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Abstract 
Large-scale production of graphene and reduced-graphene oxide (rGO) requires low-cost and eco-

friendly synthesis methods. We employed a new, simple, cost-effective pyrolytic method to synthetize 

oxidized-graphenic nanoplatelets (OGNP) using bamboo pyroligneous acid (BPA) as source. Thorough 

analyses via high-resolution transmission electron microscopy and electron energy-loss spectroscopy 

provides a complete structural and chemical description at the local scale of these samples. In particular, 

we found that at the highest carbonization temperature the OGNP-BPA are mainly in sp2 bonding 

configuration (sp2 fraction of 87%). To determine the electrical properties of single nanoplatelets, these 

were contacted by Pt nanowires deposited through focused-ion-beam-induced deposition techniques. 

Increased conductivity by two orders of magnitude is observed as oxygen content decreases from 17 to 

5%, reaching a value of 2.3x103 S/m at the lowest oxygen content. Temperature-dependent conductivity 

reveals a semiconductor transport behavior, described by the Mott three-dimensional variable range 

hopping mechanism. From the localization length, we estimate a band-gap value of 0.2(2) eV for an 

oxygen content of 5%. This investigation demonstrates the great potential of the OGNP-BPA for 

technological applications, given that their structural and electrical behavior is similar to the highly-

reduced rGO sheets obtained by more sophisticated conventional synthesis methods. 

 1. Introduction 
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Graphene oxide (GO) and reduced GO (rGO) have attracted research attention because of their 

interesting tunable properties, as well as their use as precursors for mass production of graphene sheets 

[1-9]. Tunability, in combination with the superior properties intrinsic of graphene, makes rGO 

promising candidate for next-generation nanoelectronic devices. Graphene oxide can be described as an 

oxidized form of graphene, decorated mostly by hydroxyl and epoxy functional groups distributed 

randomly along the hexagonal network of carbon atoms and, additionally, by carboxyl groups positioned 

at the sheet edges [10-14]. Nevertheless, for the case of oxygen content below 25%, it has been predicted 

that only hydroxyl species can be present [12]. By nature, GO is electrically insulating and, thus, cannot 

be used without further processing as a conductive nanomaterial. However, it has been shown that 

reduction of GO is an effective method to obtain metallic or semiconductor structures [4, 15-18]. 

Reduction of GO is typically carried out through chemical reduction [3, 5, 19], thermal annealing [14, 

18, 20], or a combination of both [21]. However, a considerable number of structural defects are 

concomitantly created during these processes having strong implications on the nature of electrical 

transport in these materials. Transition from insulator to conducting state via chemical/thermal reduction 

to derive pure graphene from GO for large-scale production is still not a trivial issue. Long reaction 

times, multiple steps, and toxicity of the chemical agents are some barriers that still need to be solved.  

It is known that C-O bonds present in GO modify the atomic structure of pristine graphene. A 

comprehensive analysis of the atomic structure of GO and rGO is considered an important step to 

understand the electronic transport of this material. First principles calculations [22] have shown that by 

changing the oxidation level and the relative compositions of the epoxy and hydroxyl groups, moderate 

bandgaps can be opened. Several theoretical models of atomic structure have been also proposed in the 

literature, such as the Hoffmann model [23], Lerf-Klinowski model [24], Scholz-Boehm model [25], 

Nakajima-Matsuo model [26], Ruess model [27], Zsabo-Dekany model [28]. On the other hand, 

experimental high-resolution transmission electron microscopy (HRTEM) investigations have helped to 

elucidate the distribution of the oxygen-functional groups as well as the kind of structural- and 

topological defects [29-33]. Nevertheless, until now the exact atomic structure of GO and rGO is still 

unresolved. In general, recent reports describe GO sheets as a random distribution of oxidized regions 

bearing the oxygenated functional groups, coexisting with non-oxidized regions wherein most of the 

carbon atoms preserve sp2 hybridization.  

