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Abstract: Aluminum-based ceramics are used in industry to produce cutting tools that resist extreme
mechanical and thermal load conditions during the machining of Ni-based and high-entropy alloys.
There is wide field of application also in the aerospace industry. Microtexturing of cutting ceramics
reduces contact loads and wear of cutting tools. However, most of the published works are related to
the electrical discharge machining of alumina in hydrocarbons, which creates risks for the personnel
and equipment due to the formation of chemically unstable dielectric carbides (methanide Al3C4 and
acetylenide Al2(C2)3). An alternative approach for wire electrical discharge machining Al2O3 in the
water-based dielectric medium using copper tape of 40 µm thickness and TiO2 powder suspension
was proposed for the first time. The performance was evaluated by calculating the material removal
rate for various combinations of pulse frequency and TiO2 powder concentration. The obtained kerf
of 54.16 ± 0.05 µm in depth demonstrated an increasing efficiency of more than 1.5 times with the
closest analogs for the workpiece thickness up to 5 mm in height. The comparison of the performance
(0.0083–0.0084 mm3/s) with the closest analogs shows that the results may correlate with the electrical
properties of the assisting materials.

Keywords: alumina; assisting coating; brass wire; cutting ceramic; electrical discharge machining;
electrode; erosion; insulating; microtexturing; sublimation

1. Introduction

Cutting ceramics are used in industry to produce cutting tools that resist extreme me-
chanical and thermal load conditions during the machining of Ni-based and high-entropy
alloys [1–4] due to achieving temperatures up to 800 ◦C in the contact area and other
specific properties of these materials [5–7]. The wide field of applications includes the
aerospace, automotive, chemistry and nuclear industries [8–11]. In cutting tools, micro-
texturing of cutting ceramics reduces contact loads and significantly reduces the wear of
cutting tools and coatings [12–14]. Microtexturing is often provided by a different group of
the machining technologies, such as:

• Chemical and electrochemical processing, including chemical etching and electrochem-
ical machining [15,16];

• Mechanical processing with a cutting tool or hydroabrasive jet [17,18];
• Thermal ablation process based on laser, electron beam, and electrical erosion of

the materials [19–23].

Electrical discharge machining has multiple known advantages related to the physics
of the process and geometrical features:

• Ability to work with the preproduced electrode of any shape that allows microtextur-
ing in one single approach of the electrode tool to the workpiece (sinking) [24–26];
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• Ability to produce high-precision linear surfaces by a constantly rewinding electrode
tool that excludes any influence of the tool wear on the tolerance of the shaping [27,28];

• Low tool wear rate that is especially relevant in the case of sinking in comparison with
other technologies using a preproduced tool where the operational life of the tool can
count by a few minutes that often requires multilayer and nanocoatings [29–32];

• Ability to process the material despite their hardness and viscosity (in the case of
aluminum and titanium alloys, composites) [33–36];

• Accuracy up to 80–100 nm due to the use of the new class of linear engines [37,38];
• Ability to perform electrical and acoustic monitoring of process efficiency [39,40].

The problem of applying electrical discharge machining methods to the dielectric
materials such as cutting ceramics such as Al2O3, AlN, SiAlON, Si3N4, ZrO2, etc., is in the
absence of required electrical properties of these materials [41–46]. That can be solved by
adding a conductive phase into the ceramic structure of the sintered composite [47–49] that
influence as well on the physical and mechanical properties of a new material depending
on the conductive and main material fraction or by adding assisting conductive coating or
powder in the working area [50,51]. The method was first proposed and patented in 1986
by Russian scientists [52]. In this context, electrical discharge machining of ZrO2 ceramic
in hydrocarbons showed the most outstanding results [53–57] that can be related to the
thermochemical properties of this material when thermodissociated Zr4+ and metal-like
carbide ZrC (delocalized metal bond d-element carbide) exhibit similar electrical conductivity
(≤44.1 µΩ·cm at a normal temperature depending on purity) and assists processing [58,59].
However, the works published on other ceramics do not show any significant advances in
efficiency-maximal depth of 1693 µm from the coating surface after 150 min of processing by
the copper-tungsten electrode of Ø308 µm for AlN, for example [46,60–62].

