vulnerability analysis have attracted many research efforts
in the past years (see [1] [2] [3] [4] [5] [6]).

It has been observed that the electric power grid network
has a distinct topology. In [7] Wang, Scaglione and Thomas
(2010) provided a systematic investigation of the topological
and electrical characteristics of power grid networks based
on both available real-world and synthetic power grid system
data. First, power grids have salient “small-world” properties,
since they feature much shorter average path length (in
hops) and much higher clustering coefficients than that of
Erdös-Ŕenyi random graphs with the same network size
and sparsity[8]. Second, their average node degree does not
scale as the network size increases, which indicates that
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power grids are more complex than small world graphs;
in particular, we know that the node degree distribution is
well fitted by a mixture distribution coming from the sum
of a truncated Geometric random variable and an irregular
Discrete random variable. [4] highlighted that the topology
robustness of a network is closely related to its node degree
distribution. [6] investigated the deviation of the node degree
distribution of power grids from a pure Geometric distribu-
tion and concluded that it substantially affects the topological
vulnerability of a network under intentional attacks. Thatis,
compared to a network with a pure Geometric node degree
distribution, the power grid appears to be more vulnerable
to intentional attacks when nodes with large degrees become
first targets of the attack. Another less explored but equally
important aspect that characterizes a power grid network is
its distribution of line impedances, whose magnitude exhibits
a heavy-tailed distribution, and is well fitted by a clipped
double-Pareto-logNormal (dPlN) distribution [7].

With recent advances in network analysis and graph theory
many researchers have applied centrality measures to com-
plex networks in order to study network properties and to
identify the most important elements of a network. Various
centrality measures have been defined and used to rank the
relative importance of nodes and edges in a graph. Girvan
and Newman (2002) investigated the property of community
structure in many types of networks in which network
nodes are joined together in tightly knit groups, between
which there are only looser connections [9]. They also
proposed a method for detecting such communities based on
a generalized centrality measure of “edge betweenness” and
experimented with the proposed algorithm on a collaboration
network and a food web network. Newman (2005) proposed
another centrality measure of vertex by net flow of random
walkers which does not flow along the shortest paths [10].
This centrality is known to be particularly useful for finding
vertices of high centrality that do not happen to lie on the
shortest paths and shown to have a strong correlation with
degree and betweenness centrality.

Hines, Blumsack, andet al. (2008, 2010) provided insights
on the topological and electrical structures of electrical
power grids, pointing out the differences of the topology
of power grids from that of Erd̈os-Ŕenyi random graphs,
Watts-Strogatz “small-world” networks, or “scale-free” net-
works (see [11][12]). They proposed an “electrical central-
ity measure” which is calculated based on the impedance
matrix Zbus and used their centrality measure to explain
why in power grids a few number of highly connected bus
failures can cause cascading effects, which was referred to



as “scale-free network” vulnerability. However, as we shown
in Section IV, the proposed electrical centrality measure
is an incorrect one and the corresponding analysis on the
vulnerability is misleading.

In [13] Rajashigh, Rajan, and Florence (2009) developed a
formula to compute the betweenness centrality for a regular
grid network. Torres and Anders (2009) discussed different
methods of graph theory, mainly the topology centralities,
for ranking the relative importance of substations in a power
grid and illustrated the procedure on a synthetic 5-node test
system [14]. In [15] Gorton, Huang, Jin, andet al. (2009)
proposed a new method for contingency selection based on
the concept of graph edge betweenness centrality which can
be used for the contingency analysis of large scale power
grids. In [16] Zio and Piccinelli (2010) improved the model
of power flow distribution in the power grid network. That
is, the flows are not concentrated only along the shortest
paths; instead, they are randomly distributed on all the paths
between nodes, as random walks. A centrality measure was
defined accordingly for the transmission network analysis
and was applied to the IEEE 14-bus system.