  Electrical conductivity and oxygen concentration are strongly correlated in rGO. In general, it 

has been shown that by increasing the reduction level of rGO, i.e., by restoring sp2 hybridization, room 

temperature conductivity tends to increase [15, 17, 18, 34]. In rGO, electrical conduction is caused by 

sp2 hybridization due to the presence of delocalized electrons (π orbital), which freely move throughout 

the graphitic structure. In oxygenized areas containing a high amount of carbon domains showing sp3 

hybridization, this material behaves as insulator. Charge transport mechanism in a landscape of 

coexisting sp2/sp3 regions is akin to that of disordered semiconductors where electron localization and 

hopping conduction play a significant role. In fact, depending on oxygen content, rGO-based materials 



undergo insulator-semiconductor-semimetal transitions with reduction. Studies varying the sp2 fraction 

have shown that diverse types of conduction mechanisms can take place depending on whether the rGO 

sheet is lightly or highly reduced [43, 47]. Specifically, Eda et. al., [43] report two different mechanisms 

describing the conductivity for low-range and high-range sp2-fraction. While the former is dominated 

by hopping or tunneling amongst the sp2 clusters, the latter can be described by percolation process.  For 

electrically conductive systems, i.e. highly reduced rGO, graphene-based polymer nanocomposites, 

percolation theory has been developed to describe the geometrical and temperature dependences of the 

conductivity [Mutlay and Tudoran]. On the other hand, for systems showing semiconductor behavior 

[12, 22, 35], Amirhasan Nourbakhsh et al., [36] report bandgap generation as a result of oxygen 

functionalization of graphene for O/C ratio higher than 11.1%. However, authors in [37] claimed that 

rGO is expected to have a metallic-like behavior for O/C ratio up to 25%. Until now, consensus has not 

been reached about the sp2 fraction at which the transport mechanism changes from metallic- to 

semiconductor-like behavior; that is, why an experimental study in a range of low oxygen content, lower 

than 25%, is of great relevance to gain further insight in the electrical behavior in this low-oxygen 

regime. 

Regarding the temperature dependence of the conductivity in rGO exhibiting semiconductor-

like transport behavior, different conduction mechanisms have been reported [3, 4, 16, 38-42]. Authors 

in [43] found that while at a higher temperature regime of well-reduced GO thermally-excited carriers 

dominate the conduction, the low-temperature regime must be described through a variable-range 

hopping (VRH) model. The temperature-dependent longitudinal conductivity considering the VRH 

model can be described by the general form: lnσ(T) α (T0/T)1/ d+1, where d describes the dimensionality 

of the system [44]. Thus, d = 2 and 3 correspond to the Mott VRH conduction mechanism, which was 

proposed for 2D and 3D systems, respectively, without considering Coulomb interaction. When 

Coulomb interaction between initial and final hopping sites exists, Efros and Shklovskii [45] proposed 

the case of d = 1 for the long-range hole-electron interaction at the Fermi level. Finally, d = 0 corresponds 

to the Arrhenius-type for thermal-activated conduction mechanism. It is worth mentioning that the first 

three possibilities have also been applied for analysis of charge transport mechanisms in non-crystalline 

materials [46]. 

Large-scale graphene production obtained via rGO exfoliation is still difficult. Defect formation 

or intercalated species like water molecules make the complete control of exfoliation a challenge [48]. 

In general, to avoid sophisticated GO reduction processes and eventual environmental contamination 

from the reducing agents, simple, green, and cost-effective methods are highly desirable. In a recent 

work, we reported on a new, simple, cost-effective method for the synthesis of oxidized-graphenic 

platelets by using bamboo pyroligneous acid (BPA) as source, showing similar vibrational properties as 

rGO obtained via conventional chemical methods [49]. The present work seeks to gain insight into the 

local atomic structure and electrical conductivity behavior of OGNP-BPA, given that research on these 

kinds of properties is of relevance for evaluating the impact on technological applications of this carbon 



material obtained through the new fabrication method using natural bamboo as source. We report the 

electrical transport characterization of single OGNP-BPA for oxygen content ranging from 5 to 17%. 

For electrical characterization, single nanoplatelets were contacted by focused-ion-beam-induced 

deposition of Pt nanowires, allowing the intrinsic resistance to dominate over the contact resistances. 

Measurements of current-voltage characteristic at room-T and temperature dependent resistivity 

demonstrate that OGNP-BPA show comparable conductivity values as the conventionally synthetized 

rGO sheets (referenced above) with values around 2.3 x 103 S/m at room temperature and 

semiconductor-like behavior with bandgap value up to 0.30 eV for the highest oxygen concentration. 

 

2. Experimental 

Oxidized-graphenic nanoplatelets studied in this work were obtained by thermal decomposition method 

using bamboo pyroligneous acid (BPA) extracted from Guadua angustifolia Kunth, macana biotype. 