It should be noted that the published works are related to the electrical discharge
machining of alumina in hydrocarbons [51,63–66], where obviously during thermochemical
dissociation of Al2O3 [67,68], released aluminum ion Al3+ binds with dissociation products
of hydrocarbon to form methanide Al3C4 and acetylenide Al2(C2)3 [44,68–70]. In other
words, it leads to the formation of chemically unstable dielectric carbides exhibiting di-
electric properties that not only hampers processing but also creates risks for personnel
and equipment.

The alternative combined approach for wire electrical discharge machining of Al2O3
in the water-based dielectric medium was proposed for the first time (Figure 1).

1 
 

 
Figure 1. Existing methods of electrical discharge machining of non-conductive ceramics.
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Deionized water was chosen as a basis for assisting powder fluid to avoid formation
of the mentioned carbides. Powder-mixed electric discharge machining (PMEDM) was first
developed as an advanced technique to improve machining productivity [71–73]. The use
of powder material reduces dielectric medium strength, creating a more uniform density
of the electrical discharge at low pulse energy (Figure 2a–c), reducing surface roughness,
improving productivity, and reducing tool electrode wear compared with conventional
electrical discharge machining. A powder material (micro- or nano-sized) of titanium
dioxide, cesium dioxide, and other ceramic components is introduced into the working
area (interelectrode gap), which, upon reaching the temperatures of the discharge channel,
would acquire better conductive properties (Figure 3) and provoke denser discharges of
pulses during processing conductive materials. It should be noted that many conductive
materials exhibit a reversal trend [74–76]. The powder is mixed with the dielectric liquid in
the working tank. The literature describes two powder-mixed dielectric fluid circulating
systems: closed and open. The working reservoir with this suspension can be isolated from
the dielectric fluid circulation system in a closed system. In an open system, a powder-
mixed dielectric fluid circulates continuously [73].
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Figure 2. (a) Scheme of conventional electrical discharge machining of conductive materials;
(b) scheme of powder-mixed electric discharge machining of conductive materials; (c) developed
scheme of electric discharge machining of insulating materials using assisting electrode technique
(combined approach).
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Figure 3. Specific electrical conductivity of some substances: the field of limit values for conductive
materials is marked orange; for insulating materials, it is marked green; the boundary zone is marked
yellow; the materials chosen for the current research are marked red.

The present study used a closed system where current discharges were addressed to
the introduced micro-sized particles, uniformly suspended in the volume of the dielectric
medium (suspension) in the interelectrode gap. TiO2 material was chosen for assisting
powder due to the following reasons:

• It is commercially available and relatively safe for the personnel when working with
micro-sized particles in suspension (health hazard code 1: exposure may cause only
irritation with minimal residual damage, according to NFPA 704), toxic in the form
of nanoparticles;

• Insoluble in water;
• Exhibits increased electrical conductivity to a level close to the one for conductive

materials in the presence of heat (more than 1000 ◦C) (Figure 3);
• Exhibits semiconductive properties at normal temperatures (n-type with the band gap

Eg = 3.0 eV for rutile, Eg = 3.20 eV for anatase [77]; the less the band gap is, the more
conductive properties exhibit material [78,79]);

• Transforms into rutile form when heated.

The purpose of the study is to increase the productivity of electrical discharge machin-
ing of alumina using assisting means such as conducting coating powder-mixed dielectric
medium based on water. The performance is evaluated by calculating the volumetric
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material removal rate varying pulse frequency and powder concentration. The results of
the current study are compared with the closest analogs.

The scientific novelty consists of establishing stable relationships between machining
performance using the assisting electrode technique and the experimental factors, the
electrical properties of the assisting materials, and developing an alternative approach in
micro texturing cutting ceramics.