In this work we investigate the measures of centrality that
are applicable to power grids and their meanings. We define
new measures of centrality for a power grid that are based on
its functionality. More specifically, the coupling of the grid
network can be expressed as the algebraic equationY U = I,
whereU andI represent the bus voltage and injected current
vectors; andY is the network admittance matrix which
is defined not only by the connecting topology but also
its electrical parameters and can be viewed as a complex-
weighted Laplacian. A simple transformation allows us to
compute a weighted adjacency matrix from the weighted
Laplacian Y . Therefore, the relative importance analysis
based on centrality in graph theory can be performed on
power grid network with its electrical parameters taken into
account. In the paper we present and discuss some interesting
discoveries on the importance rank of the power grid nodes
and branches which are obtained from the experiments on
the NYISO system and the IEEE 300-bus system. It has been
found that when electrical parameters are incorporated into
the centrality definition, the distribution of some centrality
measures becomes very different from the original ones
which were based on the topological structure alone; and
with some proposed electrical centrality measures, a large
amount of system centrality can reside in a small number of
nodes in the system. These findings will help us to identify
the electrically critical components of the system for the
vulnerability analysis and to search for ways of enhancing
system robustness.

The rest of the paper is organized as follows: Section II
discusses the system model for power grid networks; Section
III examines the definitions of four widely-used centralities
and investigate how to extend the definitions to power grid
functionality; Section IV gives some probing discussion on
a previously proposed definition of electrical centrality and
point out its errors; Section V shows some experiments
results on the newly proposed centrality measures; and finally

Section VI concludes the paper.

II. SYSTEM MODEL

The power network dynamics are coupled by its network
equation

Y U = I, (1)

whereU andI represent the bus voltage and injected current
vectors; andY is the network admittance matrix which is
determined not only by the connecting topology but also its
electrical parameters. Given a network withn nodes andm
links (which may also be referred to as “buses and branches
(or lines) ” in power grid analysis; or “vertices and edges”
in graph theory and network analysis), each linkl = (s, t)
between nodess andt has a line impedancezpr(l) = r(l)+
jx(l), wherer(l) is the resistance andx(l) the reactance.
Usually for high-voltage transmission network,x(l) ≫ r(l),
i.e., its reactance dominates. The line admittance is obtained
from the inverse of its impedance, i.e.,

ypr(l) = g(l) + jb(l)
= 1/zpr(l)

(2)

Assume that a unit current flows along the linkl = (s, t)
from nodes to t; then the caused voltage difference between
the ends of the link equals∆u = U(s) − U(t) = zpr(l)
or equivalently∆u = 1/ypr(l). Thereforezpr(l) can be
interpreted as the “electrical” distance between nodes andt
andypr(l) reflects the “coupling” strength between the two
end nodes.

The line-node incidence matrix of the networkA, with
sizem × n, can be written as

A :







A(l, s) = 1
A(l, t) = −1
A(l, k) = 0 , with k 6= s or t.

(3)

The Laplacian matrixL of the network, with sizen × n,
can be obtained as

L = AT A (4)

with

L(s, t) =







−1, if there exists links − t, for t 6= s
k, with k = −

∑

t6=s L(s, t), for t = s

0, otherewise,
(5)

with s, t = 1, 2, · · · , n.
The network admittance matrixY of the network, with

sizen × n, can be obtained as

Y = AT diag(ypr)A (6)

whereypr is the line admittance vector. The entries inY are
as follows:














Y (s, t) = −ypr(s, t), link s − t exists, fort 6= s

Y (s, s) =
∑

t6=s

ypr(s, t), for t = s

Y (s, t) = 0, otherewise.
(7)

with s, t = 1, 2, · · · , n.



A close comparison of the matrix structures ofL andY
uncovers some interesting discoveries. It is known that the
Laplacian matrixL fully describes the topology of a network;
while the network admittance matrixY not only contains
information about the system topology but also information
about its electrical coupling. The off-diagonal entries of
Y , Y (s, t) equals the line admittance of the link between
node s and t (with a ‘−’ sign), whose magnitude reflects
the coupling strength between the two nodes. The diagonal
entries of the LaplacianL represent the total number of links
connecting each node with the rest of the network. Whereas a
diagonal entry ofY represents the total coupling capability
one node has with the rest of the network. Therefore the
network admittance matrixY can be viewed as a complex-
weighted Laplacian; and the LaplacianL can be equivalent
to a “flat” network admittance matrix, which assumes all the
links in the network have the same line impedance (with
a common proportional factor). These analogies are very
important in the sense that, as shown in the next section,
they will help extend the centrality measures which were
originally defined on a network topological structure to be
more appropriately defined on the electrical structure.

