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Abstract

We review theoretical and numerical studies of the inverse problem of electrical
impedance tomography which seeks the electrical conductivity and permittivity
inside a body, given simultaneous measurements of electrical currents and
potentials at the boundary.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Electrical properties such as the electrical conductivity o and the electric permittivity e,
determine the behaviour of materials under the influence of external electric fields. For
example, conductive materials have a high electrical conductivity and both direct and
alternating currents flow easily through them. Dielectric materials have a large electric
permittivity and they allow passage of only alternating electric currents.

Let us consider a bounded, simply connected set 2 C R4, ford > 2 and, at frequency w,
let y be the complex admittivity function

v (@, w) = o (x) + iwe (), where i = v/—1. (1.1)

The electrical impedance is the inverse of y (x) and it measures the ratio between the electric
field and the electric current at location @ € 2. Electrical impedance tomography (EIT) is
the inverse problem of determining the impedance in the interior of €2, given simultaneous
measurements of direct or alternating electric currents and voltages at the boundary 9<2.
Different materials display different electrical properties, as shown in tables 1 and 2, so
a map of o (x) and €(x), for x € 2, can be used to infer the internal structure in 2. Due
to this fact, EIT is an imaging tool with important applications in fields such as medicine,
geophysics, environmental sciences and nondestructive testing of materials. Examples of
medical applications of EIT are the detection of pulmonary emboli [39, 83, 84], monitoring of
apnoea [1], monitoring of heart functionand bloodflow [70, 89] andbreast cancer detection[39].
In geophysics and environmental sciences, EIT can be useful for locating underground mineral
deposits [123], detection of leaks in underground storage tanks [124] and for monitoring flows
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Table 1. Electrical properties of biological tissue measured at frequency 10 kHz [10, 131].

Tissue 1/o (2cm) e (uFm™h)
Lung 950 0.22
Muscle 760 0.49
Liver 685 0.49
Heart 600 0.88
Fat >1000 0.18

Table 2. Resistivity of rocks and fluids [99].

Rock or fluid 1/0 (2 cm)
Marine sand, shale 1-10
Terrestrial sands, claystone 15-50
Volcanic rocks, basalt 10-200
Granite 500-2000

Limestone dolomite, anhydrite ~ 50-5000
Chloride water from oil fields 0.16
Sulfate water from oil fields 1.2

of injected fluids into the earth, for the purpose of oil extraction or environmental cleaning [ 125].
Finally, in nondestructive testing, EIT can be used for the detection of corrosion [127] and of
small defects, such as cracks or voids, in metals [5, 6, 34, 63, 71, 129].

EIT has been studied extensively in the last two decades and substantial progress has
been made in both the theoretical and applied aspects of the problem. At the same time, EIT
remains an area of active research and it continues to pose a variety of challenging questions
for theoreticians, numerical analysts and experimentalists alike. This paper is a survey of some
mathematical results about the EIT problem. We review theoretical works on uniqueness of
solutions, given full knowledge of the voltage to current (Dirichlet-to-Neumann) map, as well
as the continuous dependence (or lack of it) of solutions, on the boundary data. A strong
emphasis is put on numerical reconstructions of function y, in the interior of 2. For issues of
experimental design, which are briefly mentioned but largely ignored in this survey, we refer
the reader to works such as [39, 135] (and the references within).

The paper is organized as follows: in section 2, we describe the mathematical model for
EIT. Basically, all of the surveyed results assume a simple, continuum model for the boundary
excitation. However, for completeness, we give a brief description of some of the proposed
electrode models, as well. In section 3, we formulate the inverse EIT problem. We define the
Dirichlet-to-Neumann (DtN) and Neumann-to-Dirichlet (NtD) maps and we review some of
their properties, including their variational formulations. In section 4, we review the injectivity
of the forward map. High-contrast EIT is reviewed in section 5. Even though uniqueness of
solutions of the inverse problem holds for a large class of admittivity functions (section 4),
the inverse map is typically discontinuous and the EIT problem is ill-posed, as we discuss
in section 6. Numerical reconstruction algorithms are reviewed in section 7. Some brief
references to other problems related to EIT are made in section 8. Finally, in section 9, we
present conclusions and a few suggestions for future work.



Topical Review R101

2. The mathematical model

Time-harmonic electric and magnetic fields
E(x,t) = Re{E(x, w)e'}, H(xz, t) = Re{H (z, w)e!},

satisfy Maxwell’s equations
V x H(x,w) =y(z,w)E(x, »), @1
V x E(x, w) = —iou(x)H (z, w),

where p () is the magnetic permeability and Re{ f'} denotes the real part of a complex function
f. EIT operates at low frequencies w, in a regime with admittivities y and length scales L
satisfying wpu|y|L? < 1, such that, after a simple scaling analysis [39], equations (2.1) are

approximated by
V x H(x, w) = ,w)E(xz, w),
(z, 0) =y(x, 0)E(z, w) 2.2)
V x E(z,w) =0.

We define the scalar electric potential ¢ and the vector-valued, time-harmonic electric
current density Z(z, t) = Re{j(x, w)e''}, as

E(x,w) = —V¢(x,w), V x H(x,w) = j(x, w), (2.3)
such that the first equation in (2.2) becomes Ohm’s law
Jj@) = —y(x, 0)Vo(z, w). 2.4)

Note that the density of dissipated energy, averaged over a period of oscillations,

2

v I(x, 1) - E(x, T)dT = %[Re{j(w, o)} - Re{E(x, w)}

1) 1+

27,
+Im{j(z, 0)} - In{ E(z, w)}] = 0 (2)| Vo (z, )|
must be strictly positive, so we require that
o(x) =Rel{y(z,w)} > m > 0. 2.5)
The majority of the reviewed results assume isotropic materials with admittivity y (z, ) a
scalar-valued, L*°(2) function, where €2 is the closure of the domain. Nevertheless, some
theoretical studies for anisotropic materials are mentioned as well (see section 4.4).

2.1. The continuum model

By definition, j is divergence free so Ohm’s law (2.4) gives the partial differential equation

V-ly@, o)Vé(z, )] =0 in €2, (2.6)
which we take with either Dirichlet boundary conditions
¢(x, w) = V(x, w), forx € 02, 2.7
or Neumann boundary conditions
a ’
y @, 0V o) n@) =y @ o) 0 < @w)  aog,
n
such that / I(x, w)ds(x) =0, (2.8)
a0

where n(x) is the outer normal at & € 9€2.
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Assuming (2.5) and y (x, w) € L™ (), the Dirichlet boundary value problem (2.6), (2.7),
for arbitrary V € H%(BQ), has a unique solution ¢ (x, ) € H'(Q), at least in the weak
sense [68]. The Neumann boundary value problem (2.6), (2.8), for [ € H_%(BQ), has a
unique solution ¢ (z, w) € H'(R), up to an additive constant [68], which we fix by choosing
the ground as

/ ¢(x, w)ds(x) =/ V(x, w)ds(x) = 0. 2.9)
Elo) aQ

The electric current density satisfies equations

1
Vx|: j(:c,a)):|=0 and V.jlx,w)=0 in ,
v (@, ) (2.10)
—J(x, w) -n(x) = I(x, w), forx € 092, such that / I(x, w)ds(xz) =0,
a0

which, by (2.4), are equivalent to (2.6), (2.8). In particular, we have that (2.10) has a unique
solution j(z, w) € L?(R2), which is related to electric potential ¢ (x, w) € H'(RQ), a solution
of (2.6), (2.8), by Ohm’s law (2.4).

Boundary value problems (2.6), (2.7); (2.6), (2.8) or, equivalently, (2.10), for a known
function y (, ®) in 2 and data I (x, w) or V(x, w), given for all x € %2, are referred to as
continuum, forward mathematical models for EIT.

2.2. Modelling the electrodes

In practice, we do not know boundary current / (x, w) for all x € 2. What we actually know
are currents sent along wires which are attached to N discrete electrodes, which in turn are
attached to the boundary 92 [135]. Then, the question is how to model the electrodes?

The gap model approximates the current density by a constant at the surface of each
electrode and by zero in the gaps between the electrodes. This model is appealing because
of its simplicity but it is not accurate [90]. A better choice is the complete model proposed
in [135]. Suppose that [;(w) is the electric current sent through the wire attached to the /th
electrode. At the surface §; of this electrode, the normal current density satisfies

¢ (z, )
y(x, w) ——ds(x) = [;(w). (2.11)
M on
In the gaps between the electrodes, we have
8 9
e w)%w) —0. (2.12)
n

At the contact of S; with 9€2, there is an electro-chemical effect which gives rise to a thin,
highly resistive layer. This is taken into account by the surface impedance z;(w) and

¢ (z, w)
q)(w,a))+zl(a))y(m,a))87 = Vi(w) forxe S;,l=1,...N, (2.13)
n
where V;(w) is the measured voltage at the /th electrode. Finally, due to conservation of charge

and, by the choice of ground,

N N
Zl,(a)) = ZV,(a)) =0. (2.14)
=1 =1

It is proved in [135] that equations (2.6), (2.11)—(2.14) have a unique solution and that
they predict experimental data with errors less than 1%. However, this complete model is more
complicated than the continuum one and the inverse problem based on it remains essentially
unstudied from the theoretical and numerical reconstructions points of view. Consequently, in
the remainder of this survey, we concentrate on the continuum model.
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3. Formulation of the inverse problem

In EIT, the admittivity function y(x, ) is unknown and it is to be determined from
simultaneous measurements of boundary voltages V (x, w) and current densities /(x, w),
respectively. In this section, we define the DtN and NtD maps which relate V (x, w) to I (x, ).
These maps depend nonlinearly on the unknown y (z, w) and they are data in inversion. We
review some properties of these maps and we formulate the inverse problem.

3.1. The Dirichlet-to-Neumann and the Neumann-to-Dirichlet maps
The DIN map A, : Hz(3R) — H~2(3) is defined as

AyV(w,a))zy(m,a))W forz € 92, G.1)

where V (x, w) is arbitrary in H: (0R2) and ¢ (x, w) solves forward problem (2.6), (2.7).

Suppose that potentials ¢(x, w) and ¥ (x, w) are solutions of boundary value
problem (2.6), (2.7), for Dirichlet data V (x, w) and W (x, ) in H > (0€2), respectively. We
define the inner product

(f.8) = / M (@)g () ds(z),
Elo)
where f*(x) is the complex conjugate of f(x), and we have

(W, A, V) = / W* (. @)y (. ) 2 Z 2 4
Q2

on s(@)

=/V(w, o)Vo(z, w) - VY™ (z, ») dz,

Q

) Y (. ) 3.2)

(A, W, V) =/ V(z,w)y (x, o) ———— ds(x)
90 on

= /V*(w, 0)Vo(z, w) - VY™ (z, ») dzx.
Q

In particular, if we let V (z, ) = W(x, w) in (3.2), we observe that (V, A,, V) = 0 if and only
if V¢ (x, w) = 0 almost everywhere in Q2 (recall assumption (2.5)). Hence, the DtN map has
a nontrivial null space: null{A,} = {V (x, @) = constant}.

In the static case @ = 0, we have y(x,0) = o(x) and A, = A, satisfies the following
lemma.

Lemma 1. A, is a self-adjoint, positive semidefinite map with variational formulation
(V,A; V) = lminv / cr(a:)|Vu(:c)|2 dx, for arbitrary V (x) € H: (082). 3.3)
ulye= Q
The self-adjointness of A, follows immediately from (3.2) and the Dirichlet variational
principle (3.3) can be found, for example, in [44].
When w # 0, A, is complex-symmetric but not self-adjoint, and it has the following
variational formulation.

Lemma 2. Let the boundary potential be V (x, w) = Vr(x, ) +1Vi(x, w), where Vg and Vy
are real-valued functions in H>(02). Then,

uRlpe=Vr uilyga=W

. o —we Vugr
= min max Vur, Vu dx, 34
ur lpe=Vr MI|BQ:VI,/;2( R v <—a)€ —0 > < Vup > G4

Re(V*,A, V)= min max /Re{yV(uR +iup) - V(ug +iup)} dzx
Q
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and

Im(V*, A, V)= min max /Im{yV(uR +iup) - V(ug +iup)} da
Q

urlpe=VWr urlse=Wi

. we o Vugr
= min max Vur, Vu dx. 3.5
urlpe=Vr M1|aQ=V|,/g;( K 2 < o —G)E) ( Vuy ) (3-3)

Variational principles (3.4) and (3.5) are derived and analysed in [40, 67]. Note that, at
the saddle point, functions ug (x, ®) and ui(x, ) in (3.4) and (3.5) are the real and imaginary
parts of electric potential ¢ (x, w), the solution of (2.6), (2.7).

Variational principles (3.3)—(3.5) have been used extensively in the analysis and the
numerical solution of both forward and inverse problems. In this survey, we review their
use in studies of high-contrast materials (see section 5) and in numerical reconstructions of
y (x, w) (see section 7.2.2).

The mathematical formulation of EIT, as first posed by Calderén [33], is as follows.

Definition 1. Find the L™ (Q2) admittivity function y (x, ), with strictly positive real part
o (x), given the DIN map A,,.

In practice, it is not advisable to work with the DtN map. Instead, one uses the NtD
map (A),)’1 which, as shown below, is smoothing and therefore better behaved for noisy
measurements. Nevertheless, in theory, both maps contain the same information and, usually,
the DtN map is used for convenience.

The NtD map (Ay)’1 :J — H 3 (0€2) is defined on the restricted space of currents

J = {I(:c, w) e H2(3Q) suchthat/ I (x, @) ds(x) =o} (3.6)
il

Q
and, for any I(x,w) € J, (Ay)’ll(m,a)) = ¢(x,w) at 02, where ¢(x, w) is the
solution of Neumann boundary value problem (2.6), (2.8), (2.9). For @ = 0, we have that
(A))™! = (A,) 7! satisfies the following lemma.

Lemma 3. The NtD map (Ay)~"' is self-adjoint and positive definite, with variational
formulation

1
(I,(Ay)"'I) = min ——j(@)|* de, for arbitrary I (x) € J. 3.7
y-g"=0 , Q0o ()
—J)npe=

That (A,)~! is self-adjoint and positive definite follows easily from integration by parts,
in a calculation similar to (3.2). The Thompson variational principle (3.7) is proved in [44].

When w # 0, we find, similar to lemma 2, that (Ay)’1 is complex symmetric but not
self-adjoint. Furthermore, the real and imaginary parts of quadratic forms (/*, (A,)~'1) have
saddle point variational principles, similar to (3.4) and (3.5) (see [40, 67]).

