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ABSTRACT The fourth industrial revolution – Industry 4.0 – puts emphasis on the application of intelligent

technologies in the area of monitoring and identification of electrical equipment. High precision and

non-contact qualities make the infrared thermography one of the most suitable technologies for intelligent

inspection of high-voltage apparatus. Yet, due to imperfect data acquisition methods and difficulties in

collecting data, electrical equipment images are limited in quantities and imbalanced in representing different

types of devices. Additionally, it is not easy to extract representative features of infrared images due to

their low-intensity contrast and uneven distribution. In this paper, a data-driven framework is proposed for

the identification of electrical equipment based on infrared images. The main technique of this proposed

system is a novel process of generating synthetic infrared images. For this purpose, an Edge-Oriented

Generative Adversarial Network (EOGAN) is developed. The EOGAN is designed to create realistic infrared

images that can be used as augmented data for developing data-driven identification methods. Extracted edge

features of electrical equipment are utilized as prior information to guide the process of generating realistic

infrared images. Finally, comparative experiments are carried out to show the effectiveness of the proposed

EOGAN-based framework for equipment identification in the presence of limited and imbalanced image

datasets.

INDEX TERMS Edge prior knowledge, electrical equipment identification, generative adversarial network,

infrared image.

I. INTRODUCTION

Electrical equipment inspection plays an important role in

maintaining safe and reliable operations of power systems.

Infrared thermography (IRT), due to its attractive charac-

teristics such as high precision and non-intrusiveness, has

become an effective tool in preventive maintenance to ensure

safety of electric power systems [1]. Infrared images reveal

temperature distributions, based on which the identification

and analysis of condition of electrical equipment can be per-

formed [2]. However, the conventional inspection methods

are time consuming and require well-qualified and experi-

enced personnel for analyzing images. Therefore, substantial

The associate editor coordinating the review of this manuscript and

approving it for publication was Shuaihu Li .

research efforts are focused on the automated methods for

effective analysis of electrical equipment based on infrared

images.

A fundamental step towards an image-based automatic

inspection and diagnosis of equipment is object identifica-

tion. Conventional identification methods are segmentation-

based, which aim at finding the region of interests (ROIs)

[3]–[6]. However, these methods identify regions of interest

using the hand-crafted features, which are based directly on

raw image intensity values and ignore higher-level image

representations. With the great success of Convolutional

Neural Network (CNN) in computer vision, data-driven

methods based on artificial intelligence (AI) gradually

become the major research trend in automatic image anal-

ysis. AI-based data-driven equipment inspection methods

VOLUME 8, 2020
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 136487

https://orcid.org/0000-0002-4859-1511
https://orcid.org/0000-0003-4783-0717
https://orcid.org/0000-0003-1823-2355
https://orcid.org/0000-0002-9653-3316
https://orcid.org/0000-0002-4411-2632


Z. Niu et al.: Electrical Equipment Identification Method With Synthetic Data Using EOGAN

rely on classification and behavior prediction. For instance,

Duan et al. [7] proposed a fault localization method for

transformer internal thermal defects by combining differ-

ent CNNs and image segmentation methods. Gong et al. [8]

presented an improved CNN to predict the coordinates,

orientation angle, and class type of individual equipment

parts. Zhao et al. [9] introduced Vector of Locally Aggre-

gated Descriptors (VLAD) to CNNs, which increased robust-

ness of the feature representation and boosted the detection

ability of the model.

As known, one of the problems encountered by industrial

application of automatic inspection methods is related to

actual conditions of acquisition of infrared images. In realistic

scenarios, limitations in usefulness of collected data and/or

its imbalanced distributions are common [10]. For imbalance

datasets, when some types of equipment or problems are

hardly captured on images, identification algorithms result

in higher classification rates for more ‘popular’ equipment

types but in lower accuracies for the minor ones [11]. Many

published literatures have pointed out that data augmentation

would function as a regularizer to help improve the perfor-

mance in the case of imbalanced data distribution [12]–[14].

In the image processing domain, a traditional way is to syn-

thesize data samples using geometric transformations such

as translation, scaling, and rotation, as well as channel alter-

ations [15]. However, the data generated in such a way is

simple and lacks diversity.