2. Materials and Methods
2.1. Sintering of the Samples

The corundum α-Al2O3 A16SG (Alcoa, New York, NY, USA) was used for producing
samples. The average particle diameter was 0.53 µm. Granulometric analysis of powder
was carried out on an optical granulomorphometer 500NANO (Occhio, Liege, Belgium).
Powder mixtures were prepared and ground in a Turbula multidirectional shaker (Eskens
B.V., Alpen aan den Rijn, The Netherlands) in ethanol in a polyethylene container at
150 rpm for 24 h. Suspensions were dried in a FreeZone2.5 lyophilizer (LabConco, Kansas,
MO, USA) at −50 ± 2 ◦C, while the sheath temperature was +23 ± 2 ◦C. During the
entire processing, the pressure in the chamber was 0.02 ± 0.01 mbar [80]. The powder
mixtures were freely poured into mechanically produced graphite molds [81] fabricated
of MPG-6 grade cold-pressed blanks of 1 µm-sized powder particles. Graphite molds
machining was carried out on a CTX beta 1250 TC turning and milling machine (DMG
MORI, Bielefeld, Germany) with a roughing spindle speed of 100–300 m/min, feed of
0.1 mm/tooth, finishing speed of 150–600 m/min, feed of 0.013–0.05 m/min, by a carbide
tool with a multi-layer combined PVD-coating [82,83]. Machining was accompanied by
parameter control using a diagnostic system (MSUT Stankin, Moscow, Russia) [84–86]. The
powder mixture was sintered in a graphite mold on a spark plasma sintering machine KCE
FCT-H HP D-25 SD (FCT Systeme GmbH, Rauenstein, Germany) at 1400 ◦C with a heating
rate of 100 ◦C min−1 at uniaxial pressure 80 MPa in vacuum for 10 min [48,87–89]. The
sintered discs were 65.5 mm in diameter and 10 mm in thickness.

Optical control was carried out on an Olympus BX51M instrument (Ryf AG, Grenchen,
Switzerland). Scanning electron microscopy of mechanically produced fracture and chem-
ical analyses were conducted on a VEGA3 instrument (Tescan, Brno, Czech Republic).
Sample density measurements were carried out in distilled water (ceramic samples were
boiled for 5 h and then soaked for 24 h) using the Archimedes principle and compared
with theoretical values (3.89 g/cm3 for Al2O3). X-ray diffraction analysis of the samples
was conducted on an Empyrean diffractometer (PANalytical, the Netherlands) using a tube
with a copper anode. The cross sections of the samples were prepared on ATM Machine
Tools (ATM Machine Tools Ltd., Wokingham, UK).

2.2. Electrical Discharge Machining

A two-axis wire electrical discharge machine ARTA 123 Pro (NPK “Delta-Test”,
Fryazino, Moscow Oblast, Russia) was used for experiments (Table 1). The open tank
system of the machine allows using any possible dielectric medium (deionized water,
mineral oil, water- or oil-based suspensions) out of the filtration system.

Table 1. Main characteristics of wire electrical discharge machine ARTA 123 Pro.

Parameters Value and Description

Max axis motions X × Y × Z, mm 125 × 200 × 80
Tool positioning accuracy, µm ±1

Average surface roughness parameter Ra, µm 0.6
Dielectric medium Any

Max power consumption, kW <6

A brass wire electrode of 0.25 mm in diameter fabricated of CuZn35 brass provided
texture formation on alumina without taking into account the spark gap (path offset). The
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preliminary testing in water-medium reduced the range of the machining factors. The
range of the chosen factors is presented in Table 2. The previously conducted work with
alumina showed that the optimal value of the operational current is 15 A. During the
study, it was decided to limit the research area to EDM factors such as pulse frequency, and
concentration of the powder in the fluid to make it more straightforward since the main
correlation between current, operational voltage, and character of the obtained wells on the
surface or material removal rate is known and understandable [90]:

∑ Fimp = I·VO (1)

where ΣFimp is the summarized force of working impulses in the system’s action, N; I is
current, A; and VO is operational voltage, V.

Table 2. Range of electrical discharge machining factors.

Factor Measuring Units Value

Operational voltage, VO V 108
Pulse frequency, f kHz 2; 5; 8; 11
Pulse duration, D µs 1

Rewinding speed, vW m/min 7
Feed rate, vF mm/min 0.3

Wire tension FT N 0.25

Machining is carried out according to the control program of the translational move-
ment of the wire electrode along the X-axis from the zero position to a depth of 0.98 mm
(taking into account the spark gap) [91–93].

The development of factors was carried out following the results of pre-implemented ex-
periments. The factors depended on the machine’s capabilities and were limited by the results
of each experiment. Each failed experiment minimized the range of the factors and assisted in
determining the optimal values in terms of the material removal rate (productivity) [94].

