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Amorphous chalcogenides have been extensively studied over the last half century due to their

application in rewritable optical data storage and in non-volatile phase change memory devices.

Yet, the nature of the observed non-ohmic conduction in these glasses is still under debate. In this

review, we consolidate and expand the current state of knowledge related to dc conduction in these

materials. An overview of the pertinent experimental data is followed by a review of the physics of

localized states that are peculiar to chalcogenide glasses. We then describe and evaluate twelve

relevant transport mechanisms with conductivities that depend exponentially on the electric field.

The discussed mechanisms include various forms of Poole-Frenkel ionization, Schottky emission,

hopping conduction, field-induced delocalization of tail states, space-charge-limited current, field

emission, percolation band conduction, and transport through crystalline inclusions. Most of the

candidates provide more or less satisfactory fits of the observed non-linear IV data. Our analysis

calls upon additional studies that would enable one to discriminate between the various alternative

models.VC 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4738746]
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I. INTRODUCTION

Chalcogenide materials have recently regained strong

interest due to their ability to repeatedly transform between

glassy (disordered) and crystalline (ordered) atomic struc-

tures. One application is the storage of digital data where 1s

and 0s are recorded as either glassy (high resistive and low-

reflective) or crystalline (low resistive and high reflective)

structures. For example, optical memory disks use laser light

to convert small portions of a thin chalcogenide film between

the high and low reflective states. On the other hand, phase

change memory (PCM) uses a voltage bias to convert the

material between the high and low resistive states. PCM

stores data in a smaller area and with higher speeds for both

read and write processes than the optical memory disks.

PCM is an emerging nonvolatile memory technology

with the capability of random access memory, it is some-

times referred as unified memory. Applications explored for

this technology span from wireless, embedded systems1 to

solid state storage,2 automotive,3 and space applications.4

Most recently, usage of PCM in computer applications was

suggested as storage class memory (SCM).5

Large, up to 1 gigabyte, memory arrays with PCM ele-

ments have been demonstrated for 180 nm,6 90 nm,7,8 and

45 nm (Ref. 9) technology nodes. In PCM, each individual

element is in series with an access/selector device. Botha)Electronic mail: marcon@bgsu.edu.

0021-8979/2012/112(7)/071101/20/$30.00 VC 2012 American Institute of Physics112, 071101-1
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MOS-based6 and bipolar junction transistor/diode-based8

selectors have been integrated with PCM. Recently, PCM was

integrated with a chalcogenide based thin film selector to form

arrays,10 opening a path for 3D stackable cross point phase

change memory.11

The operation of PCM depends on charge transport in

their constituent inclusions of chalcogenide glasses. When the

device is in the reset state, the electrical conduction can be

non-ohmic under practical voltages and temperatures. This

non-ohmicity provides a way of supplying energy to the de-

vice faster than ohmic conduction and it needs to be properly

understood in order to improve future device parameters.

The goal of this focused review is to recall the established

physics of chalcogenide glasses and convey a broad picture of

different mechanisms that are relevant to the problem of non-

ohmic conduction in these materials. Ultimately, we provide a

starting point for the additional studies that are required to

better understand charge transport in PCM glasses.

The commonly observed nonlinear current-voltage (IV)

characteristics (above �103 � 104 V=cm) are often attrib-

uted to the Poole-Frenkel (PF) effect after the classical

work13–15 suggesting their plausible interpretation. An exper-

imental signature of PF conduction is a region of linearity in

the plot of lnðI=I0Þ vs. either
ffiffiffiffi

V
p

or V where I0 is the pre-

exponential factor. The underlying mechanism is commonly

related to the field-induced increase in free carrier concentra-

tion, as reflected in Refs. 16–23 (except Ref. 24 which pro-

poses hopping conduction).

Although there is general agreement about the observed

PF-type of non-ohmicity and the fact that I0 / expð�Ea=kTÞ,
where Ea is the activation energy, k is the Boltzmann con-

stant, and T is temperature, particular features observed and

especially their interpretations vary dramatically between

researchers. We note, for example, that Refs. 16–19 and 23

present their observed non-ohmicity as lnðI=I0Þ /
ffiffiffiffi

V
p

, while

Refs. 20, 22, and 24–28 describe their observations as

lnðI=I0Þ / V. Furthermore, some of the latter results25,28 point

at two different domains in the IV data which exhibit different

proportionality coefficients and temperature dependencies.

In this review, we frame what is known about dc conduc-

tion in chalcogenide glasses, indicate shortcomings in our cur-

rent state of understanding, and suggest avenues for further

investigation. We begin with a brief overview of the pertinent

experimental data to provide some context for the key obser-

vations. That is followed by a review of the physics of local-

ized states, which underlies the unique properties of

chalcogenide glasses. Then we provide a survey of conduction

mechanisms that may explain the observed non-ohmic IV

data, including: (1) the original Poole-Frenkel mechanism; (2)

Schottky decrease in interfacial barrier near device electrodes;

(3) field-induced delocalization of shallow band tail states

near the mobility edges; (4) space charge limited (injection)

currents; and (5) field effects in hopping conduction. Here, we

discuss these and some other possible mechanisms of dc con-

duction in chalcogenide glasses including bulk materials and

thin films down to the nanometer scale. Finally, we provide a

summary of the candidate mechanisms and discuss their valid-

ity and implications, along with new indicative facts that are

required to further evaluate these mechanisms.

II. EXPERIMENTAL DATA: A BRIEF OVERVIEW

The interpretation of experimental data related to dc

conduction in amorphous chalcogenides must consider fabri-

cation technology, whether the sample is amorphous or vitre-

ous in nature, cell geometry, and other factors. These

materials have been intensely investigated over the past half

century, but in this brief overview we present only some rep-

resentative results for bulk and thin glassy chalcogenides

with various compositions, including the typical composition

of Ge2Sb2Te5 (GST) for modern PCM devices.

Certain universal features can be cited for amorphous

chalcogenides, including the thermally activated conductivity

r / expð�Ea=kTÞ, positive thermopower indicative of p-type

conduction, and negative Hall coefficient.12 In magnitude, the

activation energy for conduction, Ea, is close to half the mo-

bility gap and can range from 0.3 to 1 eV, with a typical value

of Ea � 0:37 eV for modern PCM devices under low bias.29

Hopping conductivity with its classic temperature depend-

ence, r / exp½ð�T0=TÞ1=4�, is generally not observed, with

the exception30 of some unannealed, sputtered films.

Historically,31 the study of bulk chalcogenide glasses

revealed dc conductivity described by r / expðF=F0Þ for

fields up to F � 1� 4� 105 V=cm, above which there was

a steep increase in the field dependence. Typically, there

was also an ohmic region observed at fields below

103 � 104 V=cm; that transition field was found to increase

linearly with thickness.28 In some cases, usually below

room temperature, two distinct exponential regimes were

observed: a lower field region with lnr / ðF=F01Þ followed
by a steeper region with lnr / ðF=F02Þ.28,32,33 The slopes

F01 and F02 had opposite temperature dependencies and F01

was independent of sample thickness while F02 increased

linearly with thickness (indicative of space charge limited

current, as discussed in Sec. IVD). Near and above room

temperature, only the lesser slope F01 was observed and the

conductivity and slope were found to be independent of

thickness in the range34 10 lm to 1mm and also in the

range33 of 0.2 to 1.1 lm.

The work in Ref. 24 investigated subthreshold dc con-

duction in modern GST PCM devices with thicknesses on

the order of 100 nm and over a temperature range of 25 to

85 �C. Cell geometries included lance (vertical with

“hemispherical” amorphous dome) and ltrench35 configura-

tions. An ohmic regime was observed in the IV data at

applied voltages Va < 0:3 V (or fields F. 3� 104 V=cm),

followed by an apparent exponential dependence of lnI / V.

In the non-ohmic region, the activation energy was found to

decrease linearly from 0.35 to 0.28 eV with increasing volt-

age. At yet higher voltages of 0.8 to 1V, the slopes of the lnI

vs. V curves were found to be inversely proportional to tem-

perature. These IV characteristics and temperature depend-

encies were corroborated in Ref. 22 for 100 nm thick

amorphous GST films (and other compositions).

In contrast to the above results, a recent study23 of GST

PCM lance devices in the reset state, with thicknesses of less

than 50 nm, presented IV data that were best described by

lnI /
ffiffiffiffi

V
p

. An ohmic region was not observed but we note,

however, that for such thin devices a field of 104V/cm

071101-2 Nardone et al. J. Appl. Phys. 112, 071101 (2012)
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corresponds to an applied voltage of 0.05V, below which

data was not presented; hence, the low field region may not

have been studied. Results of other work17 for as-deposited

amorphous GST films with thicknesses of 20 to 100 nm

showed the same
ffiffiffiffi

V
p

dependence at fields of F > 104 V=cm
and an ohmic regime for lower fields. The slope of the lnI

vs.
ffiffiffiffi

V
p

curves increased slightly with temperature in the

range 295 to 323K (opposite to the above discussed results

in Ref. 24). The IV data in both Refs. 17 and 23 show a

stronger field dependence near the threshold field.

A systematic investigation of thickness-dependent

effects in thin glassy films was reported in Ref. 19. Low-

field ohmic and a high-field non-ohmic lnI vs.
ffiffiffiffiffiffiffiffiffiffiffi

F=F0

p

regions were observed in IV data over a temperature range

of 130 to 373K and a thickness range of 130 to 600 nm for

various compositions of GeBiSbS alloys. The measured cur-

rent showed only a weak dependence on sample thickness

and the slope, F0, was thickness independent.

More recently,36 a nonlinear relationship between low-

field resistance and thickness was reported for ltrench GST

PCM cells with amorphous GST thicknesses between 8 and

35 nm. However, the different thicknesses, which were

obtained by varying the reset pulse, were calculated from the

IV data by assuming the correctness of a modified Poole-

Frenkel conduction mechanism.37 The reported thickness

dependencies do not account for the possible leakiness of

such thin samples. That data are further discussed in Sec. V

below.

In summary, as shown in Fig. 1, the experimental data

suggest that there are three major field-dependent regimes:

(1) an ohmic region at low field F. 103 � 104 V=cm (which

can also be the start of a subsequent non-ohmic dependence);

(2) an exponentially field-dependent regime (possibly two

distinct relations depending on temperature and thickness),

with lnI / V or /
ffiffiffiffi

V
p

behavior, or some combination

thereof; and (3) a stronger field dependence, possibly

lnI / V2, near the threshold field. The ohmic region may not

be observed for very thin devices (e.g., thickness less than

100 nm), since the transition field is directly proportional to

the thickness. There is evidence that the activation energy

decreases linearly with increasing voltage in the intermediate

field region. In general, the conductivity at or above room

temperature appears to be nearly thickness independent, at

least down to 100 nm.