Independent of the frequency w, we note that (A,)~! is the generalized inverse of A, .
More explicitly, the quadratic forms of the DtN and NtD maps are related by duality relations,
which we give below for the dc problem.

Lemma 4. In the static case w = 0, we have the convex duality relations

(V, Ao V) = sup{2(1, V) — (I, (As) "' 1)}, for any V(x) € H?(9Q), (3.8)
IeJ
(I, (A(,)_II) = sup {2(I,V)—(V,A,V)}, forany I(x) € J. 3.9)
VeH? (3Q)

The proof of lemma 4 can be found, for example, in [64]. Duality relations for the complex
problem w # 0 can be found in [40, 67].
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Figure 1. Illustration of experimental setups for gathering partial data about the DtN map.

3.2. Imaging with incomplete, noisy data

In practice, we do not have full knowledge of maps (A,)~! or A,, respectively. Instead,
we have a set of N experiments, where we define an excitation pattern I, (x, w) € J and
we measure the resulting voltage V,(x,, w), at discrete locations x, € 92 of the electrodes,
along the boundary. In figure 1, we illustrate two experimental setups. Excitation current I,
is injected (extracted) at some electrodes and the resulting voltage is measured at all or some
of the electrodes. The first setup is typical of medical applications, where one has access
at all points of the boundary. The second setup is typical of geophysics applications, where
measurements can be made at the earth’s surface or in some boreholes. In any case, we say
that we have partial knowledge of the NtD map and, furthermore, the data V, are usually
contaminated with noise. The practical EIT problem is the following.

Definition 2. Find admittivity function y (x, w), given partial, noisy knowledge of (Ay)’l.

All theoretical results reviewed in this paper assume full knowledge of the DtN (NtD) maps
(see definition 1). However, most numerical reconstructions use the more realistic definition 2
of EIT.

4. Uniqueness of solutions

In this section, we address the identifiability question: given the boundary measurements, can
we uniquely determine y (z, w) in Q?

In some important applications, such as nondestructive testing, the unknown y can be
restricted to a special class of functions. For example, we can suppose that y (x, @) takes
two known values y; or y», for « inside or outside an unknown, possibly multiple-connected
subdomain D of 2. Then, it is possible to identify y with less than full knowledge of the DtN
map (see for example [92, 93] and the references within).

We assume here full knowledge of A, as was done initially by Calderén in his influential
paper [33], and we review some of the important results on the injectivity of the DtN map,
for a large class of functions y. We begin with the identifiability of y at 92 (section 4.1),
after which we address the uniqueness of solutions in the interior of €2 (sections 4.2, 4.3). In
section 4.4, we discuss the anisotropic problem, where y is tensor valued. Finally, we consider
the EIT problem for discrete resistor networks in section 4.5.
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4.1. Uniqueness and continuous dependence at the boundary

The first proof of unique identifiability of o and its normal derivatives at the boundary, by
the DtN map A, has been obtained by Kohn and Vogelius [105], under the assumptions that
Q is a bounded, C*® domain, and o is an L>®(Q), strictly positive function, which is C*
in a neighbourhood of dQ2. To prove uniqueness at an arbitrary xy € 92, they used energy
estimates and carefully designed boundary data V € H 2(9€2), which are highly oscillatory
and vanish outside a small neighbourhood of xj. Such boundary conditions ensure that the
solution of (2.6), (2.7) decays rapidly away from x, and is thus suitable for determining o at
this point.

By using techniques of microlocal analysis, Sylvester and Uhlmann [145] give explicit
reconstruction formulae for o and its normal derivatives at d€2, under the assumptions that 2
is bounded and C®, and ¢ € C®(Q), such that A, is a pseudodifferential operator of order 1
(see [32]). Take « in the vicinity of ¢ € 02 and let x — ¢ = (2/, z,,), where 2’ € R"! and
7y = 0 for x € 9Q2. The symbol of A, is given by (see [145])

AO’ (z/v E/) = G(z/s O)'E/I + a(z/s 5/) + r(z/s 5/)7 (41)

where a(z/, £') is homogeneous of degree 0 in ¢ and it is determined by the normal and
tangential first derivatives of o, at (z/, 0). Term r(2/, £') in (4.1) is a classical symbol of order
—1 and it is determined by higher order normal and tangential derivatives of o, at (2/, 0).
Then, from the definition of symbol A, and (4.1), the boundary reconstruction is
efiz’{’ o
0(z,0)= lim ——Aye'*¢. 4.2)
€100 |€]

Normal derivatives of o, at 9€2, can be determined inductively. For example, the first normal
derivative do (2, 0)/0n is given by the principal symbol of map A, — o |3qA |, where o |yq
denotes the trace of o at the boundary and A is the DtN map for a constant conductivity, equal
to 1.

Boundary reconstructions are also given by Nachman [117]. His technique does not
require that A, be a pseudodifferential operator and, as a result, the previous assumptions
are relaxed to a C"! boundary 82, and conductivity o € C"!(22). Nachman’s formulae for
conductivity o and its normal derivative at d<2 are

‘kl‘im [2e 7= * Sy Age™* — o (@) 1290 = O 4.3)
—00
and
. —iz-k ok 00
lim |le (A1 + Ao —2A,)e™" — — =0, 4.4)
k|00 n | 120

respectively, where Sy is the single layer potential operator Sy f () = faQGo(m, vy) f(y)ds
and Gy is the free space Green function for the Laplace equation.

Explicit reconstructions such as (4.2), have been used further by Sylvester and
Uhlmann [145, 148] in proving stability estimates:

Theorem 1. Suppose that o and o, are two bounded, strictly positive and continuous

functions. The trace of o1 — oy at 02 (assumed smooth) can be bounded in terms of the
1 1

operator norm of Ay, — Ao, from H2(02) to H™2(02), as

lor — oallx@a) < CllAg, — 4.5)

Aol OQ).H I (0Q)’

where C is a constant depending on Q2 and dimension d.
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The proof of (4.5) is given in [145]. It is also shown there that, if o7 and o, are Lipschitz
continuous, } o _ o is bounded in terms of || Ay, — as well.

an " on ||L°Q(E)S2) A"2||H%(asz),1r%(asz)’

Note in particular that the stability estimates derived in [145] imply uniqueness of
a Lipschitz-continuous conductivity and its normal derivative at €2, as follows. Take a
C°°(R2) function o7 in (4.5) and let o, be its Lipschitz continuous approximation. Then,
1As, — Ag, ”H%(Z)Q),H’%(BQ) is bounded in terms of the approximation error |07 — 02| L=(q)

(see [145]). Since o and % are uniquely determined at 92 by A, (see [105]), the uniqueness

of the Lipschitz conductivity at 92 follows from stability estimate (4.5). Similarly, uniqueness

of the normal boundary derivative of a Lipschitz conductivity function follows from the stability
doy doy

bound on || FF — 2 |[Lx a0 given in [145].

We conclude with the observation that explicit reconstruction formulae in the interior of
€2 are not possible, in general, but uniqueness still holds, as shown next.

4.2. Uniqueness in the interior. The linearized problem

The EIT problem was first posed by Calderdn, in the fundamental paper [33]. He considered
the static case w = 0, where Dirichlet variational principle (3.3) applies, but his results extend
to the complex case w # 0, as well. Let us polarize the quadratic form (3.3) and obtain

Qo (V, W) = (W, A V) = /O(ﬂs)w(ﬂ:) - Vi (x) dz, (4.6)
Q

where ¢ and i are solutions of (2.6), (2.7), for o = 0 (i.e. y = o) and Dirichlet data V and
W, respectively. Recall that A, is self-adjoint and note that Q,(V, W), for all V and W in
H> (0€2), determines A, itself.

Calderén proved that map Q, is analytic and that its Fréchet derivative at 0 = (), in
direction h(x), is

DQyo(V,W)h = / h(x)Ve'(x) - VY (x) de, 4.7
Q
where ¢° and ¥° € H'(Q) are solutions of
V- [0%z)Ve (@) = V- [0 (@) VY (z)] = 0 in Q
¢'(x) =V (), (4.8)
vo(x) = W(x) at 92.

Then, the linearized map is injective, if the products V¢° - Vi are dense in L>().
Calder6n considered linearization at a constant, say 0% = 1, and he assumed that & (x)
vanishes near d<2. To prove injectivity of the linearized map Q| + D Qh, he supposed that

/ h(x)Ve'(x) - VYo (x)da = 0, (4.9)
Q
for all harmonic functions q)o, 1//0, in Q. In particular, he chose harmonic functions
¢(x) = e, YO(x) =e "¢, (4.10)
where
i k
E=p+ %kz for p, k € RY, such that |p| = % andp-k=0. (411)

Then, using (4.10) in (4.9) and extending & (x) to 0 outside domain €2,

|k|? |k|?

|§|2/h(w)ew'<€—5'> de = T/dh(m)eik'w de = Tfz(k) =0, forall k € RY,
Q R

(4.12)
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such that, by the Fourier inversion formula, 4 (x) = 0 everywhere in R?. Equivalently, the
linearized map at constant o' is injective.

Complex exponentials (4.10) are of great importance in the theoretical study of nonlinear
EIT (see section 4.3) and they allow an explicit reconstruction of /(x), as follows [33]: let us
suppose that the perturbation of ¢ is small, of order § < 1, and rescale h as h — §h, such that
o(x) = 1 +8h(x) in Q. Consider V(z) = e*¢, W(z) = e ¢ for & € 9, the boundary
traces of harmonic functions (4.10). Calderén showed that

IV(¢ = )2 @) < SClIh(@) |2, IV@W = ¥ < SCIA@) ||~ @),

for some constant C, and he obtained

~ 2 . .
Sh(k) = ~TE [QG (€€, e ™) — / ¢ -n(x)er® ds(m)] +0(8%) for any k # 0.
Elo)
4.13)
The accuracy of Calderdn’s reconstruction (4.13) has been tested in [91], for €2 a unit disc
and
a if|lg] <r <1,
Sh(x) =
0 elsewhere.
In this example, 6 (x) ~ 2% ;ozo (—ﬁ)px,m () (see[91]), where x,»+ is the characteristic

function of a disc of radius r”*!, concentric with Q. As expected, the reconstruction is
accurate if @ <« 1. For larger a, (4.13) gives an infinite number of jump discontinuities
of the reconstructed 8 (x), with only the first discontinuity occurring at correct radius r.

4.3. Uniqueness in the interior. The nonlinear problem

Even though the analytic map Q, has an injective Fréchet derivative at constant o° (see
section 4.2 and [33]), the inverse of D Qo is unbounded and we cannot apply the implicit
function theorem. In particular, the injectivity of DQ,0 does not imply the injectivity of
nonlinear map Q,, even for o near a constant.

One of the first uniqueness results for nonlinear EIT is given by Kohn and Vogelius,
for analytic o, as an immediate corollary to their boundary identification result (see [105]
and section 4.1). The extension to piecewise analytic conductivities, in C* subdomains of
analyticity, is done in [107].

Uniqueness of piecewise constant o, with piecewise smooth interfaces of discontinuity,
in a domain 2 which can be unbounded, is given by Druskin [58]. The extension to piecewise
analytic o is given in [59]. Druskin’s approach is based on the theory of the Cauchy problem
for elliptic second-order partial differential equations and it exploits heavily the properties
of Green functions near the discontinuities of 0. Note that Druskin’s results address inverse
problems encountered in geophysics, where one does not have measurements everywhere
around 0€2. For example, he shows that in three dimensions, measurements of A,V in an
arbitrary two-dimensional subset of d€2, guarantee uniqueness of o in 2.

The question of injectivity of the nonlinear A, map, in dimensions d > 3, is answered,
for a large class of functions y, by Sylvester and Uhlmann, in [144]. Their proof is extended
to a reconstruction algorithm, by Nachman [117]. In two dimensions, the injectivity of the dc
map A, is established by Nachman [118], in a constructive proof which has been implemented
in [134]. We review these fundamental results in sections 4.3.1-4.3.3.
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4.3.1. Complex geometrical optics for Schrodinger’s equation. Uniqueness in dimensions
d > 3. Sylvester and Uhlmann [144] discovered that complex exponentials (4.10) can also
be used for variable functions y, in the high-frequency limit || — oo, where WKB-type
estimates of the potential inside €2 hold. Their fundamental uniqueness result is the following.

Theorem 2. Ler Q C R4, d > 3_,be a bounded, simply connected domain with C* boundary.
Suppose that y and y, are C* () functions with strictly positive real parts. If A,V = A, V,

forall Ve HX(3Q), y1 = y» in S

Before describing Sylvester and Uhlmann’s proof of theorem 2, let us note the following
extensions: in [116, 117], uniqueness is proved for a C!"! boundary and functiony € C»!(Q).
Further extensions were obtained by Brown [29] for Wi+ (), 8 > 0, conductivities and by
Péivirinta et al [122] for Lipschitz conductivities. Note that the latter is the strongest known
uniqueness result, for dimension d > 3.

In [144], Sylvester and Uhlmann begin their proof of theorem 2, by transforming the EIT
problem into an inverse scattering problem for Schrodinger’s equation

Au(z, w) — qg(x, o)u(x, w) =0, (4.14)
where A is the Laplace operator,

Ay%(m, w)

u(x, w) = y%(w, w)p(x, w) and q(x, w) = in Q. (4.15)

Y (z, )
The inverse scattering problem is: Find scattering potential q(x,w) € L®(RQ),
gven I'y f(x, w) = W for x € 02 and arbitrary Dirichlet data ulyg = f € H: (02).
Note that I',, is given in terms of A, as
dy (z, w) 1 _1
Tf(w,a))+y 2z, ) Ay (Y2 )z, w) forxz € 0Q2
n

(4.16)

1
nfww»=§f%&w>

and, since y and its normal derivative are uniquely determined at d<2 (see section 4.1), the
inverse scattering problem and the EIT problem are equivalent, for sufficiently smooth y.