III. CENTRALITY DEFINITIONS AND
EXTENSIONS

Centrality measures are used in network science to rank
the relative importance of vertices and edges in a graph.
Within graph theory and network analysis, there are various
measures of the centrality of a vertex or an edge. In the
following subsections, we examine the definitions of four
widely used measures of centrality, i.e., degree centrality,
betweenness, closeness, and eigenvector centrality. Then
we discuss how to extend the definitions to corresponding
“electrical” measures of centrality for power grids.

A. Degree Centrality

The simplest centrality for a vertex is its node degree,
i.e. , the total number of edges incident upon a node. This
centrality represents the connectivity of a node to the rest
of the network and reflects the immediate chance for a node
to exert its influences to the rest of the network or to be
exposed to whatever is flowing through the network, such as
disturbances, shared information, power or traffic flows, or
even a virus. For a graphG := (V, E) wit n vertices, where
V represents the set of vertices andE the set of edges, given
its LaplacianL, the degree centrality of a vertex or nodev
is defined as

Cd(v) =
deg(v)

n − 1
=

L(v, v)

n − 1
, (8)

wheren − 1 is used as a normalization factor.
For a node in the power grid network, its connectivity

or “coupling” with the rest of the network is not only
related to how many links it connects but also related to
the connecting strength of each link; and the admittance
of each link just reflects this coupling strength. Therefore,
by using the analogy between the LaplacianL and the

network admittance matrixY , we define the electrical degree
centralityCdY

(v) as

CdY
(v) =

‖Y (v, v)‖

n − 1
. (9)

B. Eigenvector Centrality

Eigenvector centrality is a measure of the importance of
a node in a network according to its adjacency matrix.

Given a networkG := (V, E), its adjacency matrixA, one
eigenvalueλ, and the corresponding eigenvectorx satisfy

λx = Ax. (10)

The centrality of a nodev is defined as thev-th entry of the
eigenvectorx corresponding the largest eigenvalueλmax:

Ce(v) = xv =
1

λmax

n
∑

j=1

A(v, j)xj . (11)

Clearly the centrality of nodev is proportional to the sum of
the centralities of all its neighboring nodes. The definition
chooses the eigenvector corresponding to the largest eigen-
value λmax in order to guarantee all the centrality scores,
which are all the entries in the eigenvector, to be positive
(see Perron-Frobenius Theorem [17]).

As stated in Section II, the off-diagonal entries in the
network admittance matrixY can be viewed as the connec-
tivity strength between neighboring nodes in the network.
Therefore, just as we extract the adjacency matrix from the
Laplacian,A = −L + D(L), we can retrieve the complex-
weighted electrical adjacency matrix as

AY = −Y + D(Y ). (12)

whereD(·) represent the diagonal matrix retrieved from the
original matrix.

After performing the eigen-analysis ofAY , we take the
magnitude of the entries of the eigenvector as the centrality
measure.

CeY
(v) = ‖xv‖ = ‖

1

λmax

n
∑

j=1

AY (v, j)xj‖. (13)

C. Closeness Centrality

Compared to degree centrality, the definition of closeness
centrality is more sophisticated. It is the mean geodesic
distance (i.e., the shortest path length in hops) between a
vertexv and all the other vertices reachable from it:

Cc(v) =

∑

t∈V \v dG(v, t)

n − 1
, (14)

with dG(v, t) being the shortest path length between vertices
v andt. Obviously definition (14) in fact measures how “far
away” a node is from the rest of the network instead of
its closeness. Therefore some researchers define closenessto
be the reciprocal of this quantity, to make the name more
appropriate [18], that is

Cc(v) =
n − 1

∑

t∈V \v dG(v, t)
. (15)