III. ELECTRONIC STATES IN CHALCOGENIDE
GLASSES

In this section, we recall the unique nature of charge

transport in amorphous materials and the peculiar features of

localized states in chalcogenide glasses. The electronic struc-

ture of disordered systems is inherently different than crys-

talline materials. The most important distinctive property of

disordered materials is the short mean free path l that can be

as small as the minimum quantum limit defined by kl& 1,

where k is the wavenumber. The strong scattering is due to

intrinsic imperfections and random fluctuations of the poten-

tial energy.12

Since scattering in the disordered system is strong

enough, kl � 1, the electronic wavefunction is effectively

“localized” to exist within a span of its wavelength. The

celebrated work38 by Anderson in 1958 showed that random

fluctuations in local site energies can create these localized

states from which the wavefunctions fall off exponentially

with distance. Although these states share many similarities

with traps in crystalline materials, the unique feature is that

in amorphous materials there can be continuous distributions

of such states that remain localized even if neighboring

wavefunctions overlap. As a result, with sufficient disorder

all diffusive transport can cease (except for thermal activa-

tion) and the conductivity will tend to zero at the zero of

temperature even if localized states exist at the Fermi energy.

The possibility of thermal activation facilitates hopping dif-

fusion via localized states. The corresponding hopping con-

duction can be efficient enough to dominate over the band

transport in such materials as a-Si and a-Ge. However, it is

significantly suppressed in chalcogenide glasses due to a

very unique nature of their localized states as explained next.

Within a broader scope, deviations from structural perio-

dicity smear out the sharp energy bands into smooth transi-

tions between localized and non-localized states that are

separated by a distinct energy level, referred to as the mobil-

ity edge.12 Furthermore, a disorder and structural defects

(such as dangling bonds) can lead to a continuous localized

energy spectrum in the mobility gap and a finite density of

states (DOS) at the Fermi energy (see Figs. 5 and 9). While

that is true of any amorphous structure, the uniqueness of

glassy semiconductors stems from the “softness” of the

atomic lattice, wherein the local atomic configuration can

change significantly depending on the occupation number of

the localized state. Hence, one must consider the consequen-

ces of electron-lattice interactions due to strong polaron

effects, which, in particular, can significantly suppress the

hopping transport. A summary of the observed phenomena

and corresponding theoretical explanations that are relevant

to our discussion of conduction mechanisms are provided

next.

FIG. 1. Three regions in the IV characteristic of an unspecified chalcoge-

nide PCM device that is representative of the results discussed in the experi-

mental overview. The low-field region is usually described as ohmic, but in

some cases of thin samples it is described as lnI / V. The intermediate

region has exponential dependence described as either lnI / V and/or

/
ffiffiffiffi

V
p

. Near and below room temperature, two slopes are often observed in

the intermediate region. The high field region corresponds to a stronger de-

pendence, possibly lnI / V2.

071101-3 Nardone et al. J. Appl. Phys. 112, 071101 (2012)
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A. Conflicting observations

Thorough reviews of experimental data related to elec-

tronic transitions in chalcogenide glasses can be found in

Ref. 12, with more limited reviews given later in Refs. 40

and 41. Here we summarize some of the results that are perti-

nent to charge transport and the significance of localized

electronic states.

Beyond the specific observations cited in Sec. II, experi-

mental data on the various electronic properties of chalcoge-

nide glasses can be broken into two groups, one of which

testifies in favor of a high DOS in the mobility gap, while

another states the opposite. To explain the data that suggests

the high DOS, we consider the band diagrams shown in Fig.

2, which assume the standard one-electron localized states

associated with all energy levels in the mobility gap. In the

top left diagram, the localized states can provide efficient

screening of an external electric field (shown as the tilted

band edges) by redistributing the localized electrons in such

a way as to form a screening dipole layer. The left bottom

diagram illustrates another property of this system: strong

electron spin resonance (ESR) associated with the states in

the vicinity of the Fermi level occupied by single electrons

whose spins can be aligned with the external magnetic field

(electron states well beyond the Fermi level can be occupied

by pairs of electrons with opposite spins that do not contrib-

ute to ESR). The dashed arrows in the top right diagram

show the transitions corresponding to a considerable (propor-

tional to the high density of localized electron states) optical

absorption for the photon energies �hx smaller than the mo-

bility gap G. Finally, the bottom right diagram illustrates

hopping conduction via localized states close to the Fermi

level. All the above phenomena—strong screening and ESR,

noticeable absorption at �hx < G, and hopping—are

observed in the tetrahedral amorphous semiconductors a-Si

and a-Ge, for which the model of a high DOS of one-

electron localized states in the mobility gap then appears

fully adequate and comfortably self-consistent.

The conflicts arise when the above model is applied to

chalcogenide glasses. It was observed that similar to a-Si,

strong screening of the electrostatic field takes place, thus

testifying in favor of a high DOS in the mobility gap (top left

diagram in Fig. 2). On the other hand, the ESR signal is prac-

tically absent, thereby challenging the illustration in the left

bottom diagram and shedding doubt on the presence of local-

ized states in the mobility gap. However, a strong ESR signal

can be induced by well-absorbed light; this photo-ESR is

consistent with the hypothesis of a high DOS in the mobility

gap. The optical transitions shown with dashed arrows in the

top right diagram were not observed, suggesting that there

may be no states in the gap. Instead, the transitions shown

with solid arrows were observed, one of which corresponds

to the interband absorption (not requiring localized states),

while another one, downward, represents photoluminescence

(PL) with energies around �hx ¼ G=2. The latter implies a

high concentration of localized states close to the Fermi

level. Finally, as opposed to the case of a-Si, no hopping

conduction was observed in chalcogenide glasses,12 testify-

ing against the model of a high DOS in the gap.

As a result, the group of observations against a high con-

centration of localized states includes: lack of ESR signal,

absence of hopping conduction, optical gap G0 approxi-

mately equal to the mobility gap G, and relatively low

absorption of photons with energy less than G. On the other

hand, the group in favor of a high concentration of localized

states includes: strong photoinduced ESR corresponding to

the electron concentration . 1020 cm–3, photoluminescence

with energy close to G=2, dc screening length revealing a

DOS at the Fermi level of 1018 � 1019 cm–3eV–1, strong pin-

ning of the Fermi level close to the mid gap, photoinduced

mid-gap absorption, and photoinduced change in the mid-

gap photoluminescence. The spectroscopic aspects of these

facts are illustrated in Fig. 3.

B. The negative-U model and soft atomic potentials

A solution to the above controversy was proposed by

Anderson39 who put forward the concept of negative-U (neg-

ative Hubbard or negative correlation) energy which implies

that two identical charge carriers localized at the same center

FIG. 2. Sketches of physical processes associated with the one-electron

localized states model. Top left: screening in the presence of an applied field

due to redistribution of localized electrons to form a dipole. Bottom left:

unpaired electrons near the Fermi level (dashed-dotted line) produce a strong

ESR signal. Top right: optical absorption of photon energies less then

(dashed arrows) and greater than (solid upward arrow) the gap, and photolu-

minescence (downward arrow) possible at mid-gap energies—solid arrows

show what is observed in chalcogenide glasses. Bottom right: hopping con-

duction via states near the Fermi level. The one-electron localized states

model cannot consistently account for the data on chalcogenide glasses.

FIG. 3. Sketch of the typical spectroscopic data in chalcogenide glasses:

PA, PL, efficiency of photoluminescence excitation (EPLE), PIPL enhance-

ment, and PIPA vs. photon energy h�. G0 is the optical gap. All the curves

except PA are plotted against the left vertical axis.

071101-4 Nardone et al. J. Appl. Phys. 112, 071101 (2012)
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will attract, in spite of the Coulomb repulsion. As a result,

double occupancy of a localized state becomes energetically

more favorable than single occupancy of two localized

states, such that the equilibrium occupation is n ¼ 2 (elec-

trons or holes), while n ¼ 1 can only exist as an excited

state. The conceptual leap of the negative-U model in chal-

cogenide glasses is that electronic-lattice interaction can be

so strong that the energy is minimized when a localized state

is double occupied and surrounded by a self-consistent cloud

of lattice deformation.

Since the negative-U model favors two-electron states,

it obviously explains the inadequacy of the one-electron

model to account for the conflicting observations. For exam-

ple, the lack of ESR in spite of a high concentration of local-

ized states is due to the fact that the states near the Fermi

level are doubly occupied. The photoinduced effects become

attributable to the non-equilibrium, single-occupancy states

excited by higher energy photons. The rest of the above

listed observations can be understood when the nature of the

negative-U energy is specified as being related to an abnor-

mally strong electron-lattice interaction for localized charged

carriers.

The energy of n ¼ 0; 1; 2 localized carriers is described

as

EnðxÞ ¼ nE0 þ kx2=2� nQxþ Ucdn;2; (1)

where E0 is the bare energy of the center, x is the lattice de-

formation around the center, k is the corresponding spring

constant, Q is the deformation potential for the localized car-

riers, and Uc is the Coulomb repulsion energy applicable

when n ¼ 2. The dependencies in Eq. (1) are illustrated in

Fig. 4. It should be understood that the bare energy levels E0

are always present as unoccupied states near the mobility

edge while states E1 and E2 are created by the lattice defor-

mation that occurs when a bare energy level becomes occu-

pied. Therefore, states E1 and E2 do not exist in and of

themselves but, rather, they are modified versions of the E0

state.

The equilibrium energies are given by the equation,

En ¼ nE0 � n2wþ Ucdn;2 with w � Q2

2k
; (2)

where w is called the polaron shift which quantifies the

strength of electron-lattice interactions. From Eq. (2), the

correlation energy is given by

U � E2 � 2E1 ¼ �2wþ Uc: (3)

The postulated negative value of the correlation energy cor-

responds to a strong polaron effect with w > Uc=2.
By the Franck-Condon principle, the characteristic

energy of the absorbed light in Fig. 4 is jE2j while that of

emission (PL) and photo-induced absorption is 2jE1j, and,
assuming Uc relatively small, jE2j � 4jE1j, consistent with
the data in Fig. 3. These transitions are shown in Fig. 5 with

respect to the mobility gap. Note a significant Stokes shift

(difference between the absorbed and emitted energies)

approximately equal G=2 caused by the strong electron-

lattice interaction. Comparing Figs. 3, 4, and 5, enables one

to estimate w � G=4 (although w can be somewhat different

for the cases of electrons and holes12). Also, note that ther-

mal and optical transitions correspond to different positions

of the energy levels in the mobility gap (see Fig. 5). The rea-

son for this difference is that optical transitions occur at rates

that are too rapid for lattice deformations to occur while ther-

mal transitions allow sufficient time for the lattice to relax,

resulting in a change of the energy level before the transition

occurs. These differences illustrate the importance of

electron-lattice interactions and how the deformations affect

the properties of glasses.