BPA was obtained by a first pyrolysis process at 973 K using a pyrolysis system under a controlled 

nitrogen atmosphere. We, thereafter, used the BPA as precursor for OGNP. For this, a second pyrolysis 

process using the BPA was carried out at different carbonization temperatures (TCA), with TCA varying 

from 673 to 973 K. Varying TCA allows modifying the crystal structure and oxygen-containing functional 

groups present in the samples. When the second carbonization process is completed, oxidized-graphenic 

material is obtained as macro foam, which then turns into nanoplatelets powders by mechanical grinding 

with a ceramic hand mortar. A detailed description of the method for obtaining oxidized-graphenic 

material can be found in a previous work [49].  

HRTEM, electron diffraction (ED) and electron energy-loss spectroscopy (EELS) spectra were 

performed on a FEI Titan Cube microscope operating at 80 kV and equipped with a Cs image corrector 

and a Gatan Tridiem spectrometer. The EELS experiments were performed at liquid nitrogen 

temperature to hinder carbon contamination. The probe diameter for EELS acquisition was around 30 

nm. Convergence and collection angles were 4.6 and 20 mrad, respectively. The energy resolution, 

measured as the full width at half maximum of the zero loss peak (ZLP), was 0.8 eV with an energy 

dispersion of 0.2 eV/pixel and 0.6 eV for a dispersion of 0.05 eV/pixel. The first dispersion was used 

for elemental quantification and the second one for fine-structure analysis and to determine the sp2 

fraction. The typical acquisition times for core-loss and low-loss spectra were 16 and 0.2 seconds, 

respectively. Background subtraction for the core-loss spectra was performed by modeling the usual 

inverse power law function and multiple scattering was then removed by Fourier-ratio deconvolution 

[50] with the low-loss spectrum obtained for exactly the same region of the sample. Oxygen content was 

then determined from EELS elemental quantification. The sp2 ratio was determined by using spectra of 

a highly ordered pyrolytic graphite sample obtained under the same experimental conditions. The exact 

procedure is explained elsewhere [51]. 

Mass density and absolute thickness of the analyzed nanoplatelets were obtained by analyzing 

the low-loss spectra. For this purpose, the low-loss spectra were deconvoluted by the ZLP by using the 



PEELS program [52] and the single-scattering spectra were obtained by following Stephen’s procedure 

[53], which also provided the t/λ ratio (t is the thickness of the analyzed crystal and λ is the inelastic 

mean free path). For each spectrum, the (π + σ) volume plasmon was then modelled by the Drude model 

over the top 75% of the plasmon peak intensity (Figure S1 in Supplementary Information) in order to 

extract the plasmon energy, EP. This value was then used in the following relation [54] to determine the 

mass density and by assuming that carbon contributes to four valence electrons and oxygen contributes 

to six: 

𝜌𝜌 =  
𝐸𝐸𝑃𝑃2  ×  𝑚𝑚∗ × 𝜖𝜖0 × 𝜇𝜇 × (12 + 4𝑋𝑋𝑂𝑂) 

ħ2  × 𝑒𝑒2 × (4 + 2𝑋𝑋𝑂𝑂)
 

Where ρ is the mass density, EP is the plasmon energy, ε0 is the vacuum permittivity, μ is the atomic 

mass unit, e is the elementary charge, ħ is the Dirac constant, XO is the atomic fraction determined from 

core-loss EELS spectra (and by assuming that XC + XO = 1), and m* is the effective electron band mass 

taken as m* = 0.87 m [55, 56]. Sample thickness was determined by estimating λ with the modified 

Iakoubovskii formula [54, 57], using mass density and oxygen fraction as inputs and yielding a value of 

λ = 106 nm. This approach has been shown to yield a reasonable estimation of absolute thickness [58]. 

We also used energy dispersive X-ray spectroscopy (EDS) in a scanning electron microscope 

(SEM, see below) to complete the compositional study and check oxygen content (atomic percent, CO). 