The shortcoming of the definition of closeness centrality is
that it does not properly reflect how vulnerable is a network
to becoming disconnected. In fact, the shortest path length
dG(v, t) between verticesv and t turns out to be infinity if
the network is disconnected and there is not a path between
the two vertices. As a result the definitions of (14) and
(15) can only be applied to connected networks. In order
to incorporate the disconnectivity and to more conveniently
measure the network vulnerability, Danalchev modified in
[19] the definition of closeness to be:

Cc(v) =
∑

t∈V \v

2−dG(v,t). (16)

Because the power grid networks we are interested in are
connected topologies, undirected with neither multiple links
nor self-loops, definition (15) above is still suitable for our
purposes.

In all definitions above, the distance along a path from
vertex v to t is measured as in “hops”. That is,dG(v, t)
equals the total number of hops along the path:

dG(v, t) =
∑

(i,j)∈E∩path(v→t)

1. (17)

To adapt the definition of closeness centrality to nodes
in a power grid network, we define the “electrical distance”
between the nodes asdZ(v, t) which is counted in “electrical
hops” as

dZ(v, t) = ‖
∑

(i,j)∈E∩path(v→t)

Zpr(i, j)‖, (18)

where Zpr(i, j) is the line impedance of the link(i, j).
Therefore the corresponding closeness centrality based on
electrical distance is defined as

CcZ
(v) =

n − 1
∑

t∈V \v dZ(v, t)
, (19)

It is worth noting that the line impedanceZpr in a power
grid is a complex number, i.e.,Zpr = R + jX , whereR is
the resistance andX the reactance. Therefore the electrical
distancedZ(v, t) is in fact a complex number though one
could take the magnitude ofdZ(v, t) to make a more “real”
distance measure. According to the definition in (18), the line
impedance of each link is in fact used as the edge weight in
the search of the shortest path betweenv andt. However, this
will complicate the shortest-path search algorithm because
one can not compare or add up two complex-number weights
so straightforward as with real-number weights. On the other
hand, it is known that for the high-voltage transmission
network in a power grid the reactanceX is usually the
dominant component of a line impedance, whereasR only
takes a trivial value which in many cases can even be
neglected. Therefore for the purpose of simplicity, we can
only take the reactanceX as the edge weights and hence the
distance evaluation can be approximated by real numbers.

D. Vertex and Edge Betweenness Centrality

Vertex Betweenness is one of the most widely used
centrality measure. It was first suggested by Freeman (1977)
in [20]. This measure reflects the influence of a node over the
flow of information between other nodes, especially in cases
where information flow over a network primarily follows the
shortest available path.

Given a undirected graphG(V, E), the betweenness of a
nodev is defined as the number of shortest paths between
pairs of other vertices that run throughv:

Cb(v) =

∑

s6=v 6=t∈V

σst(v)/σst

(n − 1)(n − 2)/2
(20)

where σst the number of shortest paths froms to t and
σst(v) is the total number from the mentioned paths that
pass through vertexv.

In order to find which edges in a network are most between
other pairs of vertices, Girvan and Newman [9] generalize
Freemans betweenness centrality to edges and define the
edge betweenness of an edge as the number of shortest paths
between pairs of vertices that run along it. If there is more
than one shortest path between a pair of vertices, each path
is given equal weight such that the total weight of all of
the paths is unity. Note that the normalization factor of edge
betweenness is different from that of vertex betweenness.

Cb(e) =

∑

s6=t∈V

σst(e)/σst

n(n − 1)/2
(21)

Obviously, vertices or edges that occur on many shortest
paths have higher betweenness that those that do not. It
is found that removal of the nodes or edges with larger
betweenness will put the network at higher risk to become
disconnected.

Definitions (20) and (21) are based on the shortest path
counted in hops. Using the the shortest electrical path
counted in electrical hops as (18), we can define the electrical
betweenness for nodes and edges in power grid networks,
which are denoted asCbZ

(v) andCbZ
(e) respectively.