Drawing similar energy levels for holes and allowing for

some dispersion leads to the right diagram in Fig. 5 that

explains how the Fermi level is pinned by a high concentra-

tion of 2e and 2h states, forming a gapless spectrum of two-

particle excitations. In addition to the pinning (2e, 2h) states,

shown in the same diagram are band tails possessing the

characteristic decay scales on the order of several hundredths

FIG. 4. Energies of n localized charge carriers vs. the local lattice deforma-

tion x. The upward solid arrows represent absorption and the downward

solid arrows represent photoluminescence processes; the dashed arrow indi-

cates photoinduced photoabsorption from the nonequilibrium n ¼ 1 state. E1

and E2 represent the equilibrium energies for n ¼ 1 and n ¼ 2 localized car-

riers. w is the polaron shift and Uc is assumed to be relatively small.

FIG. 5. Left: one-particle energy levels (i.e., energy per particle) corre-

sponding to n ¼ 2 and n ¼ 1 electrons in the mobility gap. The levels with-

out electrons represent the bare energy. Solid and dashed lines indicate

thermodynamic and optical energy levels, respectively. The dashed electron

level close to the valence band edge represents the energy needed to opti-

cally ionize the 2e state (solid upward arrow); the solid level close to the

midgap represents the energy needed to thermally ionize the same 2e state.

The arrows have the same meaning as in Fig. 4. Right: density of the 2-

electron (ge) and 2-hole (gh) states vs. their one-particle energies where

negative-U centres near the Fermi level provide its pinning.
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of eV. They can contribute to optical absorption and act as

shallow traps underlying dispersive transport and other phe-

nomena.40 As shown in Fig. 5, the one-particle excited states

1e and 1h are obtained through the partial ionization of (2e,

2h). Possessing energies of approximately w ¼ G=4 from the

corresponding mobility edges, they can affect transport

phenomena.41

C. The nature of negative-U phenomenon

The microscopic nature of negative-U centers is not par-

ticularly important for the purposes of this work; here we

limit ourselves to a brief comment on the subject. We note

that the negative-U phenomenon can be simply illustrated in

terms of a mechanical analogy with two electrically charged

balls, each of weight Q, that can be attached to either two

different elastic springs or one such spring, as depicted in

Fig. 6. The spring elongations represent lattice deformations

and the potential energy of the springs is related to the po-

laron shift w. The scenario with two charged balls on one

spring turns out to be energetically favorable when

w > Uc=2. A related generic interpretation of pairing in

terms of the number of electrons occupying a dangling bond,

as shown in the bottom row of Fig. 6, does not explicitly

show the lattice deformation.

Street and Mott42 proposed a microscopic model where

2e and 2h states correspond to certain defect states (D� and

Dþ), while 1e and 1h is the same dangling bond (D0). Kast-

ner et al. and Kastner and Fritzsche43 introduced more spe-

cific consideration taking into account the chemical nature of

chalcogenide forming atoms; in their popular notation D�

and Dþ are represented as C1� and C3þ where the super-

script indices refer to defect coordination numbers. We note

that conceptually similar models of structural defects in chal-

cogenide glasses continue to be proposed up to this day,44

without much attention to the anomalous polaron shift under-

lying the observed gigantic difference between the energies

of absorption and emission.

Later work40,45–47 emphasized that a theoretical descrip-

tion of the negative-U must explain the observed strong

Stokes shift and, hence, the underlying significant polaron

shift w. The required shift was attributed to centers with

abnormally small spring constants k (soft atomic potentials)

that exist in glasses due to their inherent structural disorder.

Qualitatively speaking, the soft atomic potentials represent

small pockets of a very soft liquid-like phase arrested during

the vitrification process in the macroscopically solidified

glassy structure. Because they are abnormally soft, these

small inclusions interact abnormally strong with the charge

carriers giving rise to the abnormally large polaron shifts.

The random nature of a glass structure implies that the

local spring constants are continuously distributed as illus-

trated in Fig. 7. Correspondingly, there exists a continuous

distribution of local polaron shifts w including those respon-

sible for the states in the proximity of the Fermi level. In par-

ticular, the polaron shift w � G=4 implies the spring

constant kG � hkið2hwi=GÞ 	 hki where hwi. 0:1 eV is

the average polaron shift corresponding to the average spring

constant hki which describes the macroscopic properties of

glasses. We note that the same concept of soft atomic poten-

tials has successfully explained the presence of atomic dou-

ble well potentials (DWP) and localized quasiharmonic local

vibrations in glasses.46–48

A comment is in order regarding the region of very

small spring constants, k, which may seem to result in the

infinitely large polaron shifts capable of localizing many

(n > 2) charge carriers in the same microscopic region. It

should be understood in this connection that for small

enough k, the harmonic approximation for atomic potential

fails and anharmonic terms become important. In fact, the

soft atomic potentials are described by the expression,40,45–47

VðxÞ ¼ kx2

2
þ Bx3 þ Cx4; (4)

where k and B are random quantities much smaller than their

average values, while C is about its average (finding all the

parameters noticeably off their respective average values

would be extremely unlikely). It follows that the harmonic

approximation is limited to k > kh � ð2Q2CÞ1=3. For lower
k, the anharmonic term Cx4 would govern the electron auto-

localization, and for k 	 kh, the term kx2=2 in Eq. (1) should

be replaced with Cx4, which results in the maximum polaron

shift wmax � 0:5ðQ4=CÞ1=3 not strong enough to allow the

many carrier localization.

FIG. 6. Mechanical analogy of the negative-U effect consisting of two elas-

tic springs and two charged balls that can be attached to the springs either

separately or together (top row) and its simple model based on the valence

bonds representation (bottom row) where two electrons can occupy the

states of two broken bonds or one dangling bond. The right column is ener-

getically more favorable when w > Uc=2.

FIG. 7. Probabilistic distribution of the local spring constants in a glass.

The gull-wing singularity at the origin (not particularly important in this

context) reflects the instability of very soft potentials with respect to small

perturbations.47
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An important conceptual difference between the “defect

models”42,43 and that of soft atomic potentials40,45–47 is that

the latter concentrates on the gigantic polaron shift that

underlies the negative-U phenomenon, while the “defect

models” explain negative-U by means of specific defect elec-

tronic orbitals, leaving the observed gigantic Stokes’ shift as

an additional (postulated) property beyond that explanation.

However, the existence of gigantic polaron shift already

explains the negative-U phenomenon [see Eq. (3)], making

the “defect models” excessive.

Another important feature of the soft-atomic-potential

approach is that it deals with a continuous distribution of

spring constants k having a tail down to kG 	 hki, as illus-
trated in Fig. 7. Correspondingly, it assumes a considerable

concentration of localized states between the mobility edges

and the Fermi level for which the polaron effect is greater

than the average but not as strong as required by the condi-

tion U < 0. Such states can show up under significant illumi-

nation by localizing unpaired electrons and holes, which can

explain the observed photo-induced ESR, as well as the fea-

tures of photoinduced PL (PIPL) and photoinduced photoab-

sorption (PIPA) in Fig. 3.

D. Electronic transitions with negative-U centers

It should be remembered that the 2e and 2h gapless exci-

tations typically have extremely long relaxation times related

to the necessity of carrying a heavy polaron cloud (i.e.,

atomic deformation) in the course of electron transitions.

Here we will describe such slow transitions in terms of elec-

tronic DWP with a transition barrier WB related to the po-

laron shift. The two minima of such a DWP will correspond

to the charge states (0,0) and (2e, 2h) of two centers with

energies close to the Fermi level. Another term for DWP is

“two-level-system” (TLS).

To estimate the barrier height WB for the electronic

DWP, we consider in more detail the process of transforma-

tion from the (0,0) to (2e, 2h) state of the two centers. We start

with the (0,0) state, taking 2 electrons from the valence band

up to conduction band which requires the energy loss of 2G.

Placing them and the remaining two holes at their respective

bare levels (very close to the band edges, see Fig. 5) results in

a rather insignificant energy gain which we neglect here.

Finally, letting the lattice locally deform will deepen the (one-

particle) energies at the centers by � G=2 and, when multi-

plied by the N¼ 4 carriers involved, this leads to the energy

gain of 2G. Overall, the total energy change is zero, while the

maximum energy increase in the course of transition was

WB ¼ 2G, which we identify with the DWP barrier height.

The rather large barrier of WB ¼ 2G exponentially

reduces the electron transition rate since it is proportional to

expð�2G=kTÞ. Physically, the latter exponential is attribut-

able to the low probability for thermal fluctuations to create

the strong lattice deformations (polaron cloud) that must

accompany such electronic transitions (we do not discuss

here the low temperature effects that are governed by the

zero point vibration energies instead of kT).

Hence, although there exists a high density of localized

states near the Fermi level, hopping between those states is

extremely doubtful due to the above described deformation

related transition barrier WB � 2G (first estimated by Phil-

lips49). The barrier is high enough to fully suppress dc hop-

ping conduction that could occur through electron hopping

between centers separated by distances on the order of the

average inter-center distance.12 Assuming for specificity

2G � 1:6 eV for the case of GST glasses and implementing

the standard estimates12 yields the multiplier expð�2G=kTÞ
� 10�27. This predicts hopping conduction many orders of

magnitude below what is observed in the non-glassy semi-

conductors (such as a-Si).

From another perspective, we note that if hopping con-

duction did occur in chalcogenide glasses it would have to

proceed through the above described excitations which occur

within the mobility gap via the negative-U centers near the

Fermi level with their associated lattice deformations. On the

other hand, band conduction is an interband mechanism

which forgoes the restrictive lattice deformation process.

Therefore, the conductivity for band conduction retains the

thermally activated factor expð�G=kTÞ.
Because the strong polaron effect suppresses dc hopping

conduction down to insignificant values, it is worth explain-

ing here the difference between that effect and the known

phenomenon of small polaron transport in some

materials.50–52 The latter phenomenon implies materials with

translational symmetry, in which no defects are required to

create the self-trapped state of an electron in a strongly

deformed or polarized lattice; such a state is called polaron.

Because of the translational symmetry, polarons must have

the ability to move in a system without energy dissipation.

This is achieved through the coherent dynamics of the elec-

tron and its surrounding deformation. This results in band

polaron transport where the polaron bandwidth is exponen-

tially reduced (compared to that of bare electrons) by the

probability of coherent lattice translation. In covalent sys-

tems with relatively small degree of ionicity, characteristic

of chalcogenide glasses, the prevailing mode of electron-

lattice interaction is the lattice deformation in the form of

local increase or decrease in specific volume. That deforma-

tion creates (through the deformation potential) a potential

well for the electron decreasing its energy and thus making

polarons possible. In the total balance of polaron energy, the

electron energy gain is considered proportional to the defor-

mation and the electron density; the elastic lattice contribu-

tion is quadratic according to Hooke’s law and similar to our

earlier expression in Eq. (1).