Generative Adversarial Network (GAN) [16] offers an

alternative way to address the issue of limited and imbalanced

data. It has shown the prominent abilities to generate realistic

data [17]. It can be used for data augmentation purposes by

generating artificial data that is similar to the original one and

thereby enriching a training dataset. The continuous advances

in GAN architectures have led to the improvements in quality

of image generation and stability of built models. Exam-

ples of the improved networks are Deep Convolutional GAN

(DCGAN) [18],Wasserstein GAN (WGAN) [19], and Condi-

tional GAN (CGAN) [20]. Many of these models are popular

in the domain of industrial applications. Liu et al. [21] utilized

the synthetic samples generated through GAN from wind

turbine data and obtained satisfied fault diagnosis results

in the presence of limited data. Wang et al. [22] combined

WGAN with Stacked De-noising Auto Encoder (SDAE) to

perform gearbox fault diagnosis. WGAN was used to expand

a number of samples, and SDAEwas applied as a classifier to

identify signal types. Cabrera et al. [23] presented a method

that combined Wavelet Packet Transform (WPT) with GAN

for building Random Forest (RF) classifiers used for the fault

diagnosis of compressors with extremely imbalanced data.

Mao et al. [24] provided a comparative study and a detailed

guidance for applying GANs on imbalanced data for the

bearing fault signal diagnosis.

Although the analysis of the aforementioned works

indicates a satisfactory performance of fault diagnostic meth-

ods using synthetic signals, there is still a lack of inves-

tigation of AI-based techniques for data synthesis in the

field of object identification when imbalance infrared image

datasets are used. In contrast to general identification pro-

cesses with color images, the infrared images of electrical

equipment have their own specific characteristics: 1) they

may exhibit over-centralized temperature distribution, i.e.,

small differences in temperature distribution between pieces

of equipment and their environment, resulting in a low inten-

sity contrast; 2) they are captured by hand-held cameras

that leads to large variations in the appearance, shape and

scale of equipment; and 3) they have complex backgrounds

and contain many unrelated objects, which makes the core

features of electrical equipment not prominent. Therefore,

the infrared images generated by simple application of GAN

often lose the main body of the electrical equipment.

To address the above mentioned problems, this paper pro-

poses an Edge-oriented GAN (EOGAN) to generate syn-

thetic infrared images for developing a well performed

data-driven electrical equipment identification approach.

The extracted features from image edges are utilized as

knowledge priors to guide the infrared image generation.

These edge priors are beneficial for guiding the infrared

thermal image generation process via providing valuable

information about boundaries/edges of different types of

equipment.

The contributions of this paper are following: 1) propos-

ing a novel weakly supervised method using edge fea-

tures of objects for generating infrared images of electrical

equipment, and implementing it as Edge-oriented Generative

Adversarial Network (EOGAN); 2) developing a deep learn-

ing based framework for identification of electrical equip-

ment in the presence of small and imbalanced data using

the proposed EOGAN for generating synthetic datasets; and

3) conducting extensive experiments using a dataset of real

infrared images to illustrate the effectiveness of the proposed

EOGAN-based data augmentation framework for equipment

identification purposes.

The rest of this paper is organized as follows. Section II

is the description of the proposed infrared image generation

and electrical equipment identification method. The results of

experiments and the discussion are presented in Section III.

Finally, Section IV summarizes the conclusion of this paper

and a future research plan is given.

II. EQUIPMENT IDENTIFICATION WITH SYNTHETIC DATA

A. ARCHITECTURE OF THE EQUIPMENT IDENTIFICATION

METHOD

The main purpose of the proposed method is to generate

a large amount of infrared thermal image data in order to

provide a sufficient number of samples for the purpose of

developing data-driven methods of equipment identification.

Yet, there are some challenges related to utilization and

processing of infrared thermal images: low resolution and

contrast; ambiguous object boundaries caused by a thermal

crossover; and a high level of noise introduced by thermal

sensors [25].
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FIGURE 1. Architecture of the proposed electrical equipment identification method.