The coated blank was fixed on the machine table during experiments, ensuring im-
mobility. The basing was carried out by wire tool approach along the X- and Y-axes; the
surface of the coated workpiece was taken as zero. Before the start of processing, a spark
adjusted the wire electrode vertically along the Z-axis. The position from +2 to +3 mm from
the surface of the assisting coating was taken as the initial position of the wire electrode.
The nozzles of the working fluid are brought as close as possible to the coated blank after
the wire electrode location to ensure adequate flushing of the working area. The nozzles
from which the dielectric is supplied are located on two sides of the coated blank, directing
the jet into the interelectrode gap between the coated blank and wire electrode to ensure its
turbulent character. Processing is carried out with complete immersion in the dielectric.
When the workpiece is immersed, the dielectric level is provided above the workpiece
(blank) level by 1–2 mm. Before machining, the workpiece was held for 8–10 min in a di-
electric to avoid the influence of thermal fluctuations due to the difference in ambient
temperatures, electrodes, workpiece, and the dielectric fluid. At the end of the electrical
discharge machining, the blank was taken out from the tank. The resulting sample was
wiped with a rag in place. Formed textures (kerfs) were controlled optically. The scheme of
coated blank fixing on the equipment is shown in [95].

The parameters of the kerf were controlled by optical microscopy. Here and below,
the optical measurement error was calculated by the formula [96–99]:

δl = ±3 +
L
30

+
g·L

4000
, (2)

δt = ±3 +
L
50

+
g·L

2500
, (3)
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where δl is the longitudinal measurement error, µm; δt is the transversal measurement
error, µm; L is the measured length, mm; and g is the product height above microscope
table glass (taken equal to zero), mm.

The volumetric material removal rate (MRR) was calculated through the feed rate of the
wire electrode into the working area and the volume of removed material (Figure 4) [100]:

S =
1
2

r′w2(α− sin α) (4)

where S is the kerf area in the plan, mm2; r′w is the radius of the electrode tool taking
into account the spark gap (rw + ∆), mm; and α is the angle of the formed segment in the
plan, rad:

α = 2·arc cos
(

r′w − h
r′w

)
, (5)

where h is the depth of the kerf, µm. The radius of the electrode tool taking into account
the spark gap r′w is calculated as follows:

r′w = rw + ∆, (6)

where rw is the wire electrode radius (125 µm), µm; the spark gap ∆ was taken as 48± 9.6 µm for
the materials with the threshold conductivity from the previously conducted studies [39,90,91,101].
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The volume of removed material is calculated using the formula [90]:

V = S·l (7)

where l is the length of the kerf, µm, then the material removal rate is:

MRR =
V
t

(8)

where t is the processing time calculated from the feed rate vF of the electrode tool, s:

t(s) =
h(mm)

vF
(mm

s
) (9)

2.3. Assisting Suspension

Deionized water (LLC “Atlant”, pos. Marusino, Lyubertsy district, Moscow region,
The Russian Federation) following ASTM D-5127-90 with specific electrical resistivity
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up to 18.0 MΩ·cm was chosen as a suspension basis to avoid formation insulating and
explosive debris that may hamper electrical discharge machining and may have dramatic
consequence in terms of safety (formation of Al4C3 or Al2(C2)3) [68–70].

Water-based suspension of TiO2 with various concentrations (50, 100, 150 g/L) was
used as a dielectric medium. The following powder was used for producing suspension:

− Titanium(IV) oxide TiOx-271 grade (LLC “Titanium Investments”, Armyansk, Repub-
lic of Crimea, The Russian Federation), following GOST 9808-84, with an average
particle diameter d50 = 9.29–13.94 µm.

The powder was subjected to granulometric analysis and optical microscopy. An EL104
(Mettler Toledo, Columbus, OH, USA) laboratory balance with a measurement range of
0.0001–120 g weighed the powder with an error of 0.0001 g in preparing the suspension.
Initial TiO2 powder was sifted using an analytical sieving machine AS200 basic (Retsch,
Dusseldorf, Germany) with a test sieve (10 µm by ISO 3310-1). It should be noted that
the smallest size of suspended particles led to the highest rate of volumetric material
removal and the lowest wear of the primary tool electrode [102–106]. Another reason
for using 10 µm granules is the narrow range of the discharge gap: for the conductive
materials, it is about 170–200 µm [90,95]; for materials with the threshold conductivity,
it is 48–50 µm [49,80,91]. In this case, the electrical conductivity and the discharge gap
are in direct proportion [101]. The prepared suspension was constantly stirred during
experiments. After processing, the samples were cleaned with alkali.