A significant difference between the settings of Eq. (1)

and that of polaron theory is that the latter starts with a fully

delocalized electron in an undeformed lattice. Because the

corresponding electron density, it is infinitesimally small, it

does not interact with the lattice. To achieve a strong enough

interaction, the electron wave function must be made

strongly localized. That takes a considerable energy of the

order of the electron bandwidth. As a result, there is a thresh-

old energy (barrier) to overcome in order to form a small ra-

dius polaron; thus, it is more likely to occur in extremely

narrow band materials.50,52

Chalcogenide glasses do not belong to the class of nar-

row band materials suitable for small polaron formation.
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Instead, the negative-U centers are formed at lattice imper-

fections: structural defects, weak atomic potentials, fluctua-

tions in lattice parameters, etc., which are supposed to

provide the electron localization making up for the above

mentioned threshold energy. Because the corresponding

strong polaron effect takes place at rare, special, local

regions in a glass, no polaron-like band transport is observed

here.

In the estimate of the transition barrier between two

negative-U centers, we have neglected both the quantum

contribution caused by the overlap of the wave functions of

spatially close 2e and 2h centers and the Coulomb interaction

of 2e and 2h pairs. It was shown53 that both corrections are

significant for the case of spatially close pairs, sometimes

called intimate pairs, which can decrease the barrier height

by several times. In particular, the intimate (2e, 2h) pairs par-

tially decrease their energy due to the strong Coulomb inter-

action, which relaxes the requirement of very soft atomic

potentials with k � kG. Because higher k values result in

smaller w, the factor expð�2G=kTÞ � expð�8w=kTÞ
describing the suppressing effect of a polaron cloud on the

electronic transition becomes less significant, allowing for

much higher hopping probabilities. However, we note that

since the magnitudes of the latter and quantum effects

depend on the details of the atomic and electronic structure

of negative-U centers, our knowledge about WB for such

compact pairs remains rather approximate.

Lacking more accurate information, one can resort to

the data54,55 on alternating current (ac) conduction in chalco-

genide glasses that are comparable to that of other noncrys-

talline semiconductors at relatively low frequencies

(x& 1 kHz). Because ac conduction is attributed to electron

hopping between close centers,54 these observations can be

explained assuming that the electron transitions in close

pairs of negative-U centers are as efficient as in the pairs of

centers without a strong polaron effect, such as in a-Si. The

assumed effectiveness of the electronic transitions in close

pairs can be explained53 by significant suppression of the

transition polaron-related barrier in intimate pairs. Qualita-

tively, such a suppression is due to a substantial spatial over-

lap of the polaron clouds of two close centers, which makes

it unnecessary to fully dissipate and recreate a polaron cloud

in the course of electronic transition. The fact that no dc hop-

ping was observed in chalcogenide glasses12 signifies that no

barrier suppression takes place for the centers at distances

close to the average.

More specifically, the experimental data on the ac con-

ductivity rðxÞ of chalcogenide glasses exhibit the following

behavior.54,55 The low T. 100 K region is described by r /
x independent of T. In the range of T& 100 K, the index s in

the observed dependence r / xsTm decreases with T. This

occurs when the index m is already considerably greater than

unity. At yet higher T& 300 K, there is a peak in the tempera-

ture dependence of conductivity. Its position is frequency de-

pendent, T / jlnðxs0Þj�1
where s0 � 1 ps is the

characteristic reciprocal frequency of atomic vibrations.

The above observations are consistent with the picture

of close pairs of negative-U centers. The low temperature

behavior is typical of TLS. Assuming that tunneling transi-

tions dominate, it was specified53 for the case of spatially

close negative-U centers in the form (in the present

notations),

rðxÞ � p

3
xPd2; (5)

where P is defined in Eq. (10) below for s ¼ 1=x and d is

the dipole moment estimated as 2ea with a being the charac-

teristic interatomic distance. The observations show indeed

that d is considerably larger than the value expected for

atomic TLS.

For higher T, when activated hopping dominates the

electronic transitions, the above mentioned indexes s and m

were predicted in the form,53

s ¼ 1� 6kT

2Gþ kTlnðxs0Þ
; m ¼ 1� ð1� sÞlnðxs0Þ; (6)

consistent with the observations, where it should be taken

into account that lnðxs0Þ < 0.

Finally, the peak in rðxÞ at higher T can be explained

by strong correlation in the distribution function of spatially

close 2e, 2h pairs formed at the glass transition temperature,

Tg, leading to a cut off in that distribution function.66

The activation relaxation time for the electronic DWP

formed by a pair of negative-U centers can be estimated as

s ¼ sminexp
2R

a
þ DWBðRÞ

kT

� �

; (7)

with

smin ¼ s0exp
WBðRminÞ

kT

� �

(8)

and

DWB ¼ WBðRÞ �WBðRminÞ; ðDWBÞmax � 2G; (9)

where R is the intercenter distance, a is the electron localiza-

tion radius at the center, expð2R=aÞ describes the electron

tunneling, and WBðRminÞ is the activation barrier for intimate

pairs separated by the distance Rmin � a. Because R is a ran-

dom quantity with the probabilistic distribution 4pR2NU

where NU is the concentration of negative-U centers, the

probabilistic distribution of relaxation times becomes

qðE; sÞ ¼ P

s
; P � pN2

Ua
3

4DEU

½lnðs=sminÞ�2
1þ 2G=kT

; (10)

where we have used a rough estimate dWB=dR � ðDWBÞmax=a
and where DEU is the total energy width of the negative-U

center distributions that are approximately uniform in the prox-

imity of the Fermi level. Neglecting the logarithmically weak

dependence of P vs. s, it can be treated as a constant.

For numerical estimates we use the values discussed in

Sec. 9.4 of Ref. 12, which suggest NU � 1017 � 1018 cm�3

and DEU � 0:025 eV, yielding P � 1015 � 1017 eV�1 cm�3.

The transition time s corresponding to the typical a � 10 Å,

average R � N
�1=3
U , and WB � 2G � 2 eV turns out to be
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long enough (� 1017 � 1025 s) to fully suppress hopping

conduction.49 Indeed, the latter can be estimated as

r � e2=ðskTRÞ � 10�26 � 10�34
X

�1 cm�1, much less than

the experimentally observed r& 10�3
X

�1 cm�1. We note

that the frequency-dependent ac conduction at x& 1 kHz is

yet far enough from the limiting case of low frequencies

bordering the dc regime: the latter would take place for

x � 1=s � 10�17 � 10�25 Hz. This range of incredibly small

frequencies is due to the strong polaron effect that exponen-

tially slows down the electronic transitions.

On the other hand, spatially close (intimate) pairs can

have much lower WB and exponentially shorter relaxation

times than the average distant pairs, thus making noticeable

contributions to the system noise56 and ac transport in a

broad range of relatively low frequencies. Another important

property of intimate pairs is that they can form untypical

chains between the electrodes of very thin samples (see Sec.

IV F). The distance between the centers in such chains will

be much shorter than the average making them rather effi-

cient channels for dc conduction. Therefore, one can expect

that extremely small devices can exhibit transport properties

significantly different from their larger counterparts. We

shall see in what follows that such untypical transport can

dominate conduction in the range of thickness well below

10 nm.

IV. SURVEYOF CONDUCTION MECHANISMS

Sections IVA–IVH provide the physical basis, analyti-

cal expressions, and limiting assumptions for various non-

ohmic conduction mechanisms. A summary of the expres-

sions for the conductivity in each case is provided in Table I.

A. Poole-Frenkel effect

The originally suggested physics of the PF effect is the

decrease in the ionization energy of a single coulombic

potential well in the direction of an applied field (explaining

lnI /
ffiffiffiffi

V
p

) or that of a pair of coulombic centers (explaining

lnI / V), as illustrated in Fig. 8. The corresponding barrier

change d increases the center ionization rate, proportional to

which are the free carrier concentration and the activated

electric current I=I0 / expðd=kTÞ. The underlying assump-

tion of a coulombic attractive potential is justified by its abil-

ity to give the required decrease in the ionization energy

d / F or d /
ffiffiffi

F
p

.

TABLE I. Listing of each conduction mechanism along with the related ana-

lytical expression and estimated field range of applicability. The current I is

given in terms of the electric field F, with the pre-exponential I0 / ð�Ea=kTÞ.
The parameters are defined as follows: k is the Boltzmann constant, T is tem-

perature, q is the elementary charge, e is the dielectric constant, a is the inter-

center distance, �h is the reduced Planck’s constant, m is the effective carrier

mass, kTph � 0:01� 0:03 eV is the characteristic phonon energy, E0 is the

characteristic decay of the density of tail states g ¼ g0expð�E=E0Þ, where E

is energy, L is thickness, k � �lnðg0kTaL2Þ 
 1 (here, g0 is the density of

localized states), a is the electron localization radius, EF is the Fermi energy,

g � 1 is a numerical factor, Lc � 10 nm is the percolation cluster correlation

radius, rc is the order parameter, rx is the crystallite radius, Vmax is the maxi-

mum percolation transport barrier, and D � 0:4 eV is the band offset between

crystalline and amorphous phases.

Mechanism lnðI=I0Þ
Field Range

(V/cm)

Poole-Frenkel 1-center

activation
2

kT

ffiffiffiffiffiffiffiffi

q3F

e

r

104 � 105

Poole-Frenkel 2-center

activation

aqF

kT
< 104

Poole-Frenkel 1-center

tunneling
�hq2F2

3m

1

kT
þ 1

kTph

� �2 > 105

Schottky emission 1

kT

ffiffiffiffiffiffiffiffi

q3F

e

r

n/a

Delocalization of tail states �hqF
ffiffiffiffi

m
p
� �2=3

1

kT
� 1

E0

� � � 105

Space-charge limited currents eF

2pLqgkT
� 104

Optimum channel hopping,

thin films �
ffiffiffiffiffiffiffiffi

8Lk

a

r

þ 1:6

ffiffiffiffiffiffiffiffiffi

qFL

kT

r

<
EF

qL

Optimum channel

field emission
�

ffiffiffiffiffiffiffiffiffiffiffi

8kEF

aqF

r


 EF

qL

Percolation band conduction
g

ffiffiffiffiffiffiffiffiffiffi

LcqF

kT

r

> 104

Percolation band

conductionthin films ðL < LcÞ g

ffiffiffiffiffiffiffiffiffiffi

LcqF

kT

r

þ Lc � L

2rc
ln

Vmax

kT

2rc

L

� �

þ 1

� �

> 104

Crystalline inclusions (1)
2e

kT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rxD

q

� �3

F

s

105 � 106

Crystalline inclusions (2) er2xFD

qkT

< 105

FIG. 8. Left: Field induced decrease d in activation

energy of a coulombic center. Dashed lines show zero

field case, tilted red line represents the electric potential

of a uniform field. Gray arrow shows vibration of the

electron energy E due to electron-phonon coupling.