To handle these problems, we proposed a novel

Edge-Oriented GAN. It makes use of edge features to guide a

thermal image generation process. Fig. 1 shows the architec-

ture of the proposed method, which consists of three phases.

Phase 1: Abstracting edge information. In this phase, the

edge features of infrared thermal images are abstracted in

four steps (Fig. 1). In Step 1, the original infrared images

are resized and converted into greyscale images. In Step 2,

the greyscale images are processed by Gaussian filtering to

remove noise and simplify information for subsequent pro-

cessing. In Step 3, mathematical morphology is utilized to

smooth the equipment boundaries and eliminate irrelevant

objects such as trees and clouds. Finally, in Step 4, edge

features are abstracted using the Sobel edge operator.

Phase 2: Generating synthetic infrared images. In this

phase, the EOGAN is constructed and it is used to generated

the synthetic infrared images. Two kinds of data are used

in this phase: 1) the real infrared image data; and 2) the

corresponding edge feature data abstracted from the original

infrared image data,Phase 1. There are two steps in this phase

(Fig. 1). In Step 1, the original real infrared image data and

the corresponding edge features are combined to create the

training data pairs for constructing the EOGAN. In Step 2, the

synthetic infrared image data is generated using the generator

of the constructed EOGAN.

Phase 3: Identifying equipment types. Supplemented by

a large amount of generated synthetic infrared images,

there is a sufficient number of training samples for

constructing electrical equipment identification models.

Therefore, any data-driven AI method such as CNN

can be employed to perform the identification task of

equipment types with limited and imbalanced real data

samples.

B. EDGE INFORMATION DETECTION

The edge prior knowledge is employed as weakly supervised

information to guide the infrared image generation process.

In this part, the edge prior knowledge is obtained in four

steps. The following sections describe their detailed proce-

dures.

1) RESIZING AND GREYSCALING

Original infrared images may have different picture sizes

taken by different cameras. Therefore, image sizes are uni-

formed to match the size required by the EOGAN. Further,

infrared images are converted into greyscale images in order

to increase the contracts between bright equipment regions

and background regions (Fig. 2(a)). The transformation from

the RGB values into the grey values is calculated according

to the formula:

Grey = R∗0.299 + G∗0.587 + B∗0.114, (1)

where Grey refers to the grey value of a pixel in an infrared

image, while R, G, B represent the red, green, and blue values

of this pixel, respectively.

2) GAUSSIAN FILTER DENOISING

Gaussian filtering is a linear smoothing filter suitable for

eliminating noise and widely used in noise reduction pro-

cesses. Generally speaking, Gaussian filtering is a process

of modifying the entire image via convolution. The value of
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FIGURE 2. Results of the edge information detection. (a) Greyscaling. (b) Gaussian filter denoising. (c) Mathematical morphology processing.
(d) Edge detection with Sobel operator.

each pixel is obtained by using a two-dimensional Gaussian

kernel and the weighted average of grey values of pixels in

the neighborhood determined by the Gaussian kernel. Here,

a specific operation of Gaussian filtering is employed:

Iσ = Igray ∗ Gσ , (2)

where ∗ indicates a convolution operation, Igray represents

a greyscale image, and Gσ is a two-dimensional Gaussian

kernel with a standard deviation σ , which is defined as:

Gσ =
1

2πσ 2
e−

(

x2+y2
)

/2σ 2

, (3)

where x, y represent the horizontal and vertical coordinates

of the pixel, respectively. A Gaussian smoothing filter is very

effective for suppressing noise that obeys normal distribu-

tion. The result after Gaussian filter denoising is shown in

Fig. 2(b).

3) MATHEMATICAL MORPHOLOGY PROCESSING

Images obtained from the previous processes are rough and

contain irrelevant objects, such as trees, clouds, and infor-

mation about camera’s settings. These irrelevant objects can

mislead the edge-detection operations and decrease the per-

formance of edge feature extraction methods. Therefore,

mathematical morphology is utilized to smooth the contours

of objects and to eliminate thin protrusions. Mathematical

morphology is a set of nonlinear image processing techniques

focused on processing geometric relationships of image pix-

els [26]. The basic operations of mathematical morphology

include dilation, erosion, opening, and closing.