To obtain the injectivity of I'y, Sylvester and Uhlmann show first that (4.14) admits
complex geometrical optics solutions

u(e, ) = u(z, w; &) =41 + Y (z, w; £)), € eC%suchthat&- &€ =0, 4.17)

where

Vi (x, w; &) +2i8 - Vi (z, 0: &) — gz, )Y (z, 0; §) = q(x, ) in (4.18)

and ||1/f||2L§(Q) = [o(A+|z»)°|Y (@, w; &)|* dx decayslike 1/]€|, for—1 < § < Oand [€] > 1.
Now, suppose that ¢; and g, are two scattering potentials, satisfying I';, = I'y,. Due

to the uniqueness of y and its derivatives at the boundary, §q (x, ®) = qi(x, ®) — ¢ (x, )
vanishes at 92 and, by integration by parts,

/ 8q(x, w)ui(x, w)ur(x, w)dx =0, (4.19)
Q

where u1, u, are solutions of (4.14), for the same boundary data and scattering potentials g
and ¢», respectively. Following Calderén’s approach, Sylvester and Uhlmann take

uj(z, w) = u(x, w; §;) =eiw'€/(1+1//(m,a); &), j=1,2, (4.20)
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for&,, 6, e C4 & - & =&, -& = 0and & +&, = k, a fixed, arbitrary vector in RY. In
particular, they let |£,] and |&,]| — o0, such that

f 8q(x, w)e™* dx = f 8q(x, w)e™ Y (z, »; £)) + Y (z, 0; &)
Q Q

+ Y1z, w; £V, w; &) dz — 0
and, by setting 8¢ = 0 outside £, they obtain 8§ (k, w) = 0 for all k € R¢. Finally, by the
Fourier inversion formula, the scattering potential g (x, @) is uniquely determined by I';, and
the admittivity y is the unique solution of the Dirichlet boundary value problem
Alyz(:c,a))—yz(:c,a))q(:c,a))zO in @21
y2(x, w) = given at 9L2.
Even though most ingredients of Sylvester and Uhlmann’s proof of theorem 2 hold in
any dimension, the construction of the high-frequency complex vectors &; and &,, as needed
in (4.20), can be done only in C?, for d > 3. Uniqueness in two dimensions is proved by
Nachman [118], who also uses complex exponentials but does not rely on the high-frequency
limit, as we discuss in section 4.3.3.

4.3.2. Reconstructing the conductivity in dimensions d > 3. The complex exponential
solutions (4.17) have also been used by Nachman [117] for reconstructingo € C L1(Q), given
the map A, at the C''! boundary 9.

Nachman’s algorithm begins with the inverse scattering problem for Schrodinger’s
equation (4.14). At 02, o and do/dn are given by (4.3), (4.4), and the map I';, follows
from (4.16). Inside 2, o (x) can be calculated in terms of the scattering potential g (x), by
solving boundary value problem (4.21). Hence, the problem reduces to finding the scattering
potential g (x) from I';.

Suppose that g (x) is compactly supported in 2 and consider the scattering transform of q,

t(k, &) = / q(@)u(z; e *0 dg = / q(@)e ™ *[1 + Y (x; ©)]da, (4.22)
Q R4

where u(x; £) are the geometrical optics solutions (4.17) (for @ = 0) and k € R?. Nachman
requires that both e 7 *+& and e '#*¢ be harmonic functions, so (k+&) - (k+&) =£-& = 0.
For example, for any A > 0, we can take £ = —k/2 + a +1ib, where a, b and k are orthogonal
in R and |a| = A, |b| = /A2 + |k|2/4, and we obtain the Fourier coefficients of ¢, in the
limit A — oo (i.e. |€] — ©0), as

G(—k) = dim (k. &) for any k € R, (4.23)

The remaining question is, how to find the scattering transform ¢ (k, §) from I';?
Using (4.14) in (4.22), recalling that e 7*(**&) is harmonic and integrating by parts, we
have

1k, &) = / e O Ay (a; €) dw = / [e 7 ®OT u(a; €) — u(@; ©Toe™ ™ 9] ds (@)
Q aQ

= / e (T, — To)u(z; &) ds(z), (4.24)
I

where I'y is the DtN map of Laplace’s equation. Note, however, that only the leading term of
u(x; &) at 2 is known. The amplitude ¥ (x; &) must be calculated, and we cannot simply
solve (4.18), because ¢ is not known. Instead, Nachman finds ¢ at 32 by solving the exterior
problem

Au(z; €) =0 inRY\ Q,

%f@ = Tyu(z;€)  atdQ (4.25)
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and, as |z| — oo, w(x; &) = u(x; &) — ¢ satisfies the radiation condition

dw(a: 9G: (v,
lim [Gg(y, LG Y g)M} ds(@)=0  foralmostall y,
R—o0 |z|=R on an
(4.26)
where
a1 [ eily-a)C
Gely, x) = / dc (4.27)
: Q@r)d JualCP+2C - €

is the Fadeev Green function of Laplace’s equation. Nachman shows that f(x; £) = ulyq
satisfies the integral equation of Fredholm type

f(@: &) =™ — (S;Ty, — B — 1) f(x: &), (4.28)

where S; f(@; €) = [,0Ge (@, y) f (y; €) ds(y), Be f (@; €) = p.v. f,0" 572 f (y; €) ds (y),
are single- and double-layer potentials, respectively. He also proves that the integral operator
%I + S¢I'y — Be is invertible and, moreover, (4.28) has a unique solution f(x; &) = ulsq,
which belongs to H32Q).

The reconstruction process is completed by using the calculated u(x; &) at 92 in (4.24),
taking the limit (4.23) and finally, solving (4.21) for . Note that Nachman gives an alternative
to formula (4.23), for ¢ in terms of , as well. Nevertheless, both formulae require high complex
frequencies and they should be unstable in practice, due to exponential amplification of noise
inTy.

4.3.3.  Uniqueness in two dimensions. Local uniqueness in two dimensions has been
obtained for conductivities o € W3 (Q), which are approximately constant, by Sylvester
and Uhlmann [143]. Further, Sun and Uhlmann [140] show that the space W () of
conductivities contains an open dense set O such that, if oy and o, are close to an element
in O, A,, = Ay, implies 01 = 0,. Other results, for quite special functions o, are given by
Sun [138, 139] and Sylvester [142]. However, the global two-dimensional uniqueness problem
has been solved by Nachman [118], in his fundamental theorem, as follows.

Theorem 3. Let Q be a bounded, Lipschitz domain in R* and take two positive conductivity
functions o1, 02 € W>P(Q), for p > 1. If Ao, = Ay, then o1 = 0.

The first steps in Nachman’s proof of theorem 3 have already been described in
section 4.3.2.  The EIT problem is transformed into the inverse scattering problem
for Schrodinger’s equation, the scattering transform f(k; §) is given in terms of I, by
equation (4.24), and the trace of u(x; &) at 92 is calculated by solving (4.28). However,
q cannot be extracted from 7 by taking the high-frequency limit, since in two dimensions, there
is not enough freedom to have & - £ = (€ + k) - (€ + k) = O for arbitrary k € R?, and |£| — o0,
at the same time. Instead, Nachman’s proof proceeds as follows.

Let& = (¢,i¢) € C?, where¢ € C, k = —2Re{£}, suchthat (k+£) - (k+&) = £*- & =
£ - £ =0, and define

wx; €) = e Cu(x; €) = 1 + Y (x; €). (4.29)
In terms of the new variable ¢ and z = x| + ix», the scattering transform becomes
1(0) = t(—2Refé}, &) = / g(@)p(a; §)e T de = / e 7(I, — T u(z; ) ds(z).
Q a0
(4.30)
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Nachman proves that (a; ¢) is the unique solution of the 3 equation

ou:o) 1 o)
————=—=1()e x; ), 4.31
Y inT () n(x; ¢) (4.31)
or, equivalently, of the integral equation
1 t ! (T LN T .
pag) =1+ M) D) dg e, whered! = g 4.

An? Jpe T (¢ = 0)
4.32)

At low frequency ¢ < 1, the scattering transform is |¢(¢)| = O(|¢|*) and the trace of

u at 92 can be estimated from (4.28) as |lu(x; &) — IHH%(aQ) = O(|¢]) [118, 134]. Finally,
—1/2

recalling that o ~'/“u solves the EIT equations, using the maximum principle and regularity
and embedding theorems, Nachman obtains

1 1(g) efi(?ﬂ{'z)

3x) = i ) =14 — 2y dek de! forall z € Q.
o (x) {1_%#(93 ) sy By p(x; ¢ dig dg orall =

(4.33)

Nachman’s proof has been successfully implemented and tested by Siltanen et al [134].
Theorem 3 has also been extended by Brown and Uhlmann [30] to less regular conductivities
o € W' for p > 1. Uniqueness for even less regular o is not known.

Note that all the results reviewed in this section apply to the static problem, whereas
uniqueness in three or more dimensions is known for complex admittivities, as well (see
section 4.3.1 and [144, 148]). While the complex problem is not entirely solved in two
dimensions, substantial progress has been made by Francini [69], who proves the unique
identification of complex y € W (Q), by A, , if Im{y} is sufficiently small (i.e. @ is small).

4.4. Anisotropic materials

The electrical properties of anisotropic materials depend on direction and the admittivity y is
a complex-symmetric, matrix-valued function, with positive definite real part. Unfortunately,
the DtN map for anisotropic y is not injective, as shown by a simple calculation in [106]:
let ¥ : Q —  be any smooth diffeomorphism, which is the identity at Q2. Let DW be
the differential of W and DWT its transpose. Then, A; = A,, where y is the transformed
admittivity y through W,

(DYTy DY) o W!

7 (@, w) = Qe (DUD (z, 0). (4.34)

Since uniqueness does not hold for anisotropic EIT, we rephrase the question as: does the
DtN map A, determine y , up to a diffeomorphism W? The answer is affirmative for real-valued
y = o, in two dimensions, if 0 € C>%(Q),0 < « < 1 and 9Q is C>¢ (see [141]") and in
three dimensions, if ¢ is analytic [111] (see also [146, 148, 149]).

4.5. Electrical networks

Networks arise in many applications, by themselves, or as modelling tools for creeping, ground
water flow [109], flow in high-contrast media [27, 75, 81], etc. Electrical conduction through

' In [141], the authors use isothermal coordinates (available only in two dimensions) to show that the anisotropic
problem reduces to an isotropic one. Then, uniqueness follows from Nachmann’s proof [118].
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networks is described by Kirchhoff’s circuit laws and it is well understood. In this section, we
consider the inverse problem: find the electrical network which has a given DtN map.

A network (N, B, y) consists of sets A/ and B of nodes and branches (edges), respectively.
Anedge (p, k) € B connects two nodes p, k € N and it has an admittivity y, ;. Suppose that
there are N, boundary nodes in /. The network DIN map, A‘;,e‘, is the complex-symmetric
N, x N, matrix, which takes the vector V = (Vy, ..., VNb)T of boundary voltages and maps
it into the vector Z = (7, ..., INb)T of boundary electric currents. The NtD map (A';ft)‘1 is
the generalized inverse of the DtN map and it is defined on the restricted set of currents which
satisfy Zg’él Z, = 0. As in the continuum, the quadratic forms of A;‘“‘t and (A;‘,‘*‘)’1 have
variational formulations and they are related by duality relations (see for example [27, 28]).

It is easy to see that the injectivity of the DtN map A';,et does not hold, in general.
Nevertheless, there are special situations, of fixed and known network topology, where the
network is uniquely determined by A;"". This is the case of planar, rectangular networks,
where each interior node has four neighbours, and each boundary node is connected to just
one node, belonging to A"\ A},. Uniqueness for such networks has been established by Curtis
and Morrow [46] and by Griinbaum and Zubelli [76]%. They independently developed the
same constructive proof of injectivity of A‘}‘f", which recovers the network in a layer peeling
fashion, marching from the boundary, towards the interior of the domain. This algorithm is very
appealing because of its simplicity and it has been implemented by many. Unfortunately, it is
extremely ill-conditioned and it does not work, in practice, for larger than 10 x 10 rectangular
networks.

Another example of identifiable network is the circular planar ones considered by Curtis
et al [45] (see also [86]) and, independently, by Colin de Verdiere [47, 48].

Nevertheless, the injectivity question for more general networks remains open. In
particular, the necessary and sufficient conditions that a network should satisfy in order to
be identifiable from the DtN map are not known, so far.

5. High-contrast EIT

In some applications, such as geophysics, electrical properties of materials can have high
contrast. For example, a dry rock matrix is insulating compared with liquid-filled pores, some
pore liquids, such as hydrocarbons, are poor conductors in comparison with other pore liquids,
such as brines, and so on. The fact is that the subsurface electrical conductivity can vary over
several orders of magnitude in €2, even at macroscopic length scales, where some averaging is
already built into the model.

Clearly, there are many ways in which high contrast can arise in a medium. We concentrate
here on materials with dense arrays of highly conducting or insulating inclusions, in a smooth
background. Such high-contrast materials are at or near the percolation threshold (inclusions
are close to touching), and they pose difficult theoretical and computational challenges in both
forward and inverse problems. In particular, the injectivity results of section 4 do not apply.

Electrical conduction in high-contrast materials, with periodic or random structure, has
been studied from the homogenization point of view in [12, 16, 27, 100, 101, 110]. However,
these works do not address the issue of boundary conditions, which is key in inversion. The first

2 Note that [76] considers a simplified model for isotropic diffusion tomography, with equations similar to Kirchhoff’s
laws for rectangular resistor networks. In particular, instead of an unknown resistor R;; of a branch connecting nodes i
and j in the network, the equations in [76] contain w;;, the probability that a photon is not absorbed at a pixel location
(i, j) in a planar domain. Nevertheless, the proposed reconstruction of wj; is basically the same as that in [46], for
finding resistors R;;.
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Figure 2. Example of an asymptotically equivalent resistor network.

characterization of the DtN map of high-contrast materials has been obtained by Borcea,
Berryman and Papanicolaou in [24] (see also [21, 23, 27, 28]), in two dimensions. Their
results extend to some three-dimensional problems, as well, but the general case is not yet
understood. We review in this section the static high-contrast problem considered in [23, 24].
For the complex admittivity problem, we refer the reader to [27, 28].

Since in most applications, detailed information about the medium, such as the shape
of inclusions, is lacking, the high-contrast conductivity is modelled in [24] as a continuous
function

o(x) = o5(z) = 0'e 5@/, 5.1

where o is constant, S(z) is a smooth function with isolated, nondegenerate critical points

(a Morse function) and § is a small but positive parameter, such that the contrast of o;
is exponentially large (see also [110]). It is shown in [24] that, in the limit § — O,
Ao, 1s asymptotically equivalent to the DIN map of a resistor network. Discrete network
approximations of continuum conduction problems have been considered in the past, as finite-
difference discretizations of the differential equations [46, 51]. However, the asymptotic
networks considered in [24] are radically different. They arise because of strong channelling
of electric currents in high-contrast materials, they are uniquely defined by conductivity o;
and they are rigorously justified by the analysis in [24].