Right: Field induced decrease d in activation energy of

a pair of coulombic centers.
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We note that as originally proposed,14 this mechanism

was meant to explain the data on noncrystalline materials

(mica, SiOx, etc.; see Ref. 13 and references therein). Sur-

prisingly, the data on non-ohmic conduction in doped crys-

talline semiconductors are typically described by other

dependencies,57 despite the fact that the coulomb nature of

the defects therein is well established. Therefore, the empiri-

cally observed relevance of PF-type dependencies to non-

crystalline materials may suggest that their nature is more

related to disorder effects rather than individual or pairs of

coulomb centers. From that point of view, the PF mechanism

may be significantly over-emphasized.

For the case of two centers separated by distance 2a in

the electric field of strength F, the electron energy along the

axis is given by

UðxÞ ¼ � q2

eða� xÞ �
q2

eðaþ xÞ � Fqx; (11)

where q is the electron charge, e is the dielectric permittivity,

and x is measured from the midpoint between the two centers.

The position of the lowest barrier maximum, dU=dx ¼ 0 is

determined from the equation,

~x ¼ ~Fð~x2 � 1Þ2 where ~x ¼ x

a
; ~F ¼ F

4q=a2e
: (12)

The original PF result x ¼ 1þ
ffiffiffiffiffiffiffiffiffiffi

q=eF
p

; d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4q3F=e
p

fol-

lows from Eqs. (11) and (12) when ~F 
 1 (i.e., F 
 q=4ea2);
however, it remains approximately valid numerically even at
~F ¼ 1. The characteristic field is 4q=a2e � 105 V/cm for the

typically assumed12,24 center concentration of �1018 cm–3.

In the opposite limiting case of “weak” fields,

F 	 4q=ea2, Eqs. (11) and (12) yield x ¼ a and d ¼ qFa,

corresponding to the so called modified PF effect with

lnðI=I0Þ ¼ qVa=L; (13)

where L is the glass thickness, emphasized in Ref. 24.

The barrier decrease due to the presence of one or two

coulombic centers can be calculated directly from Eq. (12)

for an arbitrary field at little computational cost. Of course

the d’s corresponding to the PF or modified PF effect can

also be appropriately interpolated to give a simple expression

for the barrier decrease, valid for both low and high fields.

This was done in Ref. 37, where it was then applied to a

model with the freed electrons participating in hopping con-

duction.24 As discussed in Sec. III and to be elaborated upon

in Sec. IV E, it is much more efficient for electrons released

from such traps to participate in band (rather than hopping)

conduction.

The critical field 4q=ea2 also implies that the notion of

“weak” or “strong” fields can be replaced by condition of

low or high defect density (as related to a). Thus, for a given

field, the PF effect is dominant for a high defect concentra-

tion while the modified PF effect pertains to a low defect

concentration. In any event, we observe that significant devi-

ations from the standard PF results can be expected under

low fields F 	 104 V/cm. This significantly narrows the

application of the modified PF mechanism in Refs. 24 and

58, also ruling out its role in the switching field region of

F& 105 V/cm.

The two-center model that predicts lnðI=I0Þ / V in Eq.

(13) remains critically vulnerable to the effects of fluctua-

tions. We note in this connection that the work in Refs. 24,

37, and 58 was limited to a system of equidistant coulombic

centers. Random fluctuations in their concentration (present

in all systems of centers in solids so far explored) will gener-

ate random variations of activation energies translating into

exponentially broad distributions of ionization rates; varia-

tions in center energies will make this distribution even

broader. This results in local carrier concentrations that vary

exponentially between different locations. A proper frame-

work for analyzing these types of systems would be percola-

tion theory,59 which is yet to be applied to PF-type

conduction (cf., however, Ref. 60).

In Ref. 61, a Monte Carlo simulation was performed

which did allow for the inter-center distance to vary ran-

domly within the material. Rather than using the PF effect, a

phenomenological parameter is introduced to give a

lnðI=I0Þ /
ffiffiffiffi

V
p

type dependence. The electrical properties of

the system remained particularly sensitive to this parameter,

the value of which was assigned rather arbitrarily and with-

out physical interpretation.

Quantum tunneling imposes limitations on the activation

PF effect. The corresponding analysis by Hill13 neglects the

role of atomic vibrations on tunneling. A more recent analy-

sis57 that accounts for electron-phonon interactions results in

a picture where the electron energy level moves up and

down following oscillations of the atomic system to which it

is coupled. As a result, the electron tunneling becomes most

likely when the electron energy is significantly above its av-

erage position (Fig. 8), and the chief exponential term in the

non-ohmic current is given by

lnðI=I0Þ ¼
F2q2�h

3ðkT�Þ2m
with

1

kT� ¼
1

kT
þ 1

kTph
; (14)

where m is the effective mass of a localized charge carrier,

which we take to be close to the true electron mass,62 and

kTph is on the order of the characteristic phonon energy

(� 0:01� 0:03 eV).

It was shown57 that the standard PF results become in-

valid and the effect is better described by Eq. (14) when

F > Ft �
ffiffiffiffiffiffiffiffiffi

2mE

�h2

r

kT�

q

kT�

E

� �1=3

; (15)

where E is the ionization energy (�0:4 eV in Ge2Sb2Te5).

Using the above numerical parameters, one can estimate

Ft � 105 V/cm. We note that the dependence in Eq. (14),

rather than the standard PF law, was experimentally con-

firmed for many crystalline semiconductors even for fields

below 105V/cm (see chap. 10 in Ref. 57).

Overall, we conclude that, for the case of GST glasses,

the standard PF expression lnðI=I0Þ /
ffiffiffi

F
p

can apply in the

field range of &105 V=cm. For weak fields, F 	 105 V=cm,
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the modified PF effect lnðI=I0Þ / F can give a more adequate

description; however, the effects of fluctuations in the local

concentration of centers must be taken into account. For the

high field region, F& 105 V=cm, quantum effects lead to

lnðI=I0Þ / F2, predicting an increase in non-ohmicity in the

vicinity of the switching field. The above boundaries can be

numerically different for other chalcogenide glasses; however,

the hierarchy of regimes remains the same, as illustrated in

Fig. 1.

Experimental data17,23,34 has exhibited a sharp increase

in current when the field is very close to its switching value

3� 105 V=cm, however, it would be premature at this stage

to attribute it to Eq. (14). Experimental verification of the

temperature dependence in Eq. (14) could clarify this issue.

Ref. 63 gives an interesting example of how neglecting all

the above reservations and conditions can lead to the far

reaching conclusions about the distance between electronic

traps based on Eq. (13) from the experimentally estimated

derivative dðlnIÞ=dV.

B. Schottky emission

The Schottky effect64 originates from the image force

induced lowering of the interfacial energy for charge carrier

emission when an electric field is applied. This leads to

lnðI=I0Þ ¼
1

kT

ffiffiffiffiffiffiffiffi

q3F

e

r

with I0 / expð�U=kTÞ; (16)

where U is the interfacial barrier height between the semi-

conductor and the contact metal.

The dependence in Eq. (16) was experimentally verified

in the field range �104 � 105 V=cm for various junctions of

crystalline semiconductors with metals. However, on empiri-

cal grounds, it is hard to believe that it can apply to the case

under consideration because of the established

lnI0 / ð�Ea=kTÞ, where Ea is half the mobility gap in the

chalcogenide material and is independent of contact proper-

ties. Some studies reveal that the current is independent of

polarity and electrode material, which is additional evidence

against the Schottky mechanism.19

C. Field-induced delocalization of tail states

Similar to the PF mechanism of decreasing the ioniza-

tion energies of coulombic centers, the electric field can

decrease energies of localized tail states in the mobility gap

and even destroy them if they are shallow enough. Trans-

forming localized into delocalized states is tantamount to

narrowing the mobility gap; this exponentially increases the

free carrier concentration and electric conductivity.

The latter mechanism, suggested in Ref. 26, is specific

to noncrystalline materials where the presence of band tails

is well established. Tail states are related to intrinsic struc-

tural disorder of amorphous materials rather than to any spe-

cific defects. The disorder creates microscopic variations in

the electric potential generated by different structural units

in a material and felt by electrons or holes. Some combina-

tions of these microscopic variations form effective potential

wells capable of localizing charge carriers.

It was assumed in Ref. 26 that each fluctuation potential

well has the same radius r0 regardless of the energy of its

localized state, thus governed only by the well depth. Corre-

spondingly, the condition of the electric field induced deloc-

alization was given in the form E < ED � Fqr0. Assuming

also a simple phenomenological representation of the density

of tail states, gðEÞ ¼ g0expð�E=E0Þ, the field-induced

increase in concentration of charge carriers becomes

nðFÞ / gðEDÞexpðED=kTÞ, where the first multiplier

describes the decrease in activation energy by ED, as illus-

trated in Fig. 9. As a result, the conductivity increases with

field as

rðFÞ ¼ r0exp Fqr0
1

kT
� 1

E0

� �� �

; (17)

where it is assumed that E0 > kT. The observed temperature

dependence in Ref. 26 was consistent with that in Eq. (17).

The above model could be refined by taking into

account that the characteristic size of the localized state of

energy E is �h=
ffiffiffiffiffiffiffi

mE
p

and so is that of its corresponding poten-

tial well,65 as illustrated in Fig. 10. As a result, the condition

of delocalization, approximately Fq�h=
ffiffiffiffiffiffiffi

mE
p

¼ E, gives the

characteristic delocalization energy ED ¼ ð�hqF= ffiffiffiffi

m
p Þ2=3 and,

similar to Eq. (17)

rðFÞ ¼ r0exp
�hqF
ffiffiffiffi

m
p
� �2=3

1

kT
� 1

E0

� �

" #

: (18)

FIG. 9. DOS in the mobility gap of a chalcogenide glass. The electric field

shifts the mobility edge for holes up by energy ED (similar effect for elec-

trons is not shown here).

FIG. 10. Localized tail states for the electrons below the mobility edge

(shown as dashed-dotted line) have linear dimensions decreasing with

energy E in the mobility gap.
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This prediction is in a numerically relevant range yielding

ED � 0:1 eV when F � 105 V/cm.

Further implementations of the theory of disordered sys-

tems65 calls upon using the density of tail states in the form,

gðEÞ ¼ g0exp � E

E0

� �a� �

; (19)

where a ¼ 1=2 and a ¼ 2 for the cases of uncorrelated and

strongly correlated disorder corresponding, respectively, to

the energies E 	 �h2=mr2c and E 
 �h2=mr2c . If the correlation
radius rc is identified with that of the medium range order in

a glass,66 then rc � 1 nm and �h2=mr2c � 0:1 eV. Using Eq.

(19) will obviously modify the results in Eqs. (17) and (18)

without changing them qualitatively.

Overall, it may be very difficult—if possible at all (see

Sec. V)—to experimentally discriminate between the shapes

predicted by Eqs. (17) and (18) or their modifications. What

is important is that these predictions pertain to a numerically

relevant range ED � 0:1 eV when F � 105 V=cm, ensuring

strong enough non-ohmicity to explain the observed effects.