In greyscale morphology, images are functions that map a

Euclidean space or grid E into R ∪ {∞, −∞}. Let f (x, y) be

a function of an input image while b(x, y) be an operator, the

greyscale dilation of f (x, y) by b(x, y) can be defined as:

(f ⊕ b)(x) = sup
y∈E

[f (y) + b(x − y)], (4)

where sup denotes the supremum. Similarly, the erosion of

f (x, y) by b(x, y) is given by:

(f ⊖ b)(x) = inf
y∈E

[f (y) − b(y− x)], (5)

where inf refers to the infimum. Here, the greyscale opening

operation is applied to eliminate glitches and highlight edge

information of electrical equipment. The greyscale opening

operation is obtained by the erosion of f (x, y) by b(x, y),

followed dilation by b(x, y):

f ◦ b = (f ⊖ b) ⊕ b. (6)

An example of such operation is shown in Fig. 2(c).

4) EDGE DETECTION USING THE SOBEL OPERATOR

In this step, the process of edge detection of electrical

equipment is implemented using the Sobel edge detection

algorithm. Sobel edge detection is a widely used algorithm

of edge detection in image processing [27]. The Sobel

operator performs a 2-D spatial gradient measurement on

an image and so emphasizes regions of high spatial fre-

quency that correspond to edges. Typically, it is used to

find the approximate absolute gradient magnitude at each

point of an input greyscale image. In this study, the Sobel

edge detection algorithm is chosen, as it is convenient and

fast and its performance is good. It is especially true due

to the fact that noise and glitches that affect the accu-

racy of the Sobel algorithm are eliminated in the previous

steps.

The Sobel operator consists of a pair of 3 × 3 convolution

masks, which are defined as (7):





−1 0 1

−2 0 2

−1 0 1



 and





−1 −2 −1

0 0 0

1 2 1



 . (7)

Generally, the masks are applied separately to the input image

and produce separate measurements of the gradient com-

ponents in each orientation, i.e., vertically and horizontally.

Further, they are combined to determine the absolute gradient

magnitude of each point. In this way, the edge features of

electrical equipment are obtained, Fig. 2(c). The four-step

edge detection method has the following advantages: 1) it

is suitable for handling different types of infrared images

captured by different infrared camera; 2) it can effectively

extract edge features of electrical equipment from infrared

images with a complex background; and 3) it is easy to

implement and has a fast execution. In the next section, the

extracted edge features are used as prior knowledge to train

GAN.
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C. GENERATION OF SYNTHETIC INFRARED IMAGE

In this section, an Edge-Oriented GAN is developed to gener-

ate synthetic infrared images. The edge information of elec-

trical equipment is utilized to guide the generation of infrared

images to maintain clear boundaries of electrical equipment.

1) GENERATIVE ADVERSARIAL NETWORK

Generative adversarial network (GAN) consists of two net-

works, i.e., a generator G and a discriminator D, both com-

peting against each other. The main reason to use GAN is that

adversarial networks can improve the quality of generated

data. The purpose of G is to generate synthetic samples that

should be almost indistinguishable from the real ones, while

the aim of D is to try to discriminate if samples (images) are

real or fake.

In particular, the input to G is a set of random noise z sam-

pled from a distribution pz. The output of G is the synthetic

samples G(z) ∼ pg, where pg represents the distribution of

G(z). The input to D is a real data sample x with distribution

pr, or the synthetic samples G(z) generated by G. In theory,

D(x) = 1 if x ∼ pr and D(x) = 0 if x ∼ pg. The training

process is a minimax two-player game with an objective

function as follows:

min
G

max
D

V (D,G) = min
G

max
D

(

Ex∼pr (x) logD(x)

+Ez∼pz(z) log(1 − D(G(z)))
)

, (8)

where the first summand improves the model’s ability to

detect real inputs and the second summary improves the

model’s ability to recognize inputs generated by G. During

the training process, G and D are trained alternately until the

Nash equilibrium is reached.