The flow channelling in high-contrast media can be understood from the asymptotic
analysis of equations (2.10), as follows: for o given by (5.1), we have the singularly perturbed
problem

V x j(z) + éVS(:c) x j(x) =0 in Q (5.2)

and, as § — 0, j flows in the direction of VS, along the paths (ridges) of maximal
conductivity [27, 110]. When the contrast is high, j is strongly concentrated and it flows
like current in a network. Along the ridges of maximal conductivity, there are maxima and
saddle points of o5, where VS = 0. A local asymptotic analysis near these points reveals that
V¢ = —j/o is very small near maxima of o5 and very large at its saddle points [27, 110].
The maxima of o5 are then the nodes of the network and the edges connect adjacent maxima

through the saddles x;, where the energy is dissipated just as in a resistor R = ﬁ ]f—i
where k, and k_ are the curvatures of S at x;.

In figure 2 we illustrate the construction of the asymptotic resistor network. We take a
continuum with a high-contrast o5 that has four maxima and six minima shown in the figure
by o and e, respectively. There are also five saddle points of o5 denoted in the figure by 1, . . ., 5.
The current avoids the minima of oy and it is attracted by its maxima. Each maximum of oy

has a basin of attraction delimited in 2 by the ridge of minimal conductivity passing through
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the neighbouring saddle points (see dotted curves in figure 2). Because of the external driving,
the current flows from one maximum of o5 to another, along the least resistive paths (see solid
lines in figure 2), like current in a resistor network. The branches of the network connect
adjacent maxima of oy through the saddle points. In figure 2 we have five branches, each one
carrying aresistance R;,i = 1, ..., 5. Finally, the peripheral nodes a, b, c and d are the points
of intersection of the ridges of maximal conductivity with the boundary.

Let then A2, (A2")~" be the DtN and NtD maps of the asymptotic network, which is
uniquely determined for any high-contrast conductivity (5.1), as shown above. In the limit
8 — 0, we have the following theorem.

Theorem 4. For any current I (x) € H (0K2) such that fm[(w) ds =0,
(I, (Ao ' 1) =TT (AH I + o(1)], (5.3)

where T = (1., .. .INb)T, I, = /BQHE(w )I(:c) ds and E(a:,,) is the closure of the basin of
P
attraction of the maximum of os associated with the pth boundary node. Furthermore, for any
1
potential V (x) € H2(02),

(V, Ay V) = VT AV +0(1)], (5.4)

where ¥V = (Vy, ..., VNb)T, V, = V(s,) and s, is the intersection of 02 with the ridge of
maximal o5, associated with boundary node p.

The proof of theorem 4 is given in [24] and it relies on variational principles (3.3), (3.7).
Explicitly, carefully designed test functions ¢ and j are used in (3.3), (3.7), to get tight upper
bounds on (V, Ay V) and (1, (A(,S)_1 I), respectively. The lower bounds are given by duality
relations (3.9). In the asymptotic limit § — 0, the lower and upper bounds match and they
are given by the quadratic forms VTAQ?V and IT(AQ?)"I for the asymptotic network,
respectively.

In conclusion, high-contrast EIT reduces to imaging the asymptotic network.
Unfortunately, as explained in section 4.5, there may be many networks that have the same
DtN maps and the high-contrast EIT problem does not have, in general, a unique solution.
Equivalently, even though the high-contrast o5 given by (5.1) leads to a unique asymptotic
network, there may be infinitely many functions o that match the boundary measurements.
Then, inversion cannot be done, unless some additional constraints are imposed on o5. For
example, in [23, 24], the authors reconstruct the ‘smallest’ network which matches the data,
with a matching pursuit approach, where the network elements are found one at a time.

6. Instability of EIT

Without a priori restrictions on the class of admittivities y, the inverse map A, — y, taken
from [H% (092), H™> (092)] to L°°(£2), is discontinuous and the EIT problem is severely ill-
posed. A heuristic argument for the instability of EIT is that, to find y, we need the potential
¢ inside the domain. However, ¢ satisfies an elliptic equation with Cauchy data ¢|;o = V
and 09¢/dn|3q = A, V, which is ill-posed, as given by Hadamard [80], so the EIT problem
is ill-posed, as well.

A simple example of instability of EIT is given by Alessandrini [2], for €2 the unit disc
and a conductivity function

1+a ifleg] <r <1,
o(x) = 6.1)
1 elsewhere,
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where a > —1 is a bounded constant. For any voltage V(0) = Z;’o:_oo V,e" in H: (092),
the DtN maps for conductivity (6.1) and 0 = 1 are

2+a(l+r2y o = ind
AV () = Z|n| raa e AVO= Y Ve,

n=—00 n=-00
respectively. Since ||o —1||z~(q) = |a|, independently of r, while lim,_,o(A, — A1)V (0) =0,
for all 8 € [0, 2m), the inverse map is discontinuous.

In numerical computations, it is very expensive to work with fractional-order Sobolev
spaces and the inverse map is usually taken from [L?(32), L?(3)] to L®(L2), or L*(R). In
this case, a typical example of instability comes from the theory of homogenization, where
the conductivity o (x, x/8) = os(x) oscillates at the very small scale § < 1. A common
homogenization result is that, as § — 0, the electric potential ¢;, corresponding to oy,
converges weakly in H'(Q) to ¢(x), the potential for the smooth, effective (homogenized)
conductivity o (x) (see for example [13]). Then, by the compact trace embedding, lims_. ¢ ||¢s —
5||Lz(39) =lims_o [|(Ag,) "' T — (A;)’IIHLz(aQ) =0, for I € L*(3R2), even though o3 and &
are very different functions.

6.1. Stability estimates

In order to have stability of EIT, it is required that some constraints be placed on o (or y, if
w # 0). For example, Alessandrini [2] gives the following logarithmic stability estimate:

§e(0,1), (6.2)

-4
lor = o2l < Clog(I1Ae, = Al 0wt om) -

for 0, 00 € H?*(Q) and s > d/2. Logarithmic stability estimates have also been obtained
for the inverse problem of crack detection by Alessandrini [3] and Alessandrini and Rondi [6].
Furthermore, in [4], Alessandrini shows that in corrosion detection by EIT, the logarithmic
estimate is the best possible stability result.

6.2. Distinguishability, resolution and stabilization

An exact stability analysis of the EIT problem, linearized at a constant conductivity in a unit
disc, is given by Allers and Santosa [7]. They reformulate linearized EIT as a moment problem,
obtain an explicit reconstruction of the perturbation of o and, finally, assess both the stability
and the resolution limit of the image. The conclusion is that stability is achieved at the cost of
loss in resolution, especially for points in the centre of the domain.

Since all measurements are noisy, it is important to understand the set of indistinguishable
perturbations do, at noise level 8,

Ps = {5(; € L®(2) such that [|(Ayoss5) " — (Ago) ! |t ot o < 5},
which is, for all practical purposes, the null space of D(A,0)~!, the Fréchet derivative of
the NtD map at 0°. The concept of distinguishability has been introduced by Isaacson [88]
and Seagar [133] and it has been studied extensively in the static (w = 0) case (see for
example [38, 42, 52, 54]). Note however that, due to the difficulty of working with fractional-
order Sobolev spaces, basically all studies consider the larger set

[0 € L() such that [[(Agosso) ™ = (Ag0) 1200 1200 < 8] 2 Py, (6.3)

Note also that all the available characterizations of distinguishability rely on variational
principle (3.7) and they do not extend to the complex admittivity problem, which is much
less understood.
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A very interesting characterization of the indistinguishable perturbations §o about constant
0% = 1 is given by Dobson [52, 54]. Following Calderén’s approach, Dobson considers
the polarized quadratic form Q.55 (I, J) = (I, (A1ss0) "' J), for I,J € L*(3R), with
linearization

DO, J)so = — / So(x)Ve(x) - VY () de, (6.4)
Q

where ¢° and 1/ are harmonic functions in €, satisfying boundary conditions d¢°/dn|yq = I
and 81&0 /on|yq = J, respectively. Then, he lets

IDQ1do]l = sup |IDO1(I, J)do| (6.5)

1120 11200 <1
and finds two linear operators A and B, which are diagonal in some basis in L*(Q), such that
|Béo|| < |IDQ1éo| < |Ada]. (6.6)

Consequently, if Us, A5 and Bs are the sets of perturbations do satisfying | D Q60 < 6,
|ASo || < & and || Bdo | < §, respectively,

As CUs C Bs. (6.7)

Dobson finds the lower bound in (6.6) with Calderén’s method described in section 4.2:
suppose that 2 is contained in a ball of radius R and take boundary currents

[(z) = aVel&/2h e pn(g), J(x) = aVel€/27P2 . n(x) at 92, (6.8)

where £, n e RY, €. =0, |n| = |€]/2 and constant o = /2Be RIEI/2 B = O(1), is adjusted
to get ||/ |20, 1/ l200) < 1 (see [52, 54]). After an explicit calculation given in [52, 54],
we have

IDQiba || = sup|DQ: (I, J)do| = supBl¢l>e Fél55 (&) = | Bsall.  (6.9)
EeRd EeRd

Thus, the Fourier coefficients §o (&) appear to be determined with an exponentially increasing
error in € and, to stabilize the reconstruction, we may be inclined to set 55(5) = 0, for large
frequencies £&. However, the resulting image is typically too blurry to be of any interest and a
better regularization approach is needed.

Dobson recalls from studies such as [7, 133] that the distinguishability near <2 is much
better than deep, in the interior of 2. The pessimistic bound (6.9) makes no use of this fact and
it treats all points € €2 the same. A better alternative is given by a space-frequency analysis,
which suggests discretizing conductivity o in a wavelet basis. Indeed, Dobson proposes a
wavelet construction of the upper-bound operator A in (6.6) and, he does some resolution
analysis for Q the unit disc and tensor products of Haar wavelets in R2. This idea is very
promising but it has not been studied theoretically or numerically in a satisfactory manner, so
far.

There is extensive literature on how to stabilize the inverse problem by some regularization
approach, which ensures convergence of reconstruction algorithms, by restricting the
admittivity y to a compact subset of L>°(2). For example, we refer the reader to
works [36, 65, 66, 82, 115, 147] and the references within and to the statistical, Bayesian
approaches in [96, 97, 121]. Note, however, that basically all the known regularization methods
make use of some ‘a priori’ information about the unknown o or y and, as a result, they may
introduce artifacts in the images. It is not clear yet which regularization method is better than
the other and this area remains open for research.
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7. Imaging methods

The numerical solution of the EIT problem has received increasing attention, lately, and many
algorithms have been proposed, especially for the static problem (v = 0). We classify the
imaging algorithms as iterative and noniterative and review some of them in sections 7.1 and 7.2.
The nonlinear EIT problem is usually solved iteratively, by a sequence of linearizations at the
guess of admittivity y. This requires that the forward map be sufficiently smooth, as we discuss
in section 7.2.4. The efficient calculation of derivatives of the objective function, via the adjoint
method, is reviewed in section 7.2.5. The surveyed iterative methods are classified as output
least squares (section 7.2.1) and variational (section 7.2.2) and they can be implemented on
a single grid or on multigrids (section 7.3). Finally, the unknown y can be discretized on an
equidistant or better, on an adaptive (optimal) grid, as we discuss in section 7.4.

7.1. Noniterative algorithms

7.1.1. The linearized EIT problem A very ingenious reconstruction method for the linearized
EIT problem around oY = 1, in a unit disc €, is given by Barber and Brown in [11], and it
is analysed by Santosa and Vogelius in [128] and by Berenstein and Tarabusi in [14]. We
follow the exposition in [128]: Take a boundary excitation current /| = —mdé(x — £)/dt,
the tangential derivative of the § distribution (a dipole) at & = (sin8,cosB) € 9Q and
solve (2.6), (2.8), foro =1, as
0 ¢z i .

¢ (x) =u(x, &) = m, & = (—cospB,sinp). (7.1)
Assuming a small perturbation o of the conductivity, which vanishes at 92, the perturbed
potential is approximated by the solution of linearized equations

ddu(x, &)

an N
The change of coordinates from « = (x1, x,) to (—u, v), where v(z, £) = (1 —£-2) /1€ — x|
is the harmonic conjugate to —u in €2, maps conformally €2 into the upper half-space
H = {(—u,v),v > 1/2}. In particular, 92 is mapped onto dH = {(—u,v),v = 1/2}
and (7.2) becomes

Adu(z, €) = —Vo (z) - Vu(z, £) in Q, 0 at 9. (7.2)

a6 )
Asu=-22 inm, P _o  aton (7.3)
au av
The perturbation §o would follow from (7.3) as do(x) = —ddu(u(x,€),v = 1/2)/0u,

except that it violates assumption do |y = 0. Instead, §o is given by an average over the
dipole locations [11, 128]

1 [ ddu(z’(p.v=1),
S0 (z) ~ __/ 4o 221 @ (P v =3). &) (7.4)
2 0 ou p=u(z,£)

for any fixed, but arbitrary € Q. Here, 2" is the intersection of 92 with the equipotential
line p = u(x, £) and « is the angle between the x;, axis and the tangent to the equipotential
line at « (see figure 3). Finally, as shown in [128],

du@’(pv=7).8 _ F@"(Pv=73)8

0
du 5| p=u(a.6)

= a measured quantity.

In [128], Barber and Brown’s backprojection algorithm is explained as an approximate
inverse of Beylkin’s generalized Radon transform [19] and it is used as a preconditioner in an
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X2

X]

Figure 3. The dipole location is at & = (sin S, cos §) and the equipotential line p = u(x, £)
through  intersects the boundary at z.

iterative, conjugate residual method for the numerical solution of linearized EIT. Berenstein
and Tarabusi [14] give a more precise characterization. They show that the linearized EIT
problem in a unit disc can be interpreted exactly in terms of the Radon transform with respect
to the Poincaré metric and a convolution operator. Barber and Brown’s algorithm turns out to
be a crude approximation of the exact representation in [14], which works best for smooth §o
and for points near d2. Finally, as expected, the inversion of the convolution operator in [14]
is unstable and, so far, there is no known exact (or fully satisfactory) reconstruction of §o
inside 2.