In order to perform electrical measurements of individual nanoplatelets, the samples were prepared by 

suspending OGNP-BP in isopropanol and depositing them in proximity to the metallic contact pads 

(fabricated firstly by optical lithography) on a SiO2/Si substrate. Individual nanoplatelets were then 

located at low voltages (< 5 kV) using a SEM equipped with a focused ion beam (FIB) (Helios 650 

model by FEI). The focused ion beam induced deposition (FIBID) technique was used to deposit four 

Pt lead wires to connect the nanoplatelets to the metallic contact pads where micro-probes were 

positioned. The Pt-based contacts deposited optimally by FIBID allow low-contact resistivity to perform 

noise-free electrical characterization of micro- or nanostructures [59, 60]; for more details of this 

technique please refer to [61]. The SEM images of the experimental setup displaying the micro-probes, 

the metallic contact pads, and Pt wires on a single OGNP-BPA are shown in figure 1. The electrical 

measurements were performed by injecting current in a range of ±6 µA on the two external contacts 

using a Keithley 6220 DC current source; while the voltage was measured at the two internal contacts 

with a Keithley 2182A nanovoltmeter (see the bottom right panel in figure 1). Temperature-dependent 

measurements of the resistance were performed within a vacuum chamber using a closed-cycle Helium 

cryostat system. 

 

3. Results and Discussion 

3.1 Morphology, structural and chemical investigations 



To gain further insight on the structural and chemical properties, HRTEM and EELS analyses were 

performed on the nanoplatelets. A combination of TEM and EELS is a powerful tool to get access to 

valuable information with nanometer or sub-Ångström resolution [62-65]. In particular, a wealth of 

 
Figure 1. Scanning electron microscopy image of the experimental setup displaying the micro-probes 
and the metallic contact pads (left), zoomed area of region R1 showing the Pt-wires grown via FIBID 
technique on a SiO2/Si substrate (top right), and zoomed area of region R2 showing a typical OGNP-
BPA with lateral dimensions around 7 µm and thickness t < 100 nm, and Pt contacts to perform the 
electrical measurements (bottom right). 
 

chemical information related to elemental quantification, mass density, local chemical environment, 

valence state and bonding hybridization can be extracted from carbon nanostructures and other materials 

[55, 66, 67].  Figures 2(a) and 2(b) show TEM micrographs of the samples prepared with the highest 

TCA (973 K) and the lowest one (673 K), respectively. Thin nanoplatelets are clearly visible upon the 

TEM carbon membrane. Nanoplatelets size is typically in the order of a dozen micrometers and presents 

a thickness, as estimated from low-loss EELS spectra, ranging between 25 and 60 nm.  

Figures 2(c) and 2(d) show two HRTEM micrographs of the samples prepared with a TCA of 973 and 

673 K, respectively. The presence of disordered graphitic clusters is clearly highlighted (blue arrows in 

figure 2(c)) for the sample prepared at TCA of 973 K, while the micrograph of the sample prepared at TCA 

of 673 K is more characteristic of disordered materials. The selected area electron diffraction (insets of 

figures 2(a) and 2(b)) show diffuse rings characteristic of disordered and low-order material. The 

random attachments of the oxygen functional groups on the top and bottom surfaces of OGNP-BPA 

monolayers play a crucial role in determining the stacking order; because they: i) break the symmetry 

of the subjacent honeycomb carbon lattice; ii) introduce a slight roughness, which is originated from 

out-of-plane lattice distortions of the C-O bonds and iii) increase the interlayer spacing (XRD 

diffractograms in Figure S2 in supplementary information, confirm an increased interlayer spacing with 

increasing oxygen content). Due to the higher interlayer spacing, individual layers show rotational -and 

tilt- disorder relative to their neighbors and thus, no preferred stacking orientation. Nevertheless, it is 



worth to mention that diffracted rings are better defined for the sample prepared with a TCA of 973 K 

and, thus, confirm the higher local order of this sample. 

 

 

Figure 2. (a) and (b) Low-magnification TEM micrographs of the sample prepared with a TCA of 973 

and 673 K, respectively. Insets show the selected area electron diffraction. (c) and (d) HRTEM 

micrographs of the sample prepared with a TCA of 973 and 673 K, respectively. The blue arrows 

highlight the disordered graphitic clusters. 