2.4. Assisiting Electrode

The most typical coating for the assisting electrode technique used in the works of
many authors is copper foil or sheet placed adhesively on the surface of the ceramic
blank [51,65,107,108]. Copper and copper group metals and alloys based on them form
insulating oxides that are unstable in the presence of hydrogen of medium (in the case of
Cu, reduction to metallic copper) [109–113]:

CuO + H2↑ → Cu + H2O + Q↑ (exothermic reaction) (10)

or dissociates at temperatures above 280 ◦C for Ag2O, above 100 ◦C for Ag2O2, and
above 225 ◦C for Au2O, when Au2O3 is stable and exhibits conductive properties [114,115].
This property of copper (II) oxide, combined with its inertness to the media and other
components of the working area, makes copper unrepeatable when designing technology
for a wide group of materials.

A HomaFix 404 (20 m × 10 mm) copper tape (JSC Electroma, Lipetsk, Russia) was
used as an assisting coating. The main properties of the tape are provided in Table 3. The
specific electrical resistance of the assisting coating (Table 4) was controlled by a Fischer
Sigmascope SMP10 device (Helmut Fischer GmbH, Sindelfingen, Germany) by evaluating
the electric conductance at normal temperature in Siemens and the percentage of the
electrical conductance of the control sample fabricated of annealed bronze in the range
of 1–112%.

Table 3. Parameters of copper tape.

Parameter Value

Thickness of copper basis, mm 0.035 ± 0.0002
Tensile strength, N/cm 115

Elongation (Extension ratio), % <2
Specific electrical resistivity, Ω·mm2·m−1 0.016–0.017

Operating temperature, ◦C from −40 to +110 with a tolerance of ±5
Tape width, mm 10
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Table 4. Electrical properties of some substances.

Assisting Coating Electrical Conductivity 1,
Sm·cm−1

Specific Electrical
Resistivity 2, Ω·mm2·m−1

Copper tape, resin-based adhesive 0.580046 ± 0.00001 0.01724 × 10−6

Graphite 3 - 8.00
Distilled water 3 - 103 ÷ 104

1 Experimental values; 2 calculated values; 3 for reference.

Before coating, the ceramic samples were placed in an ultrasonic tank and cleaned
using a soap solution at a temperature of 60 ◦C for 20 min and alcohol for 5 min [116].
Approbation of the coated samples was conducted in a deionized water medium. Coat-
ing removal was conducted by a complex method: washing in an ultrasonic tank and
mechanical cleaning.

3. Results
3.1. Characterization of Al2O3 Samples

A microphotograph of Al2O3 powder is presented in Figure 5a. It shows a predomi-
nantly favorable spherical shape of particles that contributes to reducing the porosity of the
samples. The variety of particle sizes has a positive effect on the mechanical properties of
the samples.
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The polished surface of the sintered sample is presented in Figure 5b. The density
of the samples after sintering was 99.2 ± 0.2%. X-ray diffraction analyses did not reveal
any contamination by other phases nor traces of any side reactions during sintering. The
chemical analysis of the samples at the fracture site corresponds to the theoretical chemical
composition of the ceramics.
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3.2. Characterization of TiO2 Powder

Granulometric analysis (Figure 6a, Table 5) of TiO2 powder showed that the powder
sample had an average inner diameter of 10.84 µm and 9.29 µm for 50% of the particles,
while the average area diameter was 16.12 µm and 13.94 for 50% particles. The average
circularity of the titanium dioxide powder is about 0.656 µm and about 0.700 µm for 50%
of the particles. Titanium dioxide granules have a specific character. Optical microscopy of
the granules is shown in Figure 6b. The powder was sieved before further processing.
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Figure 6. Granulometric analysis of the composition of titanium dioxide powder (a) and morphology (b).

Table 5. Granulometry of titanium dioxide powder.

Inner Diameter Range, µm Volume, % Cumulative Volume, %

1.00–10.00 20.82 20.82
10.00–16.00 41.22 62.04
16.00–20.00 17.25 79.29
20.00–25.00 11.36 90.65
25.00–32.00 5.23 95.88
32.00–38.00 1.48 97.36
38.00–45.00 0.97 98.33
45.00–53.00 0.27 98.60
53.00–63.00 0.56 99.15
63.00–75.00 0.39 99.54
75.00–90.00 0.46 100.00
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3.3. Electrical Discharge Machining in TiO2 Powder-Mixed Water Medium