7.1.2. The nonlinear EIT problem Layer stripping algorithms [46, 76, 136, 142] recover
the unknown admittivity function y, layer by layer, starting from 9<2 and progressing inside
Q2. Unfortunately, these algorithms are extremely unstable and, as such, they cannot be used
for imaging, even for noiseless data, due to round-off errors. In general, it is not known how
to stabilize the layer stripping approach, but there exists a stable algorithm, developed by
Sylvester in [142], for one-dimensional EIT.

We conclude our survey of noniterative methods with those assuming a conductivity
function

oj(x) forxeB;CQ,j=1,...M

1 elsewhere,

and seeking just the location of the interfaces 9 B; of the inclusions contained in €. For

example, in [31, 85], Briihl and Hanke image the inclusions B; inside 2 as follows: let G,

solve (in the sense of distributions) the differential equation

G, - (x)
on B

where AD,, .(x) = 0 for x # xo and Dy, .(x) = L @202 jo the dipole potential located

2 |x—xo|d

AGq, - (x) = ADy, () inQ, 0 at 9%, (7.6)

at ¢y € RY. It is easy to see that the range of (A,)~! — (A;)~! consists of the trace at
92 of harmonic functions in © \ U”_, B;, with homogeneous Neumann boundary conditions
at 92 [31]. However, by (7.6), G, ()|sq is precisely such a function, if « lies outside all
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inclusions B}, for 1 < j < M. Then, Briihl and Hanke’s algorithm searches for the inclusions,
by testing with Picard’s criterion, for each search point x € €, if G, .(x)|se belongs in the
range of (A,)~! — (A;)~!, or not.

Ikehata and Siltanen [85] give a similar algorithm. Note that [31, 85] are inspired by
the ideas of Kirsch [103] for shape characterization of obstacles in inverse scattering. In fact,
Kirsch’s approach is quite similar to a well known signal processing method known as multiple
signal classification (MUSIC) (see [50, 130]), as is pointed out by Cheney, in [37].

Finally, another very promising approach for locating interfaces of jump discontinuity of
the conductivity o is given by level set methods, as shown for example in [57, 94, 120, 126].

7.2. Iterative algorithms

It is convenient (but not really necessary) to assume in this section that admittivity y is known
at the boundary. This is commonly done in inversion and it is justified as follows: (1) in theory,
y (x, w) is uniquely and stably determined by the Dt N or Nt D maps (see section 4.1), (2) in
practice, we have access at the boundary and y can be measured there.

We define the set of admissible y

YT ={y(x,w) € L>®(Q) satisfying (2.5) and, for x € 0L2, y (x, ®) = known} (7.7)

and we suppose that 7 is the admittivity function to be imaged, such that, for I € H~'/2(3Q),
the measured V (xz, w) = (A);)‘II(:c, w) at 0€2. Ideally, we would like to image y (x, ) by
minimizing the operator norm

. -1 -1
g,ne%}” (AV) - (AV) ”H*%(ag),H%(aQ)’ (7.8)
but, since only limited data are available (see section 3.2), we minimize instead
al 2
. —1 _ A -1 —1/2 o<
ryng;:l I[ay) (AL ||H%(m), forl, e H2(3Q),1 <e <N. (7.9)

Let us define the forward map F : ¥ x J — H 3 (0€2), which is linear in I and nonlinear in
y, as

Fly, (@, 0) = (A,) "' (@, w), for I (z, w) € J and = € 9. (7.10)

Assuming that F[y, I] is sufficiently smooth (see sections 7.2.4 and 7.2.5), nonlinear
minimization problems such as (7.8) and (7.9) are solved iteratively, where, at step
k, the estimated admittivity is y® and F[y;I,] is approximated by its best affine
approximation near y®, for k > 1. Examples of such iterative algorithms can be found
in [22, 51,53, 79, 82, 108, 153] and the references within.

We review in sections 7.2.1 and 7.2.2, two classes of iterative, reconstruction methods:

(1) Output least squares methods which replace the operator norm in (7.8) with an
approximation of the Hilbert—Schmidt norm over L?(9<2) and take the forward map as

F:YxJ— L*0RQ). (7.11)

Working with the L2(3€2) norm, instead of H'/>(92), is motivated by the high cost of
calculating fractional Sobolev space norms, as well as the possible lack of differentiability
of the operator norm in (7.8). However, it is not really understood how this simplification
affects the image, aside from some simple studies [38] which show that it can deteriorate
the resolution.
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(2) Variational methods, derived from variational principles (3.3) and (3.7), which are also
known as equation-error approaches because at the ‘solution’, the potential ¢ which solves
Dirichlet problem (2.6), (2.7) is related to current j, the solution of (2.10), through Ohm’s
law (2.4). In particular, the minimization of (7.9), with the natural H > (02) norm, follows
implicitly.

7.2.1. Output least squares It is shown in [52] that (Ay)’1 — (A);)’1 is a Hilbert—Schmidt
operator over L*(d), for a large class of admittivity functions. Let us then seek the solution
y of the EIT problem as the minimizer of an approximation to the Hilbert—Schmidt norm

N
[an™ =@l = 2N ™ = A k] 20 (7.12)
e=1

for a set of N Neumann data I, € J N L?>(3K), as is commonly done in numerical
reconstructions. Since the EIT problem is ill-posed, convergence can only be ensured by
means of some regularization technique. The output least-squares methods reconstruct y (or
just o) by minimizing functional

2 .
rog T regularization term, (7.13)

N
Ry = [[Aa)™" = @ap 'L
e=1

over y € Y. The regularization term is usually of the form
0y2
By = 7O 2. (7.14)

where B is a linear operator (like the identity or gradient), y° is a prior guess of y and «
is the regularization parameter. In the process of minimizing R(y), ¥° and & can be fixed
or they can vary, the latter being referred to as iterative regularization. We direct the reader
to [36, 65, 66, 82, 115, 147] for a detailed explanation of regularization techniques. We note
that other choices, like total variation regularization [35], can also be made.

Basically, all nonlinear output least-squares algorithms [22, 51, 53, 82, 153] minimize
R(y) iteratively, with some Newton-type method [49]. The linearized output least-squares
algorithms [7, 39] are particular cases of the nonlinear ones, where the ‘solution’ is accepted
after the first iteration. Since the optimization methods require first and possibly second
derivatives of the objective function, it is important to have an efficient way of calculating
them. This is done by means of the adjoint method, as described in section 7.2.5.

There are two important questions that can affect the quality of the final image: (1) How to
discretize the unknown y ? (2) What excitations I, to choose? The first question is discussed in
sections 7.3 and 7.4. The latter is addressed by Isaacson and collaborators in [38, 39, 72, 91],
see also [42], for the static case (w = 0), as follows: suppose that we are interested in
distinguishing o from a given ¢*. Since

A ™ = (Ao0) 35 = D I[AD™ = (Ao) " The 1250 (7.15)
e=1

for every complete orthonormal set {I,} C L?(3<2), the optimal approximation of (7.15), by
a finite set of N functions in L?(3), is achieved by taking I, as the N leading eigenvectors
of self-adjoint operator (Ay)~' — (Aq0)~!. In practice, a discrete version of (A,)~! is
measured and the optimal excitation currents /, are calculated via an eigenvalue decomposition
technique [39, 42, 72].

In the complex case (w # 0), where (Ay)’1 is complex symmetric, but not self-adjoint,
the calculation of the optimal currents is similar to the above, the only difference being that 7,
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are the right singular vectors of (A,)~! — (A,0)~', instead of its eigenvectors. Finally, note
that, aside from very special situations, boundary currents I, which are optimal for the L*(3%)
norm in (7.15) do not maximize the stronger norm || [(As)~" = (Ay0) ML it o) as well (see
for example [38]).

7.2.2. Variational methods. A variational, equation-error algorithm for the static (y = o)
EIT problem, in a slightly different form than that proposed originally by Wexler et al[151], has
been analysed by Kohn and Vogelius [108] and implemented by Kohn and McKenney [104].
This algorithm reconstructs o by minimizing

N
R(o;qsl,...,m;jl,...,jm=Z/ |02 (@) V(@) + 0% (@)4.] da, (7.16)
e=1Y%2

over all its arguments, subject to the constraints that o is a strictly positive function and, for
alll <e <N, ¢p.(x) = Vo(), jo(x) - n(x) = I,(x) at 3 and V - j.(x) = 0 in . This is
solved with an alternate direction implicit (ADI) method in [151] and with a Newton method
in [104]. Some comparisons with other reconstructions methods are given in [153].

To understand why the minimization of (7.17) is called a variational reconstruction
method, let us expand the square in (7.16) and integrate by parts to obtain

f |03 (@) V(@) + 0% (@)j,|” da = f o (@)|V ()| da + f o~ (@)|j. () d
Q Q Q

+ 2/ L. (2)V.(x)ds(x), (7.17)
Ele)

where fasz 1.V, ds is the measured power dissipated into heat. Then, if o is fixed, the first
two terms in (7.17) decouple; minimizing over ¢, is Dirichlet’s variational principle (3.3) and
minimizing over j, is Thompson’s variational principle (3.7).

To explain the name equation-error, note that the minimum of R is achieved when ¢,,
the solution of Dirichlet boundary value problem (2.6), (2.7) with data V,, is related to j., the
solution of Neumann problem (2.10), by Ohm’s law (2.4). In particular, note that, since j, =
—o () V. (x), where 1, is the solution of Neumann boundary value problem (2.6), (2.8), (2.9)
for data I, at the minimum, ||¢, — I/IEHH%(aQ) = |V, — (Ag)’IIeHH%(aQ) = 0, so the data are
fit in the natural norm.

As expected, the ill-posedness of the EIT problem manifests itself through the lack of
lower semicontinuity of the functional in (7.16), which means that, unless some regularization
is added to (7.16), the iterative reconstructions of ¢ develop more and more oscillations and
there is no convergence. Instead of choosing a standard regularization approach, Kohn and
Vogelius [108] calculate the relaxation of variational problem (7.16), where the anticipated
oscillations in ¢ are built directly into the functional, as is done in the homogenization of
composite materials. The result is a new, lower semicontinuous problem, where o belongs to
a larger, relaxed set, containing the original admissible set of conductivities. Unfortunately,
it turns out that the relaxed problem requires anisotropic, tensor-valued conductivities which
cannot be determined uniquely, as explained in section 4.4. Consequently, there exists no
imaging algorithm which uses Kohn and Vogelius’ relaxed variational formulation of EIT,
aside from a reported unsuccessful attempt in [104], so far.

7.2.3. Variational feasibility constraints  Variational principles can be used in numerical
reconstructions of o, as feasibility constraints, as well. This idea is due to Berryman and
Kohn [18] (see also [17]) and it has been implemented by Borcea, Gray and Zhang in [26, 74].
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There is a variety of variational formulations based on the feasibility constraints, as explained
in [26, 74], but, for brevity, we discuss just one of them, which is a modification of the output
least-squares method of section 7.2.1.

Definition 3. We say that function o is Dirichlet feasible for boundary voltage V, € H 3 (092),
if

Ve, Ay V) = minvfo(mnw(:c)Fdw:/a(sc)mse(m)ﬁdm><Ve,AaVe>, (7.18)
Q Q

ulye=V.
where & is the true conductivity and (V,, A V,) = fm V.l.ds = P, is the measured power

dissipat?d into heat. Moreover, we say that o is Dirichlet feasible if (7.18) holds for all
V., € H2(9L2).

The rationale behind this definition is given by variational principle (3.3), as follows: take
any ¢ € H'(Q), such that ¢|3 = V, and obtain by (3.3),

(Ve, AsVe) < /5(m)|V¢(m)|2dm- (7.19)
Q

Now, let ¢ = ¢,, the solution of Dirichlet problem (2.6), (2.7) for conductivity o, and suppose
that o does not satisfy (7.18). It is clear from (7.19) that such a o cannot be a solution and it
is deemed infeasible. Similar to definition 3, we define the Thompson feasibility constraints
as follows.

Definition 4. A function o is Thompson feasible for boundary electric current I, € H -2 (092),
if
|j ()|

V=0 Jo o(x)
—jnlsa=Ll

(I, (Ap) ') = dz = / o (@) |V (@) > dz > (I, (As)'L), (7.20)
Q

where j, = —o Vi, and (I,, (As)7'L) = fm V.1, ds = P,, the measured power dissipated
into heat. Moreover, o is Thompson feasible, if (7.20) holds for all 1, € H (092).

Finally, we say that o is feasible if it is both Dirichlet and Thompson feasible.

For simplicity, let us drop the indices e from the notation and say that V and I are our
generic boundary data and P = |, aq 1V ds. Suppose that we have an iterative reconstruction
process which generates a sequence {o¥'};>; of conductivities such that

lim (I, (Agw) ' I) > P and lim (V, Ayw V) — P. (7.21)
k— 00 k— 00

Since for any o, (I, (Ao)"'1) + (V,A;V) — 2P = [,0(®)|V$(x) — VY (z)|* da, (7.21)
implies

Jim / o(@)|Vo® (z) — Vy® (2))* de = 0, (7.22)
— 00 Q

where ¢ and ® are the Dirichlet and Thompson potentials for conductivity o®. Then,
by the coercivity of bilinear form a(u, w) = [, 0 ©®Vu - Vw de, foru, w € H'(RQ) satisfying
[iouds = [,owds = 0 (see [68]), limi—oollp® — ¥ ® 1oy = 0 and, by the trace

theorem [68], limy_ o0 ||V — (Agm)‘11||H% o = 0. Therefore, any sequence {o ©'};> which

gives (7.21), fits the measurements in the H 3 (0€2) norm.
Now, suppose that we have an output least-squares method, which generates a sequence
{o®}>1 such that

lim ||V — Ag(k)I”LZ(aQ) =0. (723)
k— 00
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Dirichlet feasible
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Dirichlet infeasible
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Figure 4. The Thompson infeasibility region is contained in the Dirichlet feasible region. The
convergence result (7.24) does not imply the convergence of the Dirichlet constraint to P, unless
o is restricted to the Dirichlet infeasible region.