Despite the short range crystal order and the incoherence along the c-direction due the high 

interlayer spacing values, accurate EELS measurements gave evidence about the high level of sp2-

bonds in our nanoplatelets. Figure 3(a) shows the EELS spectra of the samples prepared at 973 and 

673 K. The C-K edge (roughly situated between 280 and 325 eV) and the O-K edge (situated around 

530 eV) are clearly visible. In addition, a change of the slope around 400 eV (highlighted by a red 



arrow in figure 3(a)) indicates the presence of nitrogen at chemical trace level. The XPS analyses 

performed on the whole powders confirmed the presence of nitrogen with a concentration below 1% 

for all the samples. The O/(C+O) ratio determined by EELS is around 3% and 12% for the samples 

prepared at 973 and 673 K, respectively, although it is important to bear in mind that precise and 

accurate EELS quantification requires comparison with reference materials [67]. Figure 3(b) shows 

the C-K edge of the two samples with a higher resolution. Between 290 and 305 eV, the spectrum of 

the 

sample prepared at 973 K presents characteristic graphite-like fine structures (blue arrows in figure 

3(b)), indicating the influence of band-structure effect. This is of importance because it confirms the 

presence of a short-range crystalline order and shows that locally the carbon is mainly in threefold (sp2) 

bonding configuration. In the same energy range, the C-K edge of the sample prepared at 673 K is 

featureless and similar to the spectra of amorphous carbons [51, 68]. At 286.7 eV, the spectrum of the 

sample prepared at 673 K show a supplementary peak (green arrow in figure 3(b)), which could be 

linked to the presence of oxygen. For instance, C=O bonds give rise to transitions to π* states in the 

energy range between 287.7 and 288.3 eV and C-H bonds give rise to transitions to σ* states in the 

energy range between 287.6 and 288.2 eV [69, 70]. However, the determination of the origin of this 

supplementary transition based solely on the energy position is particularly difficult. From the core-loss 

spectra, the sp2 fraction (sp2 character/(sp2 + sp3 characters)) has been derived and is equal to 87% and 

66% for the samples prepared at 973 and 673 K, respectively. The decreased sp2 character is also 

confirmed by the low-loss spectra, which show a strong decrease of the π plasmon for the same sample 

(Figure S1 in Supplementary Information). In addition, the mass density of the nanoplatelets was 

calculated from the low-loss spectra and is around 1.80 and 1.92 g.cm-3 for the samples prepared with a 

TCA of 973 and 673 K, respectively. These values constitute an intermediate between the values 

corresponding to glassy carbon and pure graphite (1.44 and 2.27 g.cm-3, respectively) [71].The results 

obtained via electron diffraction, HRTEM, and EELS analyses are consistent and provide a complete 

structural and chemical description at the local scale of these samples. During synthesis, the lowest TCA 

yields nanoplatelets that are mostly disordered and with an O/(C+O) ratio of 12%. On the other hand, 

the highest TCA yields nanoplatelets that show mostly sp2 bonding configuration with a short-range 

crystalline order and an O/(C+O) ratio of 3%. These important chemical and structural modifications 

should have a strong impact on the electrical properties. 

 



 

 

Figure 3. (a) EEL spectra of the samples prepared with a TCA of 973 K (black curve) and 673 K (red 

curve) and recorded with a dispersion of 0.2 eV/pixel. The red arrow highlights the position of the N-

K edge. (b) EEL spectra of the C-K edge recorded with a dispersion of 0.05 eV/pixel. The blue arrows 

highlight the graphitic fine structures of the sample prepared at 973 K and the green arrow highlights 

the supplementary peak observed at 286.7 eV for the sample prepared at 673 K (see text for more 

details). All the spectra have been submitted as references to the EELS database [72]. 

 
3.2 Electrical characterization  

3.2.1 Room temperature conductivity: Effect of the oxygen content 

Variation of synthesis conditions, specifically carbonization temperature, leads to modification of the 

oxygen-containing functional groups, as well as of the crystal structure in OGNP-BPA, as presented 

above and also confirmed by X-Ray diffraction (Figure S2 in Supplementary Information) and by other 

techniques [49]. For electrical characterization we focused on OGNP-BPA obtained at higher TCA (873 



and 973 K), which ensures an improved crystal structure, as confirmed by HRTEM (Figure S3 in 