Also, this model, in contrast to the PF model, gives a natural

explanation of why PF-type non-ohmicity [lnðI=I0Þ /
ffiffiffi

F
p

or

F] is typically observed in glasses rather than in crystalline

materials.

D. Space charge limited current

The exponential current-voltage characteristic can be

explained by space charge limited current in a system with

almost energy independent density of states.67 This model is

represented in Fig. 11 in the coordinate and energy spaces.

Due to low mobility, the charge carriers accumulate in a sys-

tem (the logarithm of their density is shown in Fig. 11 as the

quasi-Fermi level) and create the potential barrier further

slowing down their transport. In energy space, charge car-

riers occupy a layer of certain width dE near the Fermi

energy (EF). Therefore, their charge density is estimated as

q ¼ gðEFÞqdE. The corresponding electrostatic potential is

V � 2pqL2=e where L is the sample thickness. Expressing

from here dE through V and taking into account that the acti-

vation energy of conduction is by dE lower than in the ohmic

regime, one gets

r ¼ rð0Þexp F

F0

� �

with F0 ¼
2pgqLkT

e
: (20)

Assuming realistic g ¼ 1017 cm�3 eV�1 and L ¼ 100 nm

yields a relevant field scale of the non-ohmicity F0 � 104

V/cm; however that scale strongly depends on the system

thickness and density of states, which can make F0 too large

and irrelevant to the observed non-ohmicity in some chalco-

genide glasses. The explanation of space charge limited

current was put forward in Ref. 28 where F0 linear in L was

observed below room temperature. Near and above room

temperature, F0 was found to be thickness independ-

ent.28,33,34 This data may suggest that space charge limited

transport mechanisms play an important role in thicker sam-

ples (L > 1 lm) below room temperature.

We note that additional verification of the space charge

limited mechanism of room temperature conduction in chal-

cogenide glasses could be obtained from the data on 1=f
noise measurements. Experimental results68 show that the

corresponding Hooge parameter increases with bias, contrary

to what is expected for the space charge limited currents.69

E. Hopping conduction

The intent of this section is not to provide a complete

description of hopping conduction, since thorough reviews

are available elsewhere.12 Here, we provide a brief explana-

tion as to why hopping conduction was not observed experi-

mentally in chalcogenide glasses.12,70

A high density of localized states [gF] at the Fermi level

(EF) in non-crystalline semiconductors can give rise to hop-

ping transport. The mechanism is based on electronic tunnel-

ing (“hops”) between localized states that are randomly

distributed in real space and energy space.12,26 In materials

where hopping does occur, it dominates at low temperatures

(T) and is described by the Mott law12

r ¼ r0exp½�ðT0=TÞ1=4�; T0 ¼ b=kgFa
3; (21)

where a is the localization radius of the electron wave func-

tion, and b � 1 is a numerical factor. However, at room or

higher T of practical interest, the primary transport mecha-

nism in bulk materials is typically band conduction.

It has long been established that room temperature con-

duction in chalcogenide glasses is dominated by band trans-

port.12 One piece of evidence is that in all chalcogenide

glasses the activation energy of conduction is close to half

the mobility gap, Ea � G=2, identified with the Fermi level

pinned at that position. As discussed in Sec. III, lack of hop-

ping is explained by the abnormally strong polaron effect for

localized charge carriers12,39,71 requiring electron transitions

to be accompanied by the inter-center transfer of atomic

deformations (polaron cloud), which exponentially sup-

presses the probability of hopping. The strong polaron effect

makes chalcogenide glasses significantly different from other

amorphous semiconductors, such as a-Si, where hopping

conduction was experimentally observed.12,72

On a more quantitative level, we note that the polaron

effect on hopping conduction was explicitly taken into

FIG. 11. Left: real space representation of space charge (exponential in

quasi-Fermi energy) and electric potential where the barrier top plays the

role of a virtual cathode. Right: energy space representation with shaded

region filled with injected holes.
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account in Ref. 74. It was shown [in Eq. (24) of that work]

that in the high temperature regime the exponent of conduc-

tivity contains both the well known Mott term12 ðT0=TÞ1=4
and the polaron related term W=2kT with the polaron shift W

being close to G=4 as explained above in Sec. III. The latter

combination cannot be reduced to the observed activation

conductivity exponent � G=2.
Finally, we note a simple estimate showing how hopping

cannot provide the high current densities j � 104 A/cm2

observed in the glassy state of modern PCM,

j � q�

R2
exp

�Ea

kT

� �

� 5 A=cm2; (22)

where we have assumed the typical frequency of attempts

� � 1013 s�1, inter-center distance R � 10 nm, and

Ea¼ 0.4 eV. For comparison, the devices of area 10�10 cm2

with average current of 1 lA used in Ref. 24, correspond to

a current density of 104A/cm2, decades higher than

expected for hopping from Eq. (22).

The latter estimate can be put in a more standard per-

spective using Mott’s criterion of band conduction,12 accord-

ing to which the thermally activated conduction

r ¼ r0expð�Ea=kTÞ should have a preexponential in the

range r0 ¼ 150� 600 X
�1cm�1. The data75 in Fig. 12 show

that the latter criterion is satisfied for the case of GST based

PCM. More recent observations76 confirm the latter conclu-

sion about the band transport conduction in glasses of phase

change memory.

Contrary to the above understanding, the authors of

Refs. 24 and 58 proposed that conductivity in chalcogenide

glasses is due to an altered form of hopping. In that work it

was assumed that electrons move without tunneling between

equally spaced centers. The same hopping-without-tunneling

mechanism was originally proposed for ionic conduction,

i.e., for heavy (atomic) classical particles that possess contin-

uous energy spectrum above the barrier.31,73 For the case of

light quantum particles, such as electrons or holes, the spec-

trum is discrete and may have no quantum states between the

barrier and the mobility edge.

The continuous energy spectrum needed for the purely

activated transitions assumed in Refs. 24 and 58 starts at the

mobility edge. Therefore, the “no-tunneling” activated elec-

tronic transitions between the nearest neighbors would have

to go via intermediate states at the mobility edge. However,

allowing the electron or hole to utilize the states at the mobil-

ity edge is inconsistent with hopping conduction. Indeed,

carriers at the mobility edge would attain the band mobility,

which is well above that of hopping, thus giving rise to band

transport and the nearest neighbor concept would not apply.

In other words, having activated to the mobility edge, the

charge carrier would be capable of traveling considerable

distances to other (far from the nearest) traps or even to the

device terminals.

The above reasoning explains why the hopping-without-

tunneling mechanism has never been included in the existing

theory of hopping conduction in semiconductors (the possibil-

ity of the mobility edge being involved in hopping was a topic

of several discussions in the 1970s, as witnessed by the

authors of this work, all of which led to negative conclusions).

The work in Refs. 24 and 58 interpreted Ea � G=2 as

the activation energy of hopping to the nearest center,

assuming a transition through an intermediate state. In addi-

tion, it was assumed that all the inter-center distances are the

same, thereby neglecting fluctuations in center concentration

and activation energy, which are known to have exponen-

tially strong effects on hopping conduction and determine

the temperature and field dependence.59

In Ref. 61, hopping between localized states is assumed

to occur through direct or thermally assisted tunneling. The

transmission coefficient is assumed to have a particular field

dependence �expð
ffiffiffiffi

V
p

Þ which varies exponentially on a cer-

tain phenomenological parameter. The physical basis for this

parameter is not discussed, and it is shown in that same paper

that electronic transport is extremely sensitive to its value.

The authors, however, point out that different conduction

mechanisms (e.g., band transport) need to be included, espe-

cially when considering high current densities.

F. Optimum channel hopping

Optimum channel hopping describes the gigantic trans-

verse conduction that has been observed79 in thin amorphous

films. A thorough review of the related work is provided in

Ref. 77. Similar to classical hopping conduction discussed in

Sec. IVE, optimum channel hopping involves tunneling

between localized states but it differs from the classical

mechanism in the following ways: (1) optimum channel hop-

ping does not occur on the macroscopically isotropic perco-

lation cluster but, rather, through untypical and nearly

rectilinear hopping chains of spatially close localized states;

(2) it is characterized by laterally nonuniform (or pinhole)

current flow; and (3) it can dominate over typical band trans-

port in systems that are thin enough or subject to sufficiently

strong electric fields. For chalcogenides, we consider the

possibility that optimum channels can be comprised of local-

ized states that are not subject to strong polaron effects.

Following the approaches in Refs. 77 and 79 we concen-

trate on optimum channel hopping through short distances

via favorable yet sparse clusters of rather rigid localized

states that form efficient transport pathways (see Fig. 13).
FIG. 12. Temperature dependence of conductivity in a GST based PCM

structure.
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The conductivity will be dominated by optimum pathways

that are a compromise between a high transmission rate and

not too low probability of finding the pathways being consid-

ered. For the case of thin amorphous films, it was shown77,78

that optimum channel hopping leads to a transverse conduc-

tivity given by

r � r0exp �
ffiffiffiffiffiffiffiffi

8Lk

a

r

 !

; (23)

where L is the thickness, a is the localization radius,

k � �lnðg0kTaL2Þ 
 1, and g0 is the density of localized

states.

Because Eq. (23) is not widely known to the microelec-

tronics community, we mention here its simplified deriva-

tion. Consider a hopping pathway formed by N-center chain

of almost equidistant centers. The probability of finding such

a chain is estimated as pN ¼ expð�kNÞ, where k � lnð1=pÞ
and p is the probability of finding one center in the pathway.

The probability of hopping through a distance L=N (between

two nearest centers in the chain) can be written in the form

expð�2L=NaÞ, where a is the localization radius on the cen-

ter. The product of these probabilities expð�Nk� 2L=NaÞ
gives a partial current through an N-center chain. Optimizing

it with respect to N determines the most efficient chains and

results in Eq. (23); expressing k through the density of states

takes a more accurate approach.77

1. Optimum channels in thin films

For the case of thin amorphous films subject to moderate

fields (F < EF=qL, where EF is the Fermi level), it was

shown77,78 that optimum channel hopping leads to a trans-

verse conductivity given by

r � r0exp �
ffiffiffiffiffiffiffiffi

8Lk

a

r

þ 1:6

ffiffiffiffiffiffiffiffiffi

qFL

kT

r

 !

; (24)

where the parameters are the same as in Eq. (23). Polaron

effects are neglected in Eq. (24) and, therefore, in chalcoge-

nide glasses this form of hopping conduction cannot rely on

the typical electronic states near the Fermi level. However,

these channels through extremely thin films or in the presence

of strong fields (described more in detail in Sec. V) can be

formed by untypical spatially close states, for which the

effects of polaron cloud are less significant, or they can be

formed by states far from the Fermi level having much

smaller polaron shifts as explained in Sec. III; for the case of

chemically imperfect thin films, hopping in optimum channels

could be due to extraneous states formed by certain impur-

ities. Using different terminology, the notion36 of hopping via

optimum channels was alluded to as a mechanism describing

the thickness-dependent resistance observed in thin films

(8 < L < 35 nm). In that work, the strong polaron effects

that are characteristic of these glassy systems were not taken

into account and no analytical treatment was provided.