Since (I, (Ay) ') — P = fm I[(Ay)~'I — V]ds, for any o, we can achieve convergence of
the Thompson constraint

lim (I, (Ayw) 1) = P, (7.24)
k— 00

by choosing an excitation / € L?*(32). However, for the Dirichlet constraint, we have
(see [26, 74])

(V,AgwV)—P = [V(z) — (Ayw) ' T(x)]Ayw V(x) ds(x), (7.25)
aQ
and convergence does not follow since A,wV € H (0€2) is not in general also in L2(09).
In [26, 74] itis shown that convergence of (7.25) can be achieved by an output least-squares
method, if we make use of the feasibility constraints. This is because, as is proved in [26, 74],
the Thompson infeasibility region for any /I € H -3 (0€2) is contained within the Dirichlet
feasibility region for the measured V = (A;)~'I € H 5 (092). Hence, convergence of (7.25)
follows from (7.23) if I € L*(dR2) and we restrict all iterates to the Dirichlet infeasibility
region, as illustrated in figure 4 for a conductivity function that can take two values, o; and
0,. This is the basic idea of the variational method proposed in [26, 74], where the authors
minimize objective function (7.13), subject to constraints

Vo, Ao V) < Ve, A5 V2), foralle=1,..., N. (7.26)

The constrained nonlinear optimization problem is solved in [26, 74] with an interior
point method [119]. The algorithm is tested numerically and it is compared with other,
standard imaging methods. In particular, it is shown that in many cases, the constrained
variational method performs better than output least squares. Although both methods require
regularization, it is found in [26, 74] that, for the same regularization parameters, output
least squares give a poorer quality of the images. Finally, the variational constraints can be
incorporated in the reconstruction algorithm at a very small computational cost (see [26, 74]),
so they may be a worthwhile addition to standard output least-squares methods.
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7.2.4. Regularity of the forward map Consider definition (7.11) of the forward map. To
linearize the problem in the vicinity of admittivity y € Y, we consider a small perturbation
8y, such that y + 8y € Y and we approximate the perturbation of the electric potential by §¢,
where

V. ly(x,w)Végp(x,w)] = =V - [§y(x, 0)Vo(x, w)] in ,

08¢ (x, w)
om0 o (1.27)

/ $¢p(x, w)ds(x) =0,
Flo)

and where ¢ is the solution of (2.6), (2.8), (2.9), for admittivity . We have the following
result.

Theorem 5. For an arbitrary 1 € J, the forward map F|y, I] defined by (7.10), (7.11), is
continuous and Fréchet differentiable with respect to y. The Fréchet derivative is denoted by
DFly, Il and it is given by

(DFy, 116y)(x, w) = §¢p(x, w), forx € 092. (7.28)

See [53] for a proof of regularity estimates

|Fly +0y, 11— Fly, 200 < Cilldy L=, (7.29)
|Fly +08y, 11— Fly, 11— DF[y, 116y ll1200) < C2||8V||iw(3g)’ (7.30)

where C; and C, are some bounded constants.

In numerical computations, it is not convenient to work with the solution space L®(Q).
It is preferable to work with a Hilbert solution space, for example L*(2), such that we can
use integration by parts and calculate easily the derivatives of the objective function (see
section 7.2.5). Unfortunately, estimates such as (7.29) and (7.30), but with the L?(£2) norm
of 8y in the right-hand side, are not necessarily true for y € Y. It turns out that, in order to
get the desired L?(2) regularity estimates, the electric potential ¢ must belong to W' ()
(see [53]). A sufficient condition for such a result to hold is that y € CK'(Q) N T, for
k > n/2—1[53]. However, it is easy to see that there exist many functions y (x, w) which are
not even continuous, and they still give ¢ € W (Q) (see [20, 112] for two such examples).
In fact, it is not known what is the necessary degree of smoothness that y has to satisfy in order
to get the desired L?(2) regularity of forward map F.

Some numerical reconstruction algorithms require the second derivative of the forward
map. For y € Y, the bilinear second derivative operator D*>F[y, I(-, -) can be defined on the
solution space L™ (£2), or on L*(2), with additional assumptions on y (see [53]). Explicitly,
we have

D*Fly, I8y, 8y) = 8¢ (z, w), forz € 99, (7.31)
where §2¢ solves
V.- [y(x, 0)V8p(x, )] = =V - [8y (z, 0) Vi (x, w)] in 2,

382 (x, ) _
an -

/ 8¢ (x, w)ds(x) = 0.
Q2

0 at 082, (7.32)
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7.2.5. The adjoint derivatives of the forward map. Choose an I = I,, for some e < N
in (7.13) and fix it, such that we can view F as a function of y only. Assuming that F is
Fréchet differentiable, as a map from L?(Q) to L?(9<2), the gradient of

Gyl =3[ (an™ = (A?)_])IHZLZ(aQ) (7.33)
is given by
DGlyl(z, w) = DF[y1((A) " — (A ) (z, w) fore e Q, (7.34)

where DFA[y]is the L?(3Q2) — L?*(K2) adjoint of DF[y]. The adjoint method gives a very
efficient way of calculating the gradient DG[y ], as follows.

Lemma 5. Let x(x, w) = [(A),)’1 — (A);)’I]I(:c, w) be defined for x € 92 and note that
by (2.9), fasz X (x, w)ds(x) = 0. We have

DFA[ylx(z, ®) = —V¢*(z, ®) - ¥ (x, ®) forxz € Q, (7.35)
where @ is the solution of (2.6), (2.8) and (2.9) and  solves the adjoint problem
V-ly*(z, o)V§(z, )] =0 inQ,

o (x, w)
on

/ Y(x, w)ds(x) = 0.
a0

y*(x, w) = x(z, w) ar 92, (7.36)

Proof. Take an arbitrary perturbation §y, such that y + 8y € Y. In particular, this implies
that §y vanishes at 02. Integration by parts, (7.27) and (7.36) give

) ) a6¢*
wrsyn = [ sevilas= [ (0o o B
Elo) 9Q n

on on
- / V. (56y VY — Yy V¢ da = / YV - (Vg da
Q Q

- / YV Gy VeY) da = — / 5Y*VY Vgt da = (Sy. DF ).
Q Q

where (-, -) is the L?(2) inner product. O

The most efficient numerical optimization methods (for example, Newton’s method),
require inverting the Hessian of the objective function [49]. While the calculation of the
Hessian can be very expensive, the adjoint method allows us to calculate the Hessian times a
vector and it can be used for inverting the Hessian in an iterative manner. To get the second
derivative of G, in direction §y, we do another integration by parts, similar to the above, and
we obtain

D*G8y(x, ) = DF*[y1DF[y18y (z, ») + (D*Fly D" (x. 8y)(z, ®) forz € Q,
(7.37)
where (D> F[y])*(-, -) is a bilinear form on L>(d2) x L*(R), given explicitly by
(D*FlyD*(x. 87)(x, 0) = —V¢*(z, ») - VY (2, o). (7.38)

We conclude this section with the final note that both (7.35) and (7.38) imply inverting
the same differential operator that appears in the forward problem (see (2.6), (2.8) and (2.9)).
Therefore, once the forward problem is solved, the gradient of G and its Hessian times a vector
are given by the adjoint method, at a very low computational cost.
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7.3. Multigrid

Typically, iterative nonlinear optimization algorithms for EIT (see section 7.2) can be very
costly, especially in three dimensions. A natural idea for reducing the computational cost is
to use multigrid (multilevel) methods, as shown in [8, 22, 98, 102, 113] and the references
within. In a multigrid setting, the unknown y (and perhaps the electric potential) is projected
on a sequence of nested, finite-dimensional spaces Vy C V) C )» C - - - whose union is dense
in the solution space. For instance, if we seek y € H 1(Q), Q is discretized on a sequence of
nested grids Go, G, G ... and Y; can be taken as the set of piecewise linear functions on G,
for j > 0.

Take, for example, the output least-squares problem (7.13), with regularization

o||Vy ||i2 @ such that a minimizer y satisfies the semilinear elliptic equation

N
—aAy (. )+ Y DFAYI[(A) 'L, — Vo] @, ) = 0. (7.39)

e=1
Multigrid algorithms can be very efficient solvers of equations like (7.39) because they perform
a large part of the work on the coarser grids, where computations are cheap and the problem
is less ill-posed [8, 22, 98, 102, 113]. Typically, the best performance is expected when the
first term in (7.39) dominates (« large enough), although, to get a reasonable resolution of y,
a small « is needed. Therefore, it is important to have a good initial guess of y, such that the
first term in (7.39) dominates the nonlinear and ill-conditioned one, even for small «. Such a
guess can be calculated on the coarsest grid G, where, due to the coarse discretization, the
problem is less ill-posed. This idea is pursued in [22, 98], in a nested iteration (full multigrid)
which constructs the images of y sequentially, starting from the coarse grid Gy and moving

towards the finest one G,,.

In order to succeed, the coarse-grid computations require an accurate solution of the
forward problem, which means, for example, solving equations (2.6), (2.8) on a fine grid (like
G.). Another approach is given in [22], where the excitation current I, is restricted to the
boundary 6Gy = Gy N 2 in such a way that the potential at d G is accurate, in spite of the
coarse discretization of equations (2.6), (2.8). Explicitly, let ¥ *) be a coarse-grid admittivity,
which is the restriction, or at least an approximation of y, on Gy. The coarse-grid current
199 (y @) is defined by

Rocm(Ayon) I, = (A, o) ' IO (@), y™ = P, oy, (7.40)

where Ry.,, and P, . are restriction and interpolation operators between grids G, and
G,,, and (Aymu)’l, (Ay(o))’1 are the discrete approximations of the NtD map on G, and
G, respectively. Assuming that both y™ and y© are reasonable approximations of the
true y, definition (7.40) ensures that, on G, the boundary voltage is a good approximation
of the measured V,. Although /(¥ is a nonlinear function of the unknown y©, it turns
out that the dependence is weak and, for a perturbation 8y of y©@, §(A,0) 1 (y @) >
(A 0810 (y®), as shown in [22]. Then, based on this sensitivity result, y© and 1{*
are calculated iteratively in [22], with just a few fine-grid solutions needed to update 7
(see (7.40)).

Although the behaviour of nonlinear multigrid methods is not so well understood, for
linearized EIT, there exists a very nice proof of the regularization properties of full multigrid
(nested iteration), due to Kaltenbacher [98]. Finally, Ascher and Haber [8] take a different
approach to multilevel reconstruction, which is based on the ansatz that the solution of (7.39)
(or another, similar formulation) depends continuously on the regularization parameter and
they estimate « on the coarse grid.
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7.4. Optimal finite-difference grids

In any numerical reconstruction algorithm, the unknown o (or y) must be parametrized or
discretized. There are many possible parametrizations of y, in a Fourier basis [7, 33], a
wavelet basis [54], a set of high-contrast functions [23, 24], etc. We consider here a more
general parametrization, where y is restricted on a grid G which discretizes €. In most
numerical algorithms, G is an equidistant grid, although this is not a good choice, as suggested
by studies of distinguishability of o (see section 6.2 and [7, 38, 42, 52, 54]). Since it is easier
to detect inhomogeneities of o near 0€2, a better discretization would be on an adaptive grid
G, with steps growing progressively from 92, inside the domain.

Although in general it is not known how to define optimal grids, a solution has been
obtained by Borcea and Druskin in [25] for layered media occupying a strip space in R?, for
d > 2. Leto (z) be the conductivity in a strip Q = {(xy, ..., xX4-1,2) € RY,0<z <L < oo},
where the bottom boundary z = L is grounded and the excitation current I (xy, ..., x4—1) is
confined to the surface z = 0. The electric potential ¢ satisfies

V- [o(@)Vex,y,2)]=0 in €2,

¢
_G(O)a_z(xayao)zl(xay)7 ¢(X,y,L)=0
Let us take the Fourier transform with respect to xy, .. ., x4—; and obtain
d du(z; A
o EN ) ue ) =0, for0 <z < L,
dz dz
du(0: 1) (7.41)
oy w(L; 1) =0,
dz
where
bki, ... ka_i, =L
u(z) = ¢E ! d-1,%) and A= Zkf
I(ky, ... ka-1) =1
Further, introduce the coordinate transformation y(z) = foz 1/o(s)ds and define the

monotonically increasing, contirAluous function M : [0,1] — [O, f], Miy@) = yk) =
foz o(s)ds, where ! = x(L) and [ = x(L), such that (7.41) becomes

d [du(y;2)
—— | —Au(y; A) =0, for0 <y <[ < o0,
dM(y)L dy
(7.42)
du(0; 1)
_ =1, u(l; A) =0,
dy

the equation of motion of a string with a fixed right endpoint, oscillating at frequency ~/2,
under a Neumann excitation at the left endpoint. At coordinate y along the string, the mass
distribution is given by M (y), the primitive of o, which we wish to find, given measurements
of impedance f(o; A;) = u(0; A;), for 2m noncoinciding spectral parameters A;. Impedance
functions f'(o; A) of such strings are completely characterized in [95]. In particular, it is shown
there that f(o; A) is a Stieljes function, written in terms of its spectral measure &, as

0
flo:n) = / du(s) (7.43)

oA —5

If the length / of the string is finite, measure w is discrete and f(o; 1) has an infinite number
of distinct, negative poles &, and positive residues r,, for n > 1. If [ is infinite, the spectrum
of measure p is continuous.
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A finite-difference discretization of (7.42) is

1/Unw—-U; U;—-U;j_

A_( AL R ")-AU,:O, forj=12...m,

nj nj nj-1

U, — U

-0, Upa1 =0,

No
where
il g . Zi )

N = _, N = o(s)ds, forl <i<m (7.44)

Zi O'(S) Zic1

and the string is partitioned by primary nodes {z; f":,l, and dual nodes {z;}/",, such that

z1 = Zo = 0. Similar to (7.42), discrete equations (7.44) describe the motion of a Stieljes string
of m discrete masses 7); placed at coordinates y; = Z{;ll ni, y1 = 0, and a piecewise constant,
monotone increasing mass distribution M, (y) = Zy,-gyﬁ j» for any y € [0,!]. Finally, the
discrete impedance is a rational function '

<
fulo3 2) = ZA e (7.45)
p=1 p

with negative poles 6, and positive residues ¢,, given by the eigenvalues and squares of the
first components of the eigenvectors of the discrete difference operator in (7.44), respectively
(see [60, 61, 87]).