IV. SOME DISCUSSION ON THE ELECTRICAL
CENTRALITY PROPOSED IN [11]

Hines and Blumsack (2008) proposed an “electrical cen-
trality measure” which is calculated based on theZbus matrix
[11]. TheZbus matrix is the inverse of theY matrix, which,
unlike theY matrix, is a non-sparse (dense) matrix. That is,
Zbus = Y −1. This centrality measure has also been adopted
by other researchers [14].

The principle of assigning this centrality measure is re-
stated as follows (see [11][12]):

It was claimed that the equivalent electrical distance
between nodek and l is thus given by the magnitude of the
(k, l) entry in theZbus matrix. Smaller‖Zbus

k,l ‖ corresponds
to a shorter electrical distances and a stronger coupling
between these node hence a larger propensity for power to
flow between these nodes. From the non-zero off-diagonal



entries in theZbus matrix, select only the same number
of “links” (k, l) as that in Y , which have the shortest
electrical distances (corresponding to the entries with the
least‖Zbus

k,l ‖’s ). With these newly selected “links”, one has
a different “electrical” topology from the original network.
Then node degrees, counted on the newly formed electrical
topology, are defined as the electrical betweenness, or the
electrical degrees.

With further analysis based on the electrical degrees, it is
found that although a power grid topologically does not have
the properties of a scale-free network1; electrically, there
exist a number of highly-connected nodes in the electrical
topology (obtained fromZbus) similar to what would be ex-
pected from a scale-free network. That is, the electrical node
degree distribution has a “fat” tail. This finding, according
to [11], explains the relatively high vulnerability of power
grid to failures at some “hub” buses (i.e., intentional attacks
to high-degree nodes).

However, a deeper analysis of the impedance matrix
Zbus reveals that the definition of the electrical betweenness
(degree) and the corresponding analysis in [11] and [12]
are potentially misleading. The problem is that the entry of
the impedance matrix,Zbus

k,l , does not represent the mutual
electrical distance between nodek and l. In fact, from the
network equationU = ZbusI, we can learn the physical
meaning of the entry ofZbus

k,l : when only nodek has a unit
injected current, the voltage increases occurring at nodel
andk areZbus

k,l andZbus
k,k respectively. That is

∆U(l) = Zbus
k,l

∆U(k) = Zbus
k,k .

(22)

And usually ‖Zbus
k,k ‖ > ‖Zbus

k,l ‖, which means theZbus

matrix is diagonally dominant. Only ifZbus
k,l is close toZbus

k,k ,
which happens whenZbus

k,l has a relatively large magnitude,
does there exist a strong coupling between the two nodes.
Whereas the mutual electrical distance between nodek and
l equals the voltage difference caused by an injected unit
current at nodek and an output unit current from nodel.
That is

Zk↔l = Zbus
k,k + Zbus

l,l − 2Zbus
k,l , (23)

which also implies that a large entry ofZbus
k,l , not a small

one as shown in [11], gives a small mutual electrical distance
and a strong coupling between the two nodes.

On the other hand, for a connected power grid network
with grounding branches, its network admittance matrixY
is non-singular therefore the inverse ofY , which is Zbus,
exists. The network equationY U = I and U = ZbusI are
equivalent to each other. That is, the matricesY andZbus in
fact describe the same electrical and topological structure
of the power grid. It is, however, misleading to interpret
Zbus as something that reveals a structurally different “new”
topology with denser connections or with a different node
degree distribution.

1i.e., its node degree distribution does not have a ’fat’ power-law tail.

V. EXPERIMENT RESULTS

Based on defined centrality measures in Section III, we
perform experiments on the NYISO-2935 system and the
IEEE-300 system. The NYISO-2935 system is a repre-
sentation of the New York Independent System Operator’s
transmission network containing 2935 nodes and 6567 links,
with an average node degree〈k〉 = 4.47 and an average
shortest path length〈l〉 = 16.43 (in hops). The IEEE-300
system is a synthesized network from the New England
power system and has a topology with 300 nodes and 409
links, with 〈k〉 = 2.73 and 〈l〉 = 9.94 . We evaluate the
relative importance for the nodes and lines according to
different centrality measures and normalize the results to
make sure the sum of all the vertex or edge centralities in
a system equals 1.0. Then we analyze their distribution and
correlation, and identify the most “significant” nodes in each
system.