2) EDGE-ORIENTED GAN

Theoretically, GAN is able to generate images using a series

of random noise signals. However, in practice, due to the

fact that there is no control on how the data being gener-

ated, the complexity of the infrared image background and

existence of many elements on the image means that GANs

tend to fall into the problem of non-convergence. Conditional

GAN (CGAN) is a promising version of GAN which is

designed to generate fake samples with specific conditions

or characteristics rather than generic samples from unknown

noise distribution. Generally, the conditional information of

CGAN could be a label associated with an image or a more

detailed tag [28].

Inspired by the CGAN, the proposed Edge-Oriented

GAN (EOGAN) is developed utilizing the equipment edge

features of infrared images as the conditional information to

guide the process of generating infrared images of electrical

equipment.

The development of the EOGAN follows the process of

supervised learning. First, the original infrared images x and

the associated edge feature data y are combined to consti-

tute a set of original data pairs. Then, the infrared images

G(z|y) generated by the generator G are combined together

FIGURE 3. The proposed EOGAN-based infrared image generator: training
process.

the edge features y as generated data pairs. Finally, both the

original data pairs and the generated data pairs are used as the

input to discriminator D. The details of the training process

of EOGAN are shown in Fig. 3. The loss function of the

discriminator D is listed as follows:

L
(D)
EOGAN

(

θ (G), θ (D)
)

= −Ex−pdata logD(x|y)

−Ez log (1 − D (G (z|y))). (9)

In every training iteration of the discriminator D,

the parameters of discriminator θ (D) are updated using the

stochastic gradient ∇θDLEOGAN(D). After updating θ (D), the

loss of generator LEOGAN(G) is calculated. According to (9),

the loss function of the generator is described as follows:

L
(G)
EOGAN

(

θ (G), θ (D)
)

= −Ez logD (G (z|y)). (10)

In order to make the generated infrared images a better

approximation of the real ones, a traditional loss Ltra is added

in the loss function of generator. In this study, L1 distance is

chosen as the traditional loss:

LL 1(G) = Ex,y,z‖x − G(y, z)‖1. (11)

Therefore, the generator’s task is not only to deceive the

discriminator but also to be close to the output ground truth.

After adding the traditional loss, the loss function of the

generator is described as belows:

L
(G)
EO

(

θ (G), θ (D)
)

= L
(G)
EOGAN + λL 1(G)

= −Ez logD (G (z|y))

+ λEx,y,z‖x − G(y, z)‖1. (12)

Next, the parameters of generator, θ (G), are updated

by using the stochastic gradient ∇θDLEO(G). Finally, the

EOGAN-based infrared image generator is trained by updat-

ing the parameters of θ (D) and θ (G) alternately. To sum

up, in order to closely reflect characteristics of original

infrared images and generate more realistic ones, the pro-

posed EOGAN makes the following improvements on the

basis of CGAN: 1) Edge features are utilized as the con-

ditional information to supervise the generating process of

the generator; 2) A traditional loss is added to the generator.
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FIGURE 4. The proposed EOGAN-based infrared image generator:
generating process.

With the proposed EOGAN, the generator can produce

images possessing clear subject features of the original ones.

3) GENERATING ELECTRICAL EQUIPMENT INFRARED

IMAGES

In this procedure, the edge features of electrical equipment

determined in Phase 1 are used for generating synthetic

infrared images. The EOGAN-based generator can generate

infrared images of electrical equipment according to the edge

information. The process of generating synthetic infrared

images is illustrated in Fig. 4. Consequently, a sufficient

number of infrared images can be supplied for constructing

the data-driven AI methods for electrical equipment identifi-

cation.

D. IDENTIFICATION OF ELECTRICAL EQUIPMENT TYPES

In this study, a data-driven deep learning model is developed

to identify types of electrical equipment based on infrared

images. Convolutional neural networks (CNNs) are utilized

as the deep feature extractor due to their remarkable effec-

tiveness in all kinds of computer vision tasks [29]. Besides,

given the shortage of data samples in practical applications,

transfer learning [30] is adopted to reduce the computational

burden. The flowchart of the electrical equipment infrared

image identification is shown in Fig. 5.