Supplementary Information). Under these temperature conditions, the oxygen content is below 20%, 

which is our interest, given that it is known that within this oxygen regime the electrical behavior in GO 

is still unclear. Room temperature electrical conductivity was obtained via current-voltage (I-V) 

measurements for the oxygen atomic concentrations CO = 5, 8, 13 and 17%. All I-V curves exhibit ohmic 

behavior along the entire current range (± 6 µA), allowing calculation of conductivity values from the 

slope and geometric parameters of the nanoplatelets obtained via SEM. Room temperature conductivity 

as a function of CO is shown in figure 4. Decreased oxygen content from 17 to 5% resulted in 

conductivity rise by two orders of magnitude, starting from 6.4x101 S/m and reaching a value of 2.3x103 

S/m at the lowest oxidation degree. These values are comparable with literature reports on reduced GO 

obtained through chemical/thermal reduction methods, where it has been shown that conductivity can 

vary from 5 to 5x104 S/m, depending on the degree of reduction [2, 47]. When O atoms from the 

functional groups are released, the graphene oxide lattice, rich in sp3 hybridization, transforms to a 

graphene-like structure due to the restoration of sp2 hybridization and, thereby, its conductivity 

increases. Also, rGO sheets, obtained by chemical reduction, exhibit only moderate room-temperature 

conductivities, predominantly as a consequence of crystal defects (like extended holes) that cannot be 

healed during the reduction process. Formation of holes in our OGNP-BPA can be considered minimal, 

as evidenced above by HRTEM examinations. 

 
Figure 4. Electrical conductivity as a function of oxygen content (CO = 5, 8, 13, and 17%).The line is a 

guide to the eye. Inset: Fit (solid line) to the experimental data (full diamonds) using the expression for 

carrier concentration for an intrinsic semiconductor.  



To gain more insight on the dependence of conductivity on oxygen concentration, shown in 

figure 4, we consider the relation 𝜂𝜂 ∝ exp �− 𝐸𝐸𝑔𝑔
2𝑘𝑘𝐵𝐵𝑇𝑇

�, which relates the carrier concentration to the 

temperature and bandgap energy, Eg, for an intrinsic semiconductor; with kB being the Boltzmann 

constant. Thus, if a linear dependence of the bandgap on oxygen concentration is assumed, as proposed 

in [12], and because σ is proportional to η, ln(σ) will behave linearly with CO. Our experimental data, 

inset in figure 4, agree well with these theoretical assumptions. For contextualization, we compare our 

data in this plot with that reported for graphite (yellow square). As can be seen, the conductivity for the 

lowest value of oxygen content found in OGNP-BPA is still around one order of magnitude lower than 

the value for graphite (2 x 104 Sm-1), thereby, elucidating the direct effect of the oxygen functionalized 

groups on electrical conductivity. 

By using the explicit relationship σ = σ0 exp(-Eg/(2kBT)) with σ0 = 2x104 Sm-1, as reported for 

graphite at T = 300 K, and considering conductivity values for CO = 5, 8, 13, and 17%, reported in figure 

4, we estimate  the energy bandgap values as a function of CO, as shown in figure 5, along with a fit line 

using the general quadratic dependence of the bandgap with the scatter center X applied for 

semiconductors [73, 74]. Bandgap energy shows a variation from 0.30 to 0.11 eV by decreasing the 

oxygen content. Agreement between our experimental results and theoretical prediction is quite 

remarkable, providing evidence of oxygen-mediated charge-transport scattering in our OGNP-BPA and 

suggesting that the OGNP-BPA exhibit narrow-gap semiconductor behavior. 

 
Figure 5. Bandgap (Eg) of OGNP-BPA plotted vs. their corresponding oxygen atomic percentage; red 

solid line is the fit using the general quadratic dependence of the bandgap with the scatter center X 

applied for semiconductors [73, 74].  



3.2.2 Temperature dependence of electrical conductivity 

It has been reported that temperature dependent conductivity in case of semiconductor-like behavior of 

rGO can be explained by variable-range hoping (VRH) through the localized states [16,?,?]. While in 

case of electrical conductive system, percolation models are able to fit experimental data [Mutlay and 

Tudoran]. To gain insight into the energies associated with the charge transport in our OGNP-BPA, the 

temperature dependence on conductivity is investigated. Figure 6(a) shows the temperature dependence 

of the resistivity for OGNP-BPA with CO = 5%. As it can be seen, resistivity increases with decreasing 

temperature exhibiting a semiconductor-like behavior. The total variation of the resistivity in this range 

is less than one order of magnitude, showing weak temperature dependence – as reported for highly 

reduced rGO [47]. We have plotted ln(σT1/2) as a function of T−1/4 within 25 – 300 K, which is shown in 

figure 6(b) along with a best fit line from the VRH model. These results suggest that the charge transport 

in OGNP-BPA is dominated by the Mott three-dimensional VRH transport behavior. For this case, the 

temperature dependence on conductivity can be expressed as: 