2. Optimum channel field emission

The standard interpretation of field emission is based on

the model of electron tunneling through a triangular potential

barrier with a slope F due to an electric field.64 Our model

here proceeds from the premise of a continuous energy spec-

trum of localized states in the mobility gap, typical of amor-

phous materials and capable of giving rise to hopping

conduction. Such states lie high enough above the Fermi

level that, according to the understanding in Sec. III, they are

not related to soft atomic potentials and thus do not posses

the strong polaron shift that suppresses hopping. The possi-

bility of hopping transport through such “rigid” states far

from the Fermi level is fully compatible with the above-

described suppressed hopping at the Fermi level.

For the case78 of strong fields, F 
 EF=qL, Eq. (23)
remains valid with the substitution L ! l ¼ EF=qF (see Fig.

13 right). As a result, one obtains

r � r0exp �
ffiffiffiffiffiffiffiffiffiffiffi

8EFk

aqF

s
 !

; (25)

which is significantly different from the standard field emis-

sion conduction with lnðr=r0Þ / �1=F.
One qualitatively distinctive feature of the above consid-

ered field emission is that it is significantly nonuniform and

occurs through rare optimum channels (as opposed to the

standard uniform Fowler-Nordheim emission from con-

tacts64,80); this may lead to local heating, facilitating struc-

tural transformations in chalcogenide glasses. Another

feature related to such lateral nonuniformity is that very

small area devices, A. aLexpð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EFk=aqF
p

Þ, may not have

an optimum channel with certainty, in which case their resis-

tances will be determined by the most efficient of available

random channels; hence, there will be strong variations

between the conductances of nominally identical cells.

Overall, it should be noted that the field emission mech-

anism can be expected to show up in very thin structures

where the hopping resistance corresponding to Eq. (25) is

not blocked by a significantly larger resistance of the film in

series.

G. Percolation conduction

In general, conductivity of randomly nonuniform materi-

als is described in terms of percolation.59 This concept

FIG. 13. Left: field emission via hopping through an optimum chain; circles

represent localized states. Right: same in the energy space.
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includes both the hopping conduction and band conduction in

a medium where charge carrier concentration exponentially

varies between different locations due to spatial variations in

the electron potential energy. The concept of spatially varying

mobility edge can be derived based on the above mentioned

picture (Sec. IVC) where a glass band structure is represented

by a set of random potential wells with localization/delocali-

zation effects leading to the mobility edges. Some regions

will contain predominantly deeper than the average or shal-

lower than the average potential wells corresponding to local

variations in the envelope electronic potential in the form of

smooth wells or barriers. The latter variations translate into

the electric conductivity exponentially varying in space. Ex-

perimental evidence of such variations in chalcogenide mate-

rials was presented in Ref. 81.

Percolation conduction evolves on a mesh built of mate-

rial regions with conductivity below a certain critical value

rc � r0expð�ncÞ such that the mesh enables a connection

between two flat electrodes, regardless of distance L between

them. Such a mesh is called an infinite percolation cluster

and is characterized by the correlation (mesh) radius Lc < L,

as shown in Fig. 14.

The topology of the percolation cluster can be pictured

as arising from a multitude of sites where the nearest neigh-

bors can be connected with random resistors R ¼ R0expðnÞ.
Here n is a random parameter. For example, n ¼ EF=kT for

the case of band percolation conduction, where EF represent

a random energy distance between the band edge (which is

spatially modulated) and the Fermi level. As another exam-

ple, n ¼ 2Dr=aþ DE=kT for hopping conduction, where Dr

and DE are the distances between the two centers in the real

and energy space, respectively (a being the localization ra-

dius on the center). The cluster forming connection proceeds

in sequence starting from the minimum resistor (n ¼ 0) and

adding larger ones up to n ¼ nc, until the everywhere con-

nected cluster is formed. The mesh structure illustrated in

Fig. 14 is built of filaments obtained by the series connection

of random resistors where the maximum resistor is close to

R ¼ R0expðncÞ for each of the filaments.

Following a theory of high-field percolation conduc-

tion,82 each cell of the percolation cluster accommodates

voltage Vc ¼ VLc=L. Because the resistors that constitute the
filament are exponentially different, the latter voltage almost

entirely concentrates on the strongest, first maximum resistor

(1-max in Fig. 14). That voltage, concentrated locally,

affects the resistance of the element across which it drops.

The mechanism of the latter action can depend on the spe-

cific system under consideration: changes in center occupa-

tion numbers for the case of hopping, or field-induced

ionization for the case of band transport. The field affected

maximum resistor in the filament decreases its resistance

down to the second maximum (2-max in Fig. 14), after

which the voltage distributes evenly between the two resis-

tors (1-max and 2-max), modifying both of them, and then

extending to the third maximum resistor, etc. Such equaliza-

tion will sequentially take place in a number of resistors hav-

ing ni from the maximum one (nc) down to n0ðVÞ defined by

the condition,

X

nc

n0

ni ¼
qVc

kT
:

Approximating the sum by the integral gives ðnc � n0Þ2
=2nmax ¼ qVc=kT, where it is assumed that the random pa-

rameter n is uniformly distributed in the interval from 0 to

nmax � nc. As a result, the effective conduction is described

by

r / expð�n0Þ ¼ exp �nc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nmaxqVc

kT

r

 !

:

Substituting here the definition Vc ¼ VLc=L and F ¼ V=L,
one finally obtains

rðFÞ ¼ rð0Þexp g

ffiffiffiffiffiffiffiffiffiffi

qFLc

kT

r

 !

; (26)

where g � 1 is a numerical coefficient.

We observe that the conductivity depends on electric

field in a manner very similar to the original PF result. Fur-

thermore, assuming that each resistor has a linear dimension

of the medium range order parameter rc, Lc can be numeri-

cally estimated as rcðdEa=kTÞ � 10rc � 10 nm, where dEa is

interpreted as the amplitude of variations of the activation

energy of conduction. It is estimated as the valence band off-

set between the most conductive (close to crystalline GST)

and least conductive amorphous GST regions: dEa � 0:4 eV.

With the above estimate in mind, Eq. (26) predicts signifi-

cant non-ohmicity starting from F � 3� 104 V/cm, in rea-

sonable agreement with observations.

Finally, we note that in the case of very thin films,

L < Lc, the transversal conduction will be determined by

rare, most conductive channels formed by random regions of

relatively high carrier concentration, rather than the percola-

tion cluster of mesh size Lc. Assuming that the resistors with

R ¼ R0expðnÞ and n < nL are involved, the probability of

finding the number L=2rc of such resistors forming a chain

through the film between the electrodes can be written as

exp½ðL=2rcÞlnðnL=nmaxÞ�. Dividing the latter by that chain re-

sistance R0expðnLÞ gives the partial conductance of chains

with n � nL. Optimizing the exponent of the latter ratio with

FIG. 14. Left: Fragment of percolation cluster with mesh size Lc in a mate-

rial of thickness L. Right: equivalent circuit of a filament of the percolation

cluster where exponentially different resistors in series are depicted by resis-

tors of different sizes; the first and second maximum resistors are marked

for illustration.
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respect to nL gives the optimum chain parameter nL ¼ L=2rc.
As a result, the conductance of the film can be estimated as

r / exp

(

� L

2rc
ln

Vmax

kT

2rc

L

� �

þ 1

� �

)

:

In the latter equation, one can impose the condition r ¼
r1 � r0expð�Ea=kTÞ when L ¼ Lc, where r1 has the

meaning of the bulk conductivity. As a result, the effective

conductivity of thin (L < Lc) structures can be written in

the form,

r ¼ rðFÞexp
(

Lc � L

2rc
ln

Vmax

kT

2rc

L

� �

þ 1

� �

)

; (27)

where rðFÞ is given by Eq. (26). Here we have neglected the

difference between logarithmic terms evaluated at Lc and L

and have taken into account that nmax ¼ Vmax=kT, where

Vmax is the maximum transport barrier.

One prediction of Eq. (27) is that the effective activation

energy of conduction Ea ¼ jdlnðrÞ=dð1=kTÞj will decrease
as the film thickness decreases below L ¼ Lc. Another pre-

diction refers to the case of extremely small devices with

area below Ac � r2cexpf�ðL=2rcÞln½ð2rc=LÞðVmax=kTÞ�g so

that the above defined optimum channel is unlikely to be

found within the device area. For such devices, conductance

will be determined by the most efficient of the available

channels, which will differ between samples; hence, there

will be strong fluctuations in conductance between nomi-

nally identical devices. According to our rough estimates,

that might occur well below the 10 nm scale.

H. Conduction through crystalline inclusions in
amorphous matrix

It is known that the reset pulse in chalcogenide PCM

melts the material which then cools down fast enough to

freeze in the amorphous phase, forming a dome (sometimes

called a “mushroom”) as sketched in Fig. 15. This melting-

to-freezing transition is believed23,83 to result in a number of

crystalline particles embedded in the amorphous matrix. The

latter scenario results in an interesting possibility that the

system conductance will be governed by potential fluctua-

tions created by the embedded crystallites. We note paren-

thetically that the presence of embedded crystallites follows

from the standard thermodynamic consideration for the case

of any glass possessing a crystalline counterpart of lower

chemical potential.

Our model is based on the known valence band offset

D � 0:4 eV between the amorphous and crystalline phases

(see Fig. 16). According to the standard principles of hetero-

junction physics, this offset is accommodated by the system

through electrostatic screening. The screened potential is

described by the standard Poisson equation r2/ ¼ �4pq

where the charge density is in turn related to the potential /.

That relation depends on the density of electron states gðEÞ,
which, following the approach in Ref. 12, we assume con-

stant. This gives q ¼ /q2g and the Poisson equation reduces

to

r2/ ¼ �/=r2s with rs ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffi

4pq2g
p

; (28)

where rs has the physical meaning of the screening radius.

The solution of Eq. (28) for a spherically symmetric

case is well known, / / r�1expð�r=rsÞ. The coefficient in

front of it is determined by the boundary condition

q/ðrxÞ ¼ D, where rx is the crystallite radius. As a result

each crystallite creates a potential,

/ðrÞ ¼ D
rx

qr
exp

rx � r

rs

� �

when r > rx; (29)

rs& 100 nm in the typical chalcogenide glasses. We note

that the above assumption of constant density of states is not

very restrictive as long as we are interested in distances

shorter than rs that is /ðrÞ � Drx=qr; this can be readily veri-
fied for another standard case of a single-level density of

states often used for crystalline semiconductors.