As presented in Fig. 5, the VGG16 architecture released

by [31] is employed. This allows for achieving the state-of-

the-art accuracy for many classification tasks. Additionally,

instead of optimizing the whole model on the limited dataset,

an ImageNet pre-trained VGG16 model is adopted to extract

deep featuremaps. The real infrared images and the generated

synthetic images are put (combined) together as the input

dataset. Features located at the last pooling layer are used

as the feature vectors. In this study, the input image size is

224 × 224, and the obtained feature vectors are of size 7 ×

7×512. Finally, the identification probabilities are calculated

by classifiers.

III. EXPERIMENTS AND DISCUSSION

In order to evaluate the ability of EOGAN-based data synthe-

sis scheme to improve the performance of equipment identi-

fication accuracy, two comparative experiments are designed.

Experiment 1 is a verification experiment focused on the

performance in the presence of imbalanced data. The target

FIGURE 5. Flowchart of the electrical equipment IR image identification.

is to investigate the influence of the quantity of generated

synthetic images on the classification accuracy. Different test-

ing scenarios with a different number of generated images,

as well as different types of classifiers are explored here.

Experiment 2 is designed based on the results of Exper-

iment 1. This experiment investigates the influence of the

proposedmethod on classification results in the casewhen the

imbalanced training data is supplemented by the generated

infrared images. Numbers of samples from ‘small’ categories

are increased by adding images generated by the proposed

EOGAN. In Experiment 2, four commonly used balancing

methods are applied to illustrate effectiveness of the proposed

method.

A. DATASET AND EVALUATION METRICS

In this study, we use the infrared image dataset that con-

tains images of electrical equipment collected during the

inspection of a power grid. The dataset contains infrared

images of five electrical devices. Yet, the numbers of images

per a single type of equipment are different. Specifically,

the dataset includes 244 arresters, 214 breakers, 302 current

transformers, 428 potential transformers, and 112 Y-shape

breakers, a total of 1050 infrared images.

A few typical samples of different equipment types are

shown in Fig. 6. It can be seen that infrared images of electri-

cal equipment have the following characteristics: 1) a variety

of pseudo-colors are present; 2) various pieces of information

such as the trademark, aiming frame, temperature values

produced by the infrared camera are superimposed on the

images; 3) the image backgrounds are complex; and 4) there

are multiple shooting angels of the thermal imaging camera.

136492 VOLUME 8, 2020
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FIGURE 6. Typical samples of infrared image dataset. (a) Breaker. (b) Current transformer (CT). (c) potential transformer (PT). (d) Arrester. (e) Y-shape
breaker.

For the experiments, the dataset is divided into a training

set and a test set in the proportion of 8:2. In order to ensure the

confidence of the presented results, the generated images are

only added to the training set, while the test set is composed

of the real samples all the time.

In this research, the performance is evaluated based on

accuracy, precision, recall, and F1-score, which are given as:

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(13)

Precision =
TP

TP+ FP
(14)

Recall =
TP

TP+ FN
(15)

F1-score =
2 × precision × recall

precision + recall
. (16)

Accuracy is the proportion of a total of correctly identified

equipment samples over the entire tested samples. Precision

is a function of the correctly classified samples (true pos-

itives) and examples misclassified as positives (false pos-

itives). Recall is a function of the true positives and the

misclassified samples (false negatives). F1-score is a measure

combining both recall and precision.

B. EXPERIMENT 1

This experiment focuses on evaluating the performance of the

proposed EOGAN-based image synthesis method. Datasets

of different sizes are created via adding generated synthetic

images into the original dataset. Created datasets are used

to construct a number of electrical equipment identification

models and compare their classification results.

The EOGAN-based model is trained using the procedure

shown in Fig. 3. When the value of loss function of the

discriminator converges and falls into a low value range, the

synthetic images generated by EOGAN are considered as of

high quality. Fig. 7 contains a few samples of such images.

It is clear from Fig. 7 that the generated synthetic infrared

images look realistically and are similar to the real images.