Figure 1 compares the distribution of degree centrality
and eigenvector centrality for the nodes in the NYISO sys-
tem; and shows the correlation between different centrality
measures. It can be seen that when electrical parameters are
incorporated into the centrality definition, the distribution of
the degree centrality and the eigenvector centrality become
very different from the original ones which are based on
the topological structure alone. The correlation between the
“topology” centralities and the corresponding electricalcen-
tralities is very weak. However, there is a strong correlation
between the two electrical centralitiesCdY

andCeY
.

Table I ranks the first 10 most important nodes in the
NYISO system according to different type of centrality
measures. The bottom row gives the total centrality of each
group of most important nodes. It shows that the degree
centrality distributes quite “flatly” among the nodes, because
the first 10 most important nodes sum only to 2% of system’s
total centrality. However, when the electrical parameter is
taken into account, a large amount of centrality can be
shifted into in a small number of nodes in the system,
e.g., the first 10 most important nodes based the electrical
eigenvector centrality take more than 99.2% of the system’s
total centrality. This reveals that the eigenvector centrality
vector is in fact a very sparse one. It also shows thatCdY

and
CeY

are kind of consistent with each other in the sense that
they are able to locate a very similar group of most important
nodes in the system (a 60% overlap) which however, is
quite different from the group identified by the topological
centralitiesCd andCe.

Figure 2 compares the distribution of different types of
centrality for the nodes in the IEEE-300 system. It can
be seen that including electrical parameters causes a large
change in the distribution of the degree centrality and the
eigenvector centrality (see (a) and (b)). However, the effect
of electrical parameters is not so evident in the distribution
of the closeness and betweenness centrality (see (c), (d) and
(e)). Figure 3 displays the correlation between each pair
of topological and electrical centrality measures. It shows
that strong correlations exist between the electrical and
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Fig. 1. The Distribution of Centrality Measures and the Correlation
Between Different Centrality Measures – the NYISO-2935 System: (a)
degree centrality,Cd and CdY

; (b) eigenvector centrality,Ce and CeY
;

(c) correlation betweenCd andCdY
; (d) correlation betweenCe andCeY

(e) correlation betweenCdY
andCeY

.

TABLE I

THE L IST OF NODES IN THENYISO-2935 SYSTEM THAT CARRY THE

MOST SIGNIFICANT CENTRALITIES

ranking order Cd Ce CdY
CeY

1 2773 2622 9 9

2 2622 2614 8 8

3 2516 2606 1312 15

4 2511 2619 17 17

5 2894 2605 15 11

6 2728 2613 234 12

7 2435 2608 233 84

8 2614 2601 12 29

9 2481 2610 11 27

10 2409 2609 1518 26

total centrality 0.021471 0.40277 0.22631 0.99227

topological closeness centrality; and between the electrical
and topological betweenness centrality as well.