The optimal finite-difference grids are defined such that the discrete impedance f,,(c; A)
converges to f(o; A), at an exponential rate, as m — oo. These grids are introduced and
analysed by Druskin and Knizhnerman in [60, 61] and, in collaboration with Ingerman and
Moskow, in [87] and [62], respectively. They are used for the first time in imaging by Borcea
and Druskinin [25]. Itis clear that f;, (o; 1) is completely determined by the coefficients (7.44)
and these can be found uniquely, by letting f,,, be the multipoint Padé approximant of Stieljes
function (7.43) and solving a discrete inverse eigenvalue problem [43], respectively. The
details of this calculation are given in [60, 61, 87]. Then, if we knew o, the grid would be
obtained immediately from (7.44). This is done in the numerical solution of forward problems
and some properties of the optimal grids are proved in [25, 87]. However, in inversion, o is
not known and, in order to find it, we must define the grid. Of course, we cannot choose an
arbitrary grid, because, as shown in [25], the discrete solution diverges due to false anisotropy,
i.e. noncoinciding curves of ¢ at the primary and dual points, respectively. It is proved in [25]
and confirmed by extensive numerical experiments that the grid has to be close to the optimal
one, in order to get convergence. Fortunately, as shown in [25], the optimal grids depend
weakly on o, although strongly on the spectral interval. Consequently, the reconstructions can
be done on the optimal grid calculated for a known o, say a constant, and convergence to the
solution is obtained in the limit m — oo. The analysis in [25] suggests that this should work
for smooth o but the numerical experiments show convergence even for conductivities with
jump discontinuity.

Clearly, there is much work to be done on optimal grids, even for the forward problem, for
more general conductivities o, domains 2 and boundary conditions. Nevertheless, the setup
presented here has proved very useful for both forward and inverse problems in geophysics and
extensions to forward problems for Maxwell’s equations [132] and hyperbolic equations [9]
have been made, as well.
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8. Other electromagnetic inverse problems related to EIT

Magnetotellurics [150, 152] is another low-frequency, electromagnetic method for imaging
the conductivity o of heterogeneous media. Unlike EIT, magnetotellurics arises strictly in
geophysics applications and it uses naturally occurring, ambient electromagnetic radiation,
instead of the NtD map, which requires man-forced excitation. Nevertheless, EIT and
magnetotellurics have many similarities, like the limited accuracy and spatial resolution, due
to the diffusive behaviour of low-frequency electromagnetic propagation in the medium.

For higher-frequency electromagnetic fields in conductive materials, the EIT model is not
appropriate and the full system of Maxwell’s equations must be considered. This problem is
much more difficult than EIT, and there are few theoretical results (see for example [93]).
The numerical solution of the inverse problem is also less studied, especially in three
dimensions where computations are very expensive, but there is nice progress in works such
as [55, 56, 77, 78, 137] and the references within.

Finally, we mention the interesting work done by Cherkaeva [41] on inverse
homogenization, where the admittivity of a random mixture of two materials is to be
determined from measurements of the effective (homogenized) admittivity, at various
frequencies. Cherkaeva’s approach is based on the Stieljes integral representation of the
effective admittivity [15, 73, 114], where the geometric information about the mixture is
entirely contained in the measure p. In general, the mixture cannot be determined uniquely,
because there exist quite different geometries that give the same effective admittivity. However,
the spectral measure p is uniquely identifiable by measurements of the effective admittivity
over a spectral interval and its moments can be used to extract useful information, such as the
volume fraction of the components in the mixture.

9. Conclusions

We have discussed EIT, the inverse problem of determining the electrical conductivity and
permittivity inside a domain, given simultaneous measurements of electric currents and
potentials (the NtD or DtN map) at the boundary. Although this problem has been extensively
studied in the last two decades, it remains an area of active research, with many open questions
to be addressed. Examples of open problems are:

e Most of the theoretical results on the injectivity of the inverse map assume perfect
knowledge of the DtN map at the boundary. In practice, this is not the case and,
furthermore, the model has to be changed to account for the electrodes. In such a setup,
injectivity remains to be investigated.

e It is not clear in most cases how to discretize (parametrize) the unknown conductivity or
admittivity. For example, a wavelet parametrization seems very promising but it needs
to be fully investigated. Optimal grids have been proposed recently for layered media.
Extensions to more general problems remain to be made. Studies of distinguishability
have been made only for the static (w = 0) case. In the complex admittivity problem,
distinguishability is not understood.

e Imaging of anisotropic media is very little understood. Even though uniqueness of
solutions does not hold, it may be that some useful information can be extracted from
the data.

e Imaging of high-contrast media of the type presented in section 5 requires more study.

e Variational reconstruction methods for the complex admittivity problem have not been
studied, so far.
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There remain many questions on how to properly regularize the EIT problem. Multigrid
is a promising alternative but it is not completely understood, especially for nonlinear EIT.
In many applications, the conductivity function consists of a smooth part and a highly
oscillatory, random part. The question is how to model the effect of the random fluctuations
on the measured boundary data and ultimately extract the smooth part of o. Such a problem
has been studied in [152] for magnetotellurics, in layered media, but not for EIT and more
general materials.

Acknowledgments

This review is based on the author’s lectures at the Mathematical Sciences Research Institute’s
workshop on Inverse Problems, August, 2001. I am very grateful to Professors Griinbaum and
Uhlmann for their kind invitation and the opportunity to participate in such a nice programme.
Most of the material has been prepared while visiting the department of mathematics at Stanford
University. I am very grateful to my host, Professor Papanicolaou, for his support and input
on this paper.

This work was partially supported by the National Science Foundation under grant number

DMS-9971209 and by the Office of Naval Research, under grant N0O0014-02-1-0088.

References

(1]

(2]
[3]

[4]
(5]

(6]
(7]
(8]
(91

[10]
(1]

[12]
[13]
[14]
[15]
[16]
[17]

[18]

Akbarzadeh M R, Tompkins W J and Webster ] G 1990 Multichannel impedance pneumography for apnea
monitoring Proc. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. vol 12 pp 1048-9

Alessandrini G 1988 Stable determination of conductivity by boundary measurements Appl. Anal. 27 153-72

Alessandrini G 1993 Stable determination of a crack from boundary measurements Proc. R. Soc. Edin. A 127
497-516

Alessandrini G 1997 Examples of instability in inverse boundary-value problems Inverse Problems 13 887-97

Alessandrini G, Beretta E, Santosa F and Vessella S 1995 Stability in crack determination from electrostatic
measurements at the boundary-a numerical investigation Inverse Problems 11 L17-24

Alessandrini G and Rondi L 1998 Stable determination of a crack in a planar inhomogeneous conductor SIAM
J. Math. Anal. 30 32640

Allers A and Santosa F 1991 Stability and resolution analysis of a linearized problem in electrical impedance
tomography Inverse Problems 7 515-33

Ascher U M and Haber E 2001 Grid refinement and scaling for distributed parameter estimation problems
Inverse Problems 17 571-90

Asvadurov S, Druskin V and Knizhnerman L 2000 Application of the difference Gaussian rules to solution of
hyperbolic problems J. Comput. Phys. 158 116-35

Barber D and Brown B 1984 Applied potential tomography J. Phys. E: Sci. Instrum. 17 723-33

Barber D and Brown B 1986 Recent developments in applied potential tomography-apt Information Processing
in Medical Imaging ed S L Bacharach (Amsterdam: Nijhoff) pp 106-21

Batchelor G K and O’Brien R W 1977 Thermal or electrical conduction through a granular material Proc. R.
Soc. A 355 313-33

Bensousaan A, Lions J L and Papanicolaou G C 1978 Asymptotic Analysis for Periodic Structures (Amsterdam:
North-Holland)

Berenstein C A and Casadio Tarabusi E 1996 Integral geometry in hyperbolic spaces and electrical impedance
tomography SIAM J. Appl. Math. 56 755-64

Bergman D J 1993 Hierarchies of Stieljes functions and their applications to the calculation of bounds for the
dielectric constant of a two component composite medium SIAM J. Appl. Math. 53 915-30

Berlyand L and Kolpakov A 2001 Network approximation in the limit of small interparticle distance of the
effective properties of a high-contrast random dispersed composite Arch. Ration. Mech. Anal. 159 179-227

Berryman J G 1991 Convexity properties of inverse problems with variational constraints J. Franklin Institute
328 1-13

Berryman J G and Kohn R V 1990 Variational constraints for electrical impedance tomography Phys. Rev. Lett.
65 325-8



R132

Topical Review

[19]
[20]
[21]
[22]
(23]
[24]
[25]
[26]
[27]

(28]

[29]
[30]
(31]
(32]
(33]

[34]

[35]

[36]
(371
[38]
(391
[40]

[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

[50]

Beylkin G 1984 The inversion problem and applications of the generalized Radon transform Commun. Pure
Appl. Math. 37 580-99

Bonnetier E and Vogelius M 2000 An elliptic regularity results for a composite medium with ‘touching’ fibers
of circular cross-section SIAM J. Math. Anal. 93 651-77

Borcea L 1999 Asymptotic analysis of quasi-static transport in high contrast conductive media SIAM J. Appl.
Math. 59 597-635

Borcea L 2001 A nonlinear multigrid for imaging electrical conductivity and permittivity at low frequency
Inverse Problems 17 329-59

Borcea L, Berryman J G and Papanicolaou G C 1996 High contrast impedance tomography Inverse Problems
12 935-58

Borcea L, Berryman J G and Papanicolaou G C 1999 Matching pursuit for imaging high contrast conductive
media Inverse Problems 15 811-49

Borcea L and Druskin V 2002 Optimal finite difference grids for direct and inverse Sturm—Liouville problems
Inverse Problems 18 1247-79

Borcea L, Gray G and Zhang Y 2002 A variationally constrained numerical solution of the electrical impedance
tomography problem Preprint (Inverse Problems to be submitted)

Borcea L and Papanicolaou G C 1998 Network approximation for transport properties of high contrast materials
SIAM J. Appl. Math. 58 501-39

Borcea L and Papanicolaou G C 2000 Low frequency electromagnetic fields in high contrast media Surveys on
Solution Methods for Inverse Problems ed D Colton, HW Engl, A Louis, J R McLaughlin and W Rundell
(New York: Springer) pp 195-233

Brown R M 1996 Global uniqueness in the impedance imaging problem for less regular conductivities SIAM
J. Math. Anal. 27 1049-56

Brown R M and Uhlmann G 1997 Uniqueness in the inverse conductivity problem for nonsmooth conductivities
in two dimensions Commun. Part. Diff. Eqns 22 1009-27

Briihl M and Hanke M 2000 Numerical implementation of two noniterative methods for locating inclusions by
impedance tomography Inverse Problems 16 1029—42

Calderén A P 1963 Boundary value problems for elliptic equations Outlines of the Joint Soviet-American
Symp. on Partial Differential Equations (Novosibirsk) pp 303—4

Calderén A P 1980 On an inverse boundary value problem Seminar on Numerical Analysis and its applications
to Continuum Physics (Soc. Brasileira de Matématica, Rio de Janeiro) pp 65-73

Cedio-Fengya D J, Moskow S and Vogelius M S 1998 Identification of conductivity imperfections of small
diameter by boundary measurements. continuous dependence and computational reconstruction Inverse
Problems 14 553-95

Chan'T, Golub G H and Mulet P 1999 A nonlinear primal-dual method for total variation-based image restoration
SIAM J. Sci. Comput. 20 1964-77

Chavent G and Kunisch K 1993 Regularization in state space J. Numer. Anal. 27 535-64

Cheney M 2001 The linear sampling method and the music algorithm Inverse Problems 17 591-5

Cheney M and Isaacson D 1992 Distinguishability in impedance imaging /EEE Trans. Biomed. Eng. 39 852—60

Cheney M, Isaacson D and Newell J C 1999 Electrical impedance tomography SIAM Rev. 41 85-101

Cherkaev A V and Gibiansky L V 1994 Variational principles for complex conductivity, viscoelasticity, and
similar problems in media with complex moduli J. Math. Phys. 35 127-45

Cherkaeva E 2001 Inverse homogenization for evaluation of effective properties of a mixture Inverse Problems
17 1203-18

Cherkaeva E and Tripp A 1996 Inverse conductivity problem for noisy measurements Inverse Problems 12
869-83

Chu M T and Golub G H 2001 Structured inverse eigenvalue problems Acta Numer. 1-70

Courant R and Hilbert D 1953 Methods of Mathematical Physics vol 1 (New York: Wiley)

Curtis E B, Ingerman D and Morrow J A 1998 Circular planar graphs and resistor networks Linear Algebra
Appl. 283 115-50

Curtis E B and Morrow J A 1990 Determining the resistors in a network SIAM J. Appl. Math. 50 931-41

Colin de Verdiere Y 1994 Réseaux é€lectriques planaires i Comments Math. Helv. 69 351-74

Colin de Verdiere Y 1996 Réseaux électriques planaires ii Comments Math. Helv. 71 144-67

Dennis J E and Schnabel R B 1996 Numerical Methods for Unconstrained Optimization and Nonlinear
Equations (Philadelphia, PA: SIAM)

Hanoch L-A and Devaney A J 2000 The time reversal technique re-interpreted: subspace based signal
processing for multi-static target location IEEE Sensor Array and Multichannel Signal Processing Workshop
(Cambridge, MA) pp 509-13



Topical Review R133

[51]
[52]

[53]
[54]
[55]
[56]
[57]
[58]

[59]

[60]

[61]
[62]
[63]
[64]
[65]
[66]
[67]

[68]
[69]

[70]

(711
[72]
(73]
[74]

[75]
[76]

(771
[78]

[79]

Dines K A and Lytle R J 1981 Analysis of electrical conductivity imaging Geophysics 46 1025-36

Dobson D C 1990 Stability and regularity of an inverse elliptic boundary value problem Technical Report
TR90-14 Rice University, Dept of Math. Sciences

Dobson D C 1992 Convergence of a reconstruction method for the inverse conductivity problem SIAM J. Appl.
Math. 52 442-58

Dobson D C 1992 Estimates on resolution and stabilization for the linearized inverse conductivity problem
Inverse Problems 8 71-81

Dorn O, Bertete-Aguirre H, Berryman J G and Papanicolaou G C 1999 A nonlinear inversion method for 3d
electromagnetic imaging using adjoint fields Inverse Problems 15 1523-58

Dorn O, Bertete-Aguirre H, Berryman J G and Papanicolaou G C 2002 Sensitivity analysis of a nonlinear
inversion method for 3d electromagnetic imaging in anisotropic media Inverse Problems 18 285-317

Dorn O, Miller E L and Rappaport C M 2000 A shape reconstruction method for electromagnetic tomography
using adjoint fields and level sets Inverse Problems 16 1118-56

Druskin V 1982 The unique solution of the inverse problem of electrical surveying and electrical well-logging
for piecewise-continuous conductivity Izv. Earth Phys. 18 51-3