Both shapes and boundaries of the electrical equipment are

well presented on the generated synthetic images. However,

the generated images are not exactly the same as the original

ones, and there exist some small differences. Small diver-

gences between the synthetic images and the real ones are

acceptable and evenwished for. Such small differences would

improve the robustness of constructed image identification

FIGURE 7. Synthetic infrared images generated by the EOGAN-base
image augmentation method.

models and enhance their generalization ability as well, and

this is verified in Experiment 2.

In order to check the impact of synthetic images on the

identification accuracy, different numbers of synthetic images

for each equipment type are added to the training set. In

addition, various commonly used classifiers are investigated,

i.e., Softmax function, random forest (RF) classifier, and

support vector machine (SVM). Since the main purpose of

this experiment is to explore the ability of EOGAN-based

augmentation to help classification tasks, it is worth to men-

tion that the parameters of the classifiers are all set to the

default ones without any optimizations. Note that we are not

balancing the dataset in this experiment, the new training set

is still imbalanced after adding the same number of synthetic

images to each category. Tomake amore reliable comparison,

the mean value of 10 trials are taken as the final results,

as illustrated in Table 1 and Table 2.

Fig. 8 and Fig. 9 show the results of the identification

accuracy with a different number of synthetic images added

per class. It can be observed, Fig. 8, that the identification

accuracy of all three classifiers increases with the increasing

number of added synthetic images. It demonstrates that the

generated synthetic images can provide useful information

and lead to improvements in the performance of data-driven

equipment identification models. Specifically, the Softmax

function delivers the best identification performance. If the

accuracy of 0.90 is taken as a threshold, the Softmax function

needs 30 synthetic images to reach it, while SVM needs 190

and RF needs approximately 600. From the perspective of

VOLUME 8, 2020 136493
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TABLE 1. Experiment 1: accuracy versus the number of synthetic samples added per class with different classifiers.

TABLE 2. Experiment 1: F1-score versus different number of synthetic samples added per class with different classifiers.

FIGURE 8. Identification accuracy of Experiment 1 with different number
of synthetic images added per class.

FIGURE 9. Identification accuracy of Experiment 1 with different number
of synthetic images added per class.

stability of performance, Fig. 9, the values of standard deriva-

tion show a downward trend once the synthetic images are

added. The Softmax function obtains the best classification

stability compared with the other two classifiers. In addition,

Table 2 lists the F1-score values, which indicates that both the

precision and recall are improved after adding the synthetic

images.

C. EXPERIMENT 2

In real scenarios, the collected infrared images of electrical

equipment are predominantly imbalanced. This fact alone

has a negative effect on the identification accuracies of pre-

diction models. In order to investigate the effectiveness of

the proposed EOGAN-based data augmentation method in

alleviating the problem of imbalanced training data, several

comparative tests are designed and their results are presented

here.

Synthetic images generated by the proposed EOGAN-

based data augmentation method can be treated as supple-

ment samples to an imbalanced training dataset. In Experi-

ment 2, a number of added samples vary between categories

of the equipment – only so many of them are added to obtain

a balanced dataset.

This also allows us to learn how good the generated images

are via observing the performance of classifiers constructed

using data, where some classes have more synthetic images

than the real ones. Based on the results of Experiment 1, the

Softmax function is selected as the classifier due to its good

performance in both accuracy and stability.

To evaluate the effectiveness of the EOGAN method in

helping deal with imbalanced data, synthetic data generated

by EOGAN are added to the minor classes to create a bal-

anced dataset. Therefore, the number of added samples of

each type of equipment aims to achieve that all the classes

have the same number of samples – 428 (the size of the largest

class of potential transformers). The classification perfor-

mance of the models built based on the original imbalanced

training data and the one built on the balanced data is shown

in Fig. 10 and Fig. 11, respectively. It can be seen, Fig. 10,

that the model built based on the balanced data – achieved

by adding images generated using the proposed method – has

a higher identification accuracy. Fig. 11 shows the confusion

matrices of the original model – built based on the imbalanced

training set – and the confusion matrix of the model built

using the balanced data. The improvement in the identifi-

cation performance (for each type of equipment) is class.

This indicates the effectiveness of the proposed EOGAN

to generate synthetic samples for tackling the problem of

imbalanced dataset.