Table II ranks the first 10 most important nodes in the

TABLE II

THE L IST OF NODES IN THE IEEE-300 SYSTEM THAT CARRY THE

MOST SIGNIFICANT CENTRALITIES

ranking order Ce CeY
Cc CcZ

1 31 266 36 36

2 35 31 40 40

3 32 270 16 16

4 15 35 39 33

5 43 32 4 28

6 27 34 35 4

7 75 43 15 3

8 74 75 3 7

9 34 15 68 129

10 44 74 31 39

total centrality 0.51401 0.99818 0.046687 0.046551

IEEE-300 system according to eigenvector centrality and
closeness centrality. The bottom row gives the total cen-
trality of each group of most important nodes. The same
concentration of the eigenvector centrality can be observed
here as is observed with the NYISO system. It is interesting
to notice that both the topological and electrical closeness
centrality distribute very “flatly” among the nodes and the
groups of important nodes located by the pair have a 60%
overlap. Table III ranks the first 10 most important nodes and
branches in the IEEE-300 system according to betweenness
centrality. The bottom row gives the total centrality of each
group of most important nodes or branches. Similarly we
see that both the topological and electrical betweenness
centrality distribute quite “flatly” among the nodes or edges
and each pair of centrality measures are very consistent with
each other. This indicates that the inclusion of electrical
parameters in the betweenness centrality does not cause
much difference in identifying the most important nodes
or branches. In fact there are 80% overlap between the
nodes groups and 70% overlap between the branch groups
respectively, according to the the topological and electrical
betweenness measures. The reason for this strong consis-
tence in identification of most important components or the
strong correlations observed in the closeness or betweenness
centrality distribution can be interpreted as follows: both
closeness and betweenness centrality measures are defined
based on the shortest path count; the transmission network
of power grids is sparsely connected, therefore the shortest
path between any two nodes tends to include a large number
of hops (e.g., on average about 10 hops in the IEEE-300
system and 16 hops in the NYISO system); as a result the
differences among individual line impedances average out in
the evaluation of centrality measure based on the shortest
path count.

VI. CONCLUSIONS AND FUTURE WORKS

This paper investigates measures of centrality that are ap-
plicable to power grids. We define new measures of centrality
for a power grid that are based on its functionality rather than
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Fig. 2. The Distribution of Centrality Measures – the IEEE-300 System: (a)
degree centrality,Cd andCdY

; (b) eigenvector centrality,Ce andCeY
; (c)

closeness centrality,Cc andCcZ
; (d) vertex betweenness centrality,Cb(v)

andCbZ
(v); (e) edge betweenness centrality,Cb(e) andCbZ

(e).

TABLE III

THE L IST OF NODES AND BRANCHES IN THE IEEE-300 SYSTEM THAT

CARRY THE MOST SIGNIFICANT BETWEENNESSCENTRALITIES

ranking order Cb(v) CbZ
(v) Cb(e) CbZ

(e)

1 3 36 68→40 40→36

2 40 40 40→36 36→16

3 68 3 16→4 16→4

4 36 16 4 →3 4→3

5 16 4 129→3 68→40

6 31 68 129→109 129→3

7 109 109 266→31 129→109

8 4 129 36→16 7→3

9 266 7 52→39 36→35

10 129 35 173→68 35→31

total centrality 0.27490 0.36570 0.20520 0.29115

just its topology. More specifically, the coupling of the grid
network can be expressed as the algebraic equationY U = I,
whereU andI represent the bus voltage and injected current
vectors; andY is the network admittance matrix which is
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Fig. 3. The Correlation Between Different Centrality Measures – the IEEE-
300 System: (a) degree centrality,Cd andCdY

; (b) eigenvector centrality,
Ce andCeY

; (c) closeness centrality,Cc andCcZ
; (d) vertex betweenness

centrality,Cb(v) andCbZ
(v); (e) edge betweenness centrality,Cb(e) and

CbZ
(e).

defined not only by the connecting topology but also by its
electrical parameters and can be seen as a complex-weighted
Laplacian. We show that the relative importance analysis
based on centrality in graph theory can be performed on
power grid network with its electrical parameters taken into
account.

Based on defined centrality measures, we have performed
experiments on the NYISO-2935 system and the IEEE-
300 system and obtained some interesting discoveries on
the importance rank of the power grid nodes and lines.
It has been found that when the electrical parameters are
incorporated into the centrality definition, the distribution of
the degree centrality and the eigenvector centrality become
very different from the original ones which are based on the
topological structure alone. With the electrical degree cen-
trality and the electrical eigenvector centrality a large amount
of centrality can reside in a small number of nodes in the
system and help locate of a quite different group of important
nodes. From the experimental results of IEEE-300 system, it
is shown that the effect of including electrical parametersis



not so evident in changing the distribution of the closeness
and betweenness centrality. And strong correlations existbe-
tween the electrical and topological closeness centrality; and
between the electrical and topological betweenness centrality
as well.

Although the proposed electrical centrality measures can
locate a quite different group of “important” nodes or vertices
in the system from the topological centrality measures.
However, more tests and analysis need to be done in order to
validate the proposed measures, to further understand their
physical meaning, and to apply the findings to search for
ways of enhancing system robustness.
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