The general view of the working area and results of the optical microscopy for the
machined kerf for the various powder concentration and pulse frequencies are shown in
Figure 7. Due to the visual optical whiteness of the ceramic material, the formed texture
(kerf) is not distinguishable; however, traces of adsorbed copper and deposed drops are
clearly visible and cannot be removed mechanically with effort. The deepest kerf in Al2O3
sintered blank using TiO2 powder-mixed water medium was obtained for a concentration
of 150 g/L, and pulse frequency f = 2 kHz and f = 5 kHz.
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3.4. Scanning Electron Microscopy (Chemical Analyses)

The results of quantitative and qualitative analysis of the obtained kerfs after electrical
discharge machining of alumina using a monolayer copper tape coating are shown in
Figure 8 and Table 6. The images show a uniform distribution of chemical elements such as
aluminum and oxygen (Figure 8a,b) and the assisting electrode coating of copper deposited
on the surface (Figure 8c). When using a suspension, the amount of deposed copper
increases many times (by 81.1%) (Figure 8f, Table 6), while zinc (2.6%) of the wire tool
and titanium (1.5%) of the powder are also presented (Table 6). The presence of carbon
corresponds to normal atmospheric contamination of the samples.
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Figure 8. Chemical mapping of the machined kerf in the Al2O3 sample: (a) in water medium,
aluminum; (b) in water medium, oxygen; (c) in water medium, copper; (d) in TiO2 powder-mixed
water medium (150 g/L), pulse frequency f = 2 kHz, aluminum; (e) in TiO2 powder-mixed water
medium (150 g/L), pulse frequency f = 2 kHz, oxygen; (f) in TiO2 powder-mixed water medium
(150 g/L), pulse frequency f = 2 kHz, copper.

Table 6. Chemical analysis of the machined kerf at the place of the deposed copper (average of
three spectra).

Chemical Elements, wt %

Al O Cu Zn Ti C

0.5 6.0 81.1 2.6 1.5 8.3
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3.5. Material Removal Rate

An analysis of the processing performance of alumina using the combined approach
of assisting electrode techniques was carried out for TiO2 concentration of 50, 100, and
150 g/L in a water medium for the pulse frequency (f ) range of 2–11 kHz. The measured
values of the kerf parameters and the calculated values of the machined segment angle are
shown in Table 7. The material removal rate is shown in Table 8. A graphical presentation
of the relationship between material removal rate, pulse frequency, and TiO2 concentration
is shown in Figure 9. The higher performance was achieved for pulse frequencies 2 and
5 kHz and a concentration of 150 g/L.

Table 7. The kerf parameters and calculated angle of the segment in plan α of the machined alumina
using a copper tape coating and TiO2 powder-mixed water medium.

TiO2 Con-
centration,

g/L

Pulse
Frequency f,

kHz

Kerf Depth
h, µm

Kerf Width
w. µm

Kerf Length
l. µm

Angle of
Segment in
Plan α, Rad

50

2 26.75 155.93 2950.00 0.56
5 33.27 155.93 1600.00 0.62
8 26.53 140.03 2000.00 0.56
11 23.93 129.55 3000.00 0.53

100

2 51.50 149.19 5550.00 0.78
5 37.52 143.07 5100.00 0.67
8 22.87 124.38 5550.00 0.50
11 36.91 140.40 3800.00 0.66

150

2 56.70 181.70 6750.00 0.83
5 51.61 111.46 7250.00 0.79
8 33.17 138.13 5000.00 0.63
11 36.64 145.89 7000.00 0.59

Table 8. The material removal rate of electrical discharge machining alumina ceramics using a copper
tape coating and TiO2 powder-mixed water medium.

TiO2 Con-
centration,

g/L

Pulse
Frequency f,

kHz

Kerf Area in
Plan S, mm2

Volume of
Removed

Material V,
mm3

Estimated
Machining

Time t, s

Volumetric
Material
Removal

Rate, mm3/s

50

2 0.00044 0.00130 5.35 0.00024
5 0.00059 0.00094 6.65 0.00014
8 0.00043 0.00087 5.31 0.00016
11 0.00037 0.00111 4.79 0.00023

100

2 0.00116 0.00646 10.30 0.00063
5 0.00073 0.00373 7.50 0.00050
8 0.00031 0.00172 4.57 0.00038
11 0.00070 0.00265 7.38 0.00036

150

2 0.00140 0.00942 11.34 0.00083
5 0.00120 0.00870 10.32 0.00084
8 0.00061 0.00304 6.63 0.00046
11 0.00049 0.00344 7.33 0.00047
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4. Discussion

A comparison of the performance of electrical discharge machining alumina was
carried out for the current study’s data and previously published (Table 9). The present
results were compared with those obtained with a brass electrode tool in a water-based
medium and those obtained using hydrocarbons. The data indicate that the developed
method is superior to:

• The previously developed technique of electrical discharge machining using a brass
electrode tool in water-based working fluid [80] and;

• The published data on electrical discharge machining alumina in hydrocarbons using
monolayer copper foil of 6 µm in thickness [65].