For further comparison, the proposed method is com-

pared with other widely-used image dataset balancing

methods, such as Random Oversampling (RO) [15],
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FIGURE 10. Comparative results of the proposed method for imbalanced
vs. balanced training data in terms of (a) Classification accuracy.
(b) Classification loss.

TABLE 3. Comparative results of identification accuracy using different
balancing methods.

Undersampling (U) [32] and two popular GANs: DCGAN

and WGAN. RO uses geometric transformations for ran-

domly selected images to supplement a training set until the

balance is reached. While U randomly selects images of the

majority set to be eliminated until the balance of the entire

dataset is reached. Therefore, the number of samples of each

type of equipment reaches 428 for RO,DCGAN,WGAN, and

EOGAN, while for the case of U the number is 112 images

for each type – a size of the smallest category of Y-shape

breakers. To ensure sound results, the reported values are the

means of 10 repeated trials, Table 3.

It can be seen that the proposed EOGAN leads to the

best identification performance for every type of electrical

equipment, when comparedwith the other four data balancing

methods. Particularly, the proposed EOGAN obtains a better

performance than RO. This indicates that the dataset aug-

mented by the EOGAN contains more diversity than the sim-

ple duplication of images, which can improve the robustness

and generalization ability of an AI-based data-driven model.

FIGURE 11. The confusion matrices of (a) Original imbalanced training
set. (b) Balanced training set.

To show the confidence in the obtained comparative

results, the T-student test is used to calculate the statistical

significance between the results obtained with the EOGAN

and the other four balancing methods. The p-values of the

T-student test are listed in Table 4, which are less than 0.001,

and indicates the existence of significant difference between

the identification accuracy of EOGAN-based method when

compared to the four balancing methods. Therefore, it can

be deduced that the synthetic infrared images generated by

EOGAN are helpful in dealing with imbalanced training data

for electrical equipment identification.

In addition, to further investigate the effectiveness of the

EOGAN as a data balancing method, another comparison is

designed. In this comparison, the number of samples of each

type of equipment is set as 428, while the number of real

images among them is varied. Firstly, only 25% of original

images in each class is used, then we increase it to 50%, and

finally all the available real images are employed – 100%.

In each of these cases, a number of generated images is such
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TABLE 4. The p-values of T-student test between the results of EOGAN
and the other four balancing methods.

FIGURE 12. Identification accuracy using different proportion of available
real samples.

that the total number of samples in each class equals to 428.

In this part, the comparison is done against RO, WGAN, and

DCGAN.

Fig. 12 demonstrates the result of this comparison. It indi-

cates that: 1) the proposed EOGAN-based data augmentation

method is effective in dealing with imbalanced classification

problems evenwhen the available real data is limited; 2) when

the number of available real data is very low, RO could

suffer from the over-fitting problem; and 3) it is difficult

for DCGAN and WGAN to capture useful information from

infrared images under a limited data situation, while the edge

prior knowledge in the EOGAN can alleviate this problem to

some extent.

IV. CONCLUSION

In this paper, an EOGAN-based data-driven identification

framework for electrical equipment has been proposed using

a process of generating synthetic images. In order to produce

high-quality synthetic samples, edge features of electrical

equipment are extracted as weakly supervised information to

guide the infrared image generation process. Generated artifi-

cial samples enable solving the problem of limited and imbal-

anced data when training an AI-based data-driven model.

In addition, the presented comparative experiments using

real infrared image datasets confirm the effectiveness of the

proposed method.

Based on the experimental results, the following conclu-

sions are drawn: 1) the proposed EOGAN-based method

is an effective data augmentation technique for building

data-driven identification models; 2) when compared with

the widely-used data balancing techniques, the EOGAN not

only generates synthetic samples of better quality but also

possesses a higher diversity; 3) the constructed framework

for identification of electrical equipment provides a very

satisfactory performance, when the proposed EOGAN-based

method to mitigate the problem of imbalance dataset is used;

and 4) the synthetic data generated by the proposed method

still leads to a high identification accuracy, even when the

number of real data samples is very small.

In the future, the authors will focus on improving the

EOGAN-based data augmentation scheme to enable the

development of equipment fault diagnostic systems when

only small datasets are available.
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