The potential in Eq. (29) is the same as that of a coulom-

bic center with effective charge,

Zq ¼ rxeD

q
� 10q:

Therefore, one can use the entire wealth of results known for

systems of charged centers in semiconductors to derive the

following implications:

FIG. 15. Amorphous dome with crystalline inclusions as part of the typical

PCM structure including a small area electrode (SAE) and thermal insulator

(TI). R is the average distance between crystallites. Arrows represent the

current flow utilizing a path of minimum resistance.

FIG. 16. Top: a fragment of amorphous matrix with embedded crystallites.

Bottom: energy band diagram showing valence band edge Ev in the crystal-

line and amorphous matrix (with offset D) and the activation energy Ea0 is

an amorphous phase without crystallites. Dotted-dashed line represents the

chemical potential. Arrows show the current flow between two crystallites.
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(1) Fluctuations of the electrostatic potential energy exist

with the characteristic screening radius rs and ampli-

tude59 dU ¼ Zq2
ffiffiffiffiffiffiffiffiffi

ncr3s
p

=ðersÞ, where the square root rep-
resents the fluctuation in the number of charged

crystallites of concentration nc in a volume of radius rs.

Taking into account the above definition for Z, one can

write

dU � D

ffiffiffiffiffiffiffi

v

rs

rx

r

; (30)

where v � ncr
3
x is the volume fraction occupied by crys-

talline particles. Using the above mentioned parameters

it can be rather significant, dU 
 kT.

(2) The average decrease in the mobility edge,

dEm � Zq2ðncÞ1=3=e, can be represented as

dEm � Dv
1=3; (31)

can be significant as well. The total decrease in activa-

tion energy of conductivity due to percolation can be

estimated as

dEa ¼ dEm þ �dU; (32)

where � is a numerical multiplier of order unity. It is

dominated by its fluctuation component dU as long as

the average distance between crystallites is shorter than

the screening radius, R < rs.

(3) The Poole-Frenkel effect appears here without any addi-

tional assumptions about the presence of coulombic cen-

ters in a material. The consideration in Sec. IVA will

apply with corresponding renormalizations of the cen-

ter’s charge, q ! Zq. For example, the critical field of

interplay between the regimes of one- and two-center

field ionization regimes will become Ze=4ea2; numeri-

cally, it is �105 V/cm when the distance between crys-

tallites is a � 10 nm. The two-center ionization effect

results in the current,

I ¼ I0exp
erxaFD

qkT

� �

; (33)

and the one-center effect becomes

I ¼ I0exp
2e

kT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rxD

q

� �3

F

s

8

<

:

9

=

;

: (34)

(4) All the implications of the percolation conduction mech-

anism in Sec. IVG will be applicable here. One specifi-

cation is that the correlation length Lc [see Eq. (26)] for a

system of charged particles becomes equal to the screen-

ing radius rs. We note that for very small devices with

size L < rs, the size will play the role of screening ra-

dius.84 In the latter case, Eq. (26) reduces to

rðVÞ ¼ rð0Þexpðg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qV=kT
p

Þ.
Overall, the mechanism described in this subsection sug-

gests the important role of the reset characteristics that deter-

mine the shape and composition of the amorphous dome in

PCM devices. We shall briefly touch upon this issue further

in Sec. V below.

V. DISCUSSION

The non-ohmic conduction mechanisms described in

this work are listed in Table I along with their characteristic

relations and corresponding domains of applicability. Based

on the experimental data, the only ones that can be

FIG. 17. Four different fits of the same

typical IV curve (presented also in Fig. 1)

in the reset state of GST based PCM

structure corresponding to the expressions

discussed in the text: (a) lnðI=I0Þ /
ffiffiffiffi

V
p

,

(b) lnðI=I0Þ / V, (c) lnðI=I0Þ / V2=3, and

(d) lnðI=I0Þ / �1=
ffiffiffiffi

V
p

.
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excluded outright are Schottky emission and classical hop-

ping conduction.

Shown in Fig. 17 are examples of typical data fitting

corresponding to the various current voltage dependencies

of the above discussed models; in each case one fitting equa-

tion was used to fit the entire IV curve. It appears that

lnðI=I0Þ / V provides the best fit, while the fit with

lnðI=I0Þ / �1=
ffiffiffiffi

V
p

is the least successful. We note, how-

ever, that the approach implemented in Fig. 17 postulates a

single dependence throughout the entire region of voltages.

In reality, as we have seen, a single dependence fit may not

be adequate: more than one non-ohmic domain with differ-

ent temperature and thickness dependencies is typically

observed, with a faster growing current in the pre-switching

region. Eliminating the latter and limiting the single-curve

fitting to relatively low voltages, the models (a)-(c) of

Fig. 17 fit equally well, while the model (d) remains the

least fitting, as illustrated in Fig. 18.

These observations indicate that IV data fitting alone

may not be conclusive enough to identify the most adequate

model of transport in chalcogenide glasses. As can be seen

in Table I, several mechanisms provide the appropriate field

dependence within an applicable domain. We note that sev-

eral transport mechanisms may be appropriate with one

mechanism prevailing in a particular domain of electric field,

temperature, or thickness. For example, data for thickness

dependence suggests that space charge limited current may

dominate below room temperature for samples of thickness

L > 1 lm.28,33

A particular example of how fitting alone is inadequate

to discriminate between different conduction mechanisms is

given by Refs. 24 and 37. In the former work, the modified

Poole-Frenkel effect is applied to a model of hopping con-

duction. Later the authors incorporate the classical PF effect

into the same model to better describe the high field region.37

In looking at Fig. 7 of Ref. 24 and Fig. 3 of Ref. 37 (of seem-

ingly the same IV data), to the eye the fits are identical. This

can be explained by the tuning of other parameters (in this

case, attempt-to-escape frequency or center concentration).

The same articles also provide nearly identical fits of activa-

tion energies, indicating that even looking at multiple types

of data may be insufficient to discriminate between similar

conduction mechanisms.

In our opinion, additional detailed studies are required

to discriminate between the different mechanisms listed in

Table I. Such facts would include information about the tem-

perature and size dependencies of conduction, resistance

noise dependencies, statistical variations between different

samples, differences between glasses with and without mem-

ory, and possibly some others.

An example of one such indicative fact is the observed

dependencies85 of the threshold voltage Vth and threshold

current Ith on the ohmic resistance of the PCM reset state

Rres, where Vth is logarithmic in and Ith is the reciprocal of

Rres. In some devices, those relations may be masked by geo-

metrical or specific design related features. Yet, these results

may point at the percolation nature of conduction discussed

in Sec. IVG above and are applicable to spatially nonuni-

form systems, including the case of crystalline inclusions

discussed in Sec. IVH. Indeed, according to percolation

theory the ohmic resistance is R ¼ R0expðEa=kTÞ, where Ea

is the percolation transport barrier height. Assuming that bar-

rier shape to be parabolic, its linear dimension can be esti-

mated as l ¼ rc
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Ea=kT
p

¼ rc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðR=R0Þ
p

, where rc is the

correlation radius (possibly equal to that of the medium

range order). Because most of the voltage drops across that

barrier, one can write Vth ¼ lFth /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnðR=R0Þ
p

, in qualita-

tive agreement with the observations. On the other hand, the

usual relation Ith / expð�Ea=kTÞ / 1=R holds.

We now briefly discuss the case of extremely thin devi-

ces where optimum channel field emission described by Eq.

(25) or percolation conduction in very thin films described

by Eq. (27) can apply. Here, we use a possible example of

such data from Ref. 36 aimed at studying thickness depend-

ence in the limit of small amorphous volumes in GST PCM

cells. From that data, we have plotted the resistance R as

lnðR=R0Þ vs.
ffiffiffi

L
p

for thicknesses between 8 and 35 nm. As

show in Fig. 19, Eq. (25) provides good agreement with the

data which is indicative of the optimum channel field emis-

sion mechanisms (see Sec. IV F 2). However, as mentioned

in Sec. II, the thickness values were not directly measured

but were inferred from IV measurements using a modified

PF model. On the other hand, the amorphous thickness was

varied by varying the reset pulse, which can also affect the

crystal fraction in the resulting amorphous region. In that

FIG. 18. Fitting the data of Fig. 17 in the domain of V < 1:0 V, which

excludes the steep increase near threshold. The models with lnðI=I0Þ /
ffiffiffiffi

V
p

and lnðI=I0Þ / V, fit equally well, while that of lnðI=I0Þ / �1=
ffiffiffiffi

V
p

remains

outstanding.

FIG. 19. Logarithm of film resistance R vs. square root of thickness L. Data

from Ref. 36 (circles) is fit using the optimum channel field emission mecha-

nism of Eq. (23).
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case, conduction through crystalline inclusions should be

accounted for.

We shall end this section with a comment regarding pos-

sible effects of the Coulomb blockade in extremely small

structures.86,87 Coulomb-blockade effects (whereby the Cou-

lomb interaction between electrons can prohibit their trans-

port) occur in systems where both the tunnel resistance

between two sites is large (r 
 �h=e2 � 10 kX) and the

charging energy, (u � e2=2C), where C is the capacitance of

the site, of an excess electron is large compared to kT. The

individual sites for the system under consideration can be ei-

ther localized electronic centers underlying hopping

transport or small sample electrodes. As a very rough esti-

mate we assume a current of e=s0 between two centers in

response to the potential difference kT=e. This leads to the

resistance r � kTs0=e
2 � 1 MX; it can be even much

greater, since the transition time in reality is much longer

than s0. The capacitive energy can be estimated as simply

the Coulomb repulsion energy of two electrons at the same

center, Uc � 0:1� 0:3 eV. In that case, the Coulomb block-

ade will impose its related activated transport with the

energy barrier � Uc. We note that even for the case of realis-

tically small devices, the capacitive energy can be signifi-

cant, u � ee2=2L � 1 eV for the device of characteristic

dimensions of L � 10 nm. In all such cases, single electron

transport will dominate the observed current. So far, the pos-

sibility of such effects was not considered in connection with

chalcogenide glasses. On the other hand, the much larger,

above 100 nm structures dominated by band transport, will

be rather insensitive to the Coulomb blockade effects.

VI. CONCLUSIONS

In conclusion, we have presented an overview of the ex-

perimental data and a comparative analysis of different dc

transport mechanisms based on the established physics of

chalcogenide glasses. Several models are capable of account-

ing for the various observed exponential field dependencies

of the conductivity. Of the mechanisms considered, Poole-

Frenkel ionization, field-induced delocalization of tail states,

space-charge limited currents, optimum channel hopping in

thin films, optimum channel field emission, percolation band

conduction, and transport through crystalline inclusions are

all candidate explanations, while Schottky emission and clas-

sical hopping conduction are very unlikely. For very thin

films (L � 10 nm), strong thickness-dependent conductivity

could be manifested by either percolation band conduction

or optimum channel hopping via states with atypically small

polaron clouds.

We have shown that it is difficult to identify a particular

mechanism through the analysis of IV data alone and further

studies are required to discriminate between the different

mechanisms. The possibility of interplay between them

makes the problem even more challenging.
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