Table 9. Comparison of performance parameter of electrical discharge machining alumina based on
the use of assistive tools.

Primary
Electrode

Tool

Assisting
Electrode
Coating

Assisting
Suspension

Working
Fluid

Material
Removal

Rate, mm3/s
Reference

Brass wire,
Ø0.25 mm

Copper tape,
40 µm

TiO2 particles,
Ø10 µm,
150 g/L

Deionized
water 0.0084 Current

study

Brass wire,
Ø0.25 mm

Ni-Cr PVD
coating, 12 µm

SnO particles,
Ø10 µm,
150 g/L

Deionized
water 0.0014 [80]

Copper
prism,

5 × 5 mm

Copper foil,
6 µm -

Mineral oil
(hydrocar-

bons)
0.0051 [65]

Copper tube,
Ø3.5 mm
(inner—

Ø3.0)

Resin-based
carbon tape

Graphite
particles, Ø30
µm, 7–10 g/L

Kerosene (hy-
drocarbons) 0.0213 [66]

The results published for the technique using carbon tape [66] exceed the values
of the present study but demonstrate significant shortcomings typical for sinker type of
machining and working with carbons and hydrocarbons:
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• The manufacture of a unique electrode is required;
• There is no possibility of processing ruled surfaces;
• Graphite particles exhibit electrical anisotropy (electrical properties are different in

different directions of the crystal lattice) [117];
• It creates risks of the formation of chemically unstable dielectric carbides with all the

ensuing consequences for equipment and personnel (Al3C4 or Al2(C2)3) [44,68–70].

The relationship between productivity and electrical properties of coatings and assist-
ing powders is shown in Figure 10. The study [65] was not considered due to the measured
data absence for the electrical resistance/conductivity of the developed coating and the
absence of the assisting powder used in the study. For [66], the available data for the
graphite were taken into consideration. The specific electrical conductivity is provided in
Table 4. The band gap (Eg) was taken as an average value of 0.4–1.0 eV [118–120].
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5. Conclusions

The paper solves a scientific and technical problem relevant to modern mechanical
engineering and metalworking, which consists of increasing the productivity of electrical
discharge machining of dielectric material, alumina, using the combined approach using
assisting copper tape coating of 40 µm and TiO2 powder-mixed dielectric medium. Using
TiO2 powder-mixed water-based dielectric medium was proposed for the first time. The
choice of water as a dielectric basis is substantiated by the safety of the personnel and
equipment since the dissociation of hydrocarbons creates risks of the formation of chemi-
cally unstable dielectric carbides (methanide Al3C4 and acetylenide Al2(C2)3). The choice
of the powder is substantiated by the electrical properties of titanium dioxide.

The conducted work allowed us to establish relationships between the performance
of the machining Al2O3 ceramics and experimental factors such as pulse frequency and
powder concentration. The highest values for the productivity of 0.0083–0.0084 mm3/s
were achieved for pulse frequency 2 kHz and 5 kHz and TiO2 powder concentration
of 150 g/L. This exceeds the analog for copper tape coating by 1.64 times and has the
advantage of not using hydrocarbons.

The comparison of the performance (0.0083–0.0084 mm3/s) with the performance
of the analogs shows that the results may correlate with the electrical properties of the
assisting materials: the electrical resistance of the deposed coating and the band gap of the
used powder. However, it requires further research.
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The complex works proved the combined approach’s effectiveness in texturing alu-
mina to a depth of up to 54.16 ± 0.05 µm with a thickness of the blank of up to 5.00 mm
using a brass wire with a diameter of 0.25 mm.

On the basis of the obtained theoretical and experimental research results and the
production experience, the developed method can be applied to texturing cutting plates
fabricated of cutting ceramics.
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