 

  𝜎𝜎 =  𝜎𝜎0
𝑇𝑇1/2 𝑒𝑒𝑒𝑒𝑒𝑒 �− �

𝑇𝑇0
𝑇𝑇
�
1
4� �                                     (1) 

 

where 𝜎𝜎0 and 𝑇𝑇0 are given by: 

    𝜎𝜎0 =  3𝑒𝑒
2𝜈𝜈𝑝𝑝ℎ

(8𝜋𝜋)1/2 × �− �𝑁𝑁(𝐸𝐸𝐹𝐹)
α𝑘𝑘𝐵𝐵

��
1
2�                                                 (2) 

 

𝑇𝑇0 = 16𝛼𝛼3

𝑘𝑘𝐵𝐵𝑁𝑁(𝐸𝐸𝐹𝐹)
                                                                   (3) 

 

where 𝜈𝜈𝑝𝑝ℎ is the phonon frequency (≈1013 Hz) at Debye’s temperature. N(EF) is the density of the 

localized electron states at Fermi’s level and α is the inverse localization length of wave function 

associated with the localized state. As seen from the graph, ln(σT1/2) versus T -1/4 in figure 6(b), the plot 

exhibits good linear behavior along the entire T range, having a linearity factor of 0.997. From the slope 

and intercept values, parameters T0 = 7.1 x 104 K and σ0 = 8.8 x 103 Sm-1 are obtained. Using the extracted 

values for T0 and σ0 , we calculated the density of the localized states at Fermi´s Level N(EF)= 1.2 x 1021 

eV-1cm-3 and a value for α of 7.78 x 106 cm-1 according to eq. (2) and (3). Likewise, localization length 

ξ = 1/α is determined as 1.3 nm. Thus, if assuming a wave function confined inside the graphitic domains 

of size D ~ ξ and considering the linear dispersion relation for graphene as E(k) = ħvFk, with vF being  

the graphene Fermi velocity, and with k ~ 1/ 2ξ, the bandgap energy can be estimated as 0.22 ± 0.02 eV, 

in good agreement with the value of 0.25 eV of oxidized graphene reported elsewhere [75].  

 



 
Figure 6. (a) Temperature variation of the resistivity of nanoplatelets with 5% oxygen content. (b) Fit 

(solid line) to the experimental data (open circles) using the Mott 3D VRH transport model in eq. (1). 

 

 



4. Conclusions 

Oxidized-graphenic nanoplatelets have been synthesized using bamboo (Guadua angustifolia Kunth, 

macana biotype), which is a natural, cheap, highly renewable and abundant material. The HRTEM and 

EELS analyses have provided a complete structural and chemical description of these samples. We have 

shown that by varying the carbonization temperature, we can obtain OGNP with oxygen content below 

20% and modify their local atomic structure. Nanoplatelets synthetized at the highest temperature of 

973 K present lower oxygen content with short-range crystalline order and a carbon environment that is 

mainly in sp2 bonding configuration (sp2 fraction of 87%). On the other hand, nanoplatelets synthetized 

at the lowest temperature of 673 K present higher oxygen content and have a more disordered crystal 

structure with a mix of sp2 and sp3 characters (sp2 fraction of 66%). Moreover, we presented the electrical 

conductivity of single oxidized-graphenic nanoplatelets and investigated the effect of oxygen content 

via the combination of in-situ EDS measurements and electrical measurements.  We found an increment 

by two orders of magnitude of the conductivity, reaching a value of 2.3 x 103 S/m at the lowest oxygen 

atomic percentage of 5%. The temperature dependence on conductivity showed typical semiconductor 

behavior, which could be described by the Mott three-dimensional variable-range hopping mechanism 

(3D-VRH). Estimations of bandgap energy showed variation from 0.30 to 0.11 eV by decreasing oxygen 

content from 17 to 5%. These results demonstrate that OGNP-BPA possess similar electrical behavior 

as conventionally obtained rGO sheets, which represents an significant advance towards commercially 

feasible and environmentally-sustainable fabrication of carbon nanomaterials from renewable natural 

source. 
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