Druskin V 1985 On uniqueness of the determination of the three-dimensional underground structures from
surface measurements with variously positioned steady-state or monochromatic field sources Sov. Phys.—
Solid Earth 21 210-4 (English transl. (Washington, DC: American Geophysical Union))

Druskin V and Knizherman L 2000 Gaussian spectral rules for second order finite-difference schemes.
mathematical journey through analysis, matrix theory and scientific computation Numer. Algorithms 25
139-59

Druskin V and Knizhnerman L 2000 Gaussian spectral rules for three-point second differences: 1. A two-point
positive definite problem in a semiinfinite domain SIAM J. Numer. Anal. 37 403-22

Druskin V and Moskow S 2002 Three-point finite difference schemes. Padé and the spectral Galerkin method.
I. One-sided impedance approximation J. Math. Comput. 239 995-1019

Eggleston M R, Schwabe R J, Isaacson D and Coffin L F 1989 The application of electric current computed
tomography to defect imaging in metals Review of Progress in Quantitative NDE ed D O Thompson and
D E Chimenti (New York: Plenum)

Ekeland I and Témam R 1999 Convex Analysis and Variational Problems (Philadelphia, PA: SIAM)

Engl H W, Hanke M and Neubauer A 1996 Regularization of Inverse Problems (Dordrecht: Kluwer)

Engl H W, Kunisch K and Neubauer A 1989 Convergence rates for Tikhonov regularization of nonlinear
ill-posed problems Inverse Problems 5 523-40

Fannjiang A and Papanicolaou G C 1994 Convection enhanced diffusion for periodic flows SIAM J. Appl.
Math. 54 333-408

Folland G B 1995 Introduction to Partial Differential Equations (Princeton, NJ: Princeton University Press)

Francini E 2000 Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map
Inverse Problems 16 107-19

Colli Franzone P, Guerri L, Taccardi B and Viganotti C 1979 The direct and inverse potential problems in
electrocardiology. Numerical aspects of some regularization methods and application to data collected in
isolated dog heart experiments Pub. 222 Laboratorio di Analisi Numerica del Consiglio Nazionale delle
Richerche, Pavia

Friedman A and Vogelius M 1989 Determining cracks by boundary measurements Indiana Univ. Math. J. 3
527-56

Gisser D G, Isaacson D and Newell J C 1990 Electric current computed tomography and eigenvalues SIAM J.
Appl. Math. 50 16234

Golden K and Papanicolaou G 1983 Bounds on effective parameters of heterogeneous media by analytic
continuation Commun. Math. Phys. 90 473-91

Gray G 2002 A variationally constrained numerical solution of the electrical impedance tomography problem
Computational and Applied Mathematics PhD Thesis, Technical Report 02-02 Rice University

Grimmet G 1980 Percolation (New York: Springer)

Griinbaum A and Zubelli J P 1992 Diffuse tomography: computational aspects of the isotropic case Inverse
Problems 8 421-33

Haber E and Ascher U 2000 Fast finite volume simulation of 3d electromagnetic problems with highly
discontinuous coefficients SIAM J. Sci. Comput. 22 1943-61

Haber E and Ascher U 2001 Preconditioned all-at-once methods for large, sparse parameter estimation problems
Inverse Problems 17 1847-64

Haber E, Ascher U and Oldenburg D 2000 On optimization techniques for solving nonlinear inverse problems
Inverse Problems 16 1263-80



R134

Topical Review

[80]
[81]
[82]
[83]
[84]
[85]
[86]
(871
[88]
[89]
[90]
[91]
[92]
[93]
[94]

[95]
[96]

[971

[98]

[99]

[100]

[101]

[102]
[103]

[104]
[105]

[106]

[107]

[108]

[109]
[110]

Hadamard J 1902 Sur les problémes aux dérivées partielles et leur signification physique Bull. Univ. Princeton
13

Halperin B I 1989 Remarks on percolations and transport in networks with a wide range of bond strengths
Physica D 38 179-83

Hanke M 1997 Regularizing properties of a truncated Newton—CG algorithm for nonlinear inverse problems
Numer. Funct. Anal. Optim. 18 971-93

Harris N D, Suggett A J, Barber D and Brown B 1987 Applications of applied potential tomography (APT) in
respiratory medicine Clin. Phys. Physiol. Meas. 8 155-65

Holder D 1993 Clinical and Physiological Applications of Electrical Impedance Tomography (London: UCL
Press)

Ikehata M and Siltanen S 2000 Numerical method for finding the convex hull of an inclusion in conductivity
from boundary measurements /nverse Problems 16 1043-52

Ingerman D 2000 Discrete and continuous Dirichlet-to-Neumann maps in the layered case SIAM J. Math. Anal.
31 1214-34

Ingerman D, Druskin V and Knizhnerman L 2000 Optimal finite-difference grids and rational approximations
of the square root. I. Elliptic problems Commun. Pure Appl. Math. 53 1039-66

Isaacson D 1986 Distinguishability of conductivities by electric current computed tomography /EEE Trans.
Med. Imag. 5 91-5

Isaacson D and Cheney M 1990 Current problems in impedance imaging Inverse Problems in Partial Differential
Equations ed D Colton, R Ewing and W Rundell (Philadelphia, PA: SIAM) pp 141-9

Isaacson D and Cheney M 1991 Effects of measurement precision and finite number of electrodes on linear
impedance imaging algorithms SIAM J. Appl. Math. 1705-31

Isaacson D and Isaacson E 1989 Comment on Calderén’s paper: on an inverse boundary value problem Math.
Comput. 52 553-9

Isakov V 1993 Uniqueness and stability in multi-dimensional inverse problems Inverse Problems 9 579-621

Isakov V 1998 Inverse Problems for Partial Differential Equations (New York: Springer)

Ito K, Kunisch K and Li Z 2001 Level-set function approach to an inverse interface problem Inverse Problems
17 1225-42

Kac IS and Krein M G 1974 On the spectral functions of the string Am. Math. Soc. Transl. Ser 2 103 19-102

Kaipio J P, Kolehmainen V, Somersalo E and Vauhkonen M 2000 Statistical inversion and Monte Carlo
sampling methods in electrical impedance tomography Inverse Problems 16 1487-522

Kaipio J P, Kolehmainen V, Vauhkonen M and Somersalo E 1999 Inverse problems with structural prior
information Inverse Problems 15 713-29

Kaltenbacher B 2001 On the regularizing properties of a full multigrid method for ill-posed problems Inverse
Problems 17 767-88

Keller G V 1988 Electrical Properties of Rocks and Minerals, Handbook of Physical Constants
ed S P Clarck Jr (New York: Geological Society of America) pp 553-77

Keller J B 1963 Conductivity of a medium containing a dense array of perfectly conducting spheres or cylinders
or nonconducting cylinders J. Math. Phys. 34 991-3

Keller J B 1987 Effective conductivity of periodic composites composed of two very unequal conductors
J. Math. Phys. 28 2516-20

King J T 1992 Multilevel algorithms for ill-posed problems Numer. Math. 61 313-34

Kirsch A 1998 Characterization of the shape of the scattering obstacle using the spectral data of the far field
operator Inverse Problems 14 1489-512

Kohn R V and McKenney A 1990 Numerical implementation of a variational method for electrical impedance
tomography Inverse Problems 6 389-414

Kohn R V and Vogelius M 1984 Determining conductivity by boundary measurements Commun. Pure Appl.
Math. 37 113-23

Kohn R V and Vogelius M 1984 Identification of an unknown conductivity by means of measurements at
the boundary Inverse Problems (SIAM-AMS Proc. No. 14) ed D McLaughlin (Providence, RI: American
Mathematical Society) pp 113-23

Kohn R V and Vogelius M 1985 Determining conductivity by boundary measurements ii. interior results
Commun. Pure Appl. Math. 38 643-67

Kohn R V and Vogelius M 1987 Relaxation of a variational method for impedance computed tomography
Commun. Pure Appl. Math. XL 745-77

Koplik J 1982 Creeping flow in two-dimensional networks J. Fluid. Mech. 119 219-47

Kozlov S M 1989 Geometric aspects of averaging Russ. Math. Surv. 44 91-144



Topical Review R135

[111]
[112]
[113]
[114]

[115]
[116]

[117]
[118]
[119]
[120]

[121]
[122]

[123]
[124]

[125]
[126]
[127]
[128]
[129]
[130]

[131]
[132]

[133]
[134]

[135]
[136]
[137]
[138]
[139]

[140]

[141]
[142]

[143]

[144]

Lee J and Uhlmann G 1989 Determining anisotropic real-analytic conductivities by boundary measurements
Commun. Pure Appl. Math. 42 1087-112

Li Yan Yan and Vogelius M 2000 Gradient estimates for solutions to divergence form elliptic equations with
discontinuous coefficients Arch. Rational Mech. Anal. 153 91-151

McCormick S F and Wade J G 1993 Multigrid solution of a linearized, regularized least-squares problem in
electrical impedance tomography Inverse Problems 9 697-713

Milton G W 1980 Bounds on the complex dielectric constant of a composite material Appl. Phys. Lett. 37
300-2

Morozov V A 1984 Methods for Solving Incorrectly Posed Problems (New York: Springer)

Nachman A, Sylvester J and Uhlmann G 1988 An n-dimensional Borg—Levinson theorem Commun. Math.
Phys. 115 595-605

Nachman A I 1988 Reconstructions from boundary measurements Ann. Math. 128 531-76

Nachman A I 1996 Global uniqueness for a two-dimensional inverse boundary problem Ann. Math. 143 71-96

Nocedal J and Wright S J 1999 Numerical Optimization (Springer Series in Operations Research) (New York:
Springer)

Osher S J and Santosa F 2001 Level set methods for optimization problems involving geometry and constraints.
i. frequencies of a two-density inhomogeneous drum J. Comput. Phys. 171 272-88

O’Sullivan F 1986 A statistical perspective on ill-posed inverse problems Stat. Sci. 1 502-27

Péivirinta L, Panchencko A and Uhlmann G 2002 Complex geometrical optics solutions for Lipschitz
conductivities Rev. Mat. Iberoamericana at press

Parker R L 1984 The inverse problem of resistivity sounding Geophysics 142 2143-58

Ramirez A, Daily W, Binley B, LaBreque D and Roelant D 1996 Detection of leaks in underground storage
tanks using electrical resistance methods J. Environ. Eng. Geophys. 1 189-203

Ramirez A, Daily W, LaBreque D, Owen E and Chesnut D 1993 Monitoring an underground steam injection
process using electrical resistance tomography Water Resources Res. 29 73-87

Santosa F 1995.1996 A level-set approach for inverse problems involving obstacles ESAIM Controle Optim.
Calc. Var 1 17-33

Santosa F, Kaup P and Vogelius M 1996 A method for imaging corrosion damage in thin plates from electrostatic
data Inverse Problems 12 279-93

Santosa F and Vogelius M 1990 A backprojection algorithm for electrical impedance imaging SIAM J. Appl.
Math. 50 216-43

Santosa F and Vogelius M 1991 A computational algorithm for determining cracks from electrostatic boundary
measurements Int. J. Eng. Sci. 29 917-38

Schmidt R O 1986 Multiple emitter location and signal parameter estimation /IEEE Trans. Antennas Prop. 34
276-80

Schwan H P and Kay C F 1957 The conductivity of living tissues Ann. NY Acad. Sci. 65 1007-13

Davydycheva S, Druskin V and Habashy T An efficient finite-difference scheme for electromagnetic logging
in 3-d anisotropic inhomogeneous media Geophysics submitted

Seagar A 1983 Probing with low frequency electric currents PhD Thesis University of Canterbury, UK

Siltanen S, Mueller J and Isaacson D 2000 An implementation of the reconstruction algorithm of A Nachman
for the 2d inverse conductivity problem Inverse Problems 16 681-99

Somersalo E, Cheney M and Isaacson D 1992 Existence and uniqueness for electrode models for electric
current computed tomography SIAM J. Appl. Math. 52 1023-40

Somersalo E, Cheney M, Isaacson D and Isaacson E 1991 Layer stripping: a direct numerical method for
impedance imaging Inverse Problems T 899-926

Somersalo E, Isaacson D and Cheney M 1992 A linearized inverse boundary value problem for Maxwell’s
equations J. Comput. Appl. Math. 42 123-36

Sun Z 1989 On an inverse boundary value problem in two dimensions Commun. Partial Diff. Eqns 14 1101-13

Sun Z 1990 The inverse conductivity problem in two dimensions J. Diff. Eqns 87 227-55

Sun Z and Uhlmann G 1991 Generic uniqueness for an inverse boundary value problem Duke Math. J. 62
131-55

Sylvester J 1990 An anisotropic inverse boundary value problem Commun. Pure Appl. Math. 43 201-32

Sylvester ] 1992 A convergent layer stripping algorithm for radially symmetric impedance tomography problem
Commun. Partial Diff. Eqns 17 1955-94

Sylvester J and Uhlmann G 1986 A uniqueness theorem for an inverse boundary value problem in electrical
prospection Commun. Pure Appl. Math. 39 92-112

Sylvester J and Uhlmann G 1987 A global uniqueness theorem for an inverse boundary value problem Ann.
Math. 125 153-69



R136

Topical Review

[145]
[146]
[147]
[148]
[149]
[150]
[151]

[152]
[153]

Sylvester J and Uhlmann G 1988 Inverse boundary value problems at the boundary—continuous dependence
Commun. Pure Appl. Math. XLI 197-219

Sylvester J and Uhlmann G 1991 Inverse problems in anisotropic media. inverse scattering and applications
Contemp. Math. 122 105-17

Tikhonov A N and Arsenin V'Y 1977 Solutions of Ill-Posed Problems ed F John (Washington, DC: Wiley)

Uhlmann G 1999 Developments in inverse problems since Calderén’s foundational paper Harmonic Analysis
andPartial Differential Equations(ChicagoLecturesinMath.)(Chicago, IL: University of Chicago Press)
pp 295-345

Uhlmann G 2000 Inverse scattering in anisotropic media Surveys on Solution Methods for Inverse Problems
ed D Colton, HW Engl, A Louis, J R McLaughlin and W Rundell (New York: Springer) pp 235-52

Vozoff K 1991 The magnetotelluric method Electromagnetic Methods in Applied Geophysics—Applications
ed M N Nabighian (Tulsa, OK: Society of Exploration Geophysicists) ch 8

Wexler A, Fry B and Neumann M 1985 Impedance-computed tomography algorithm and system Appl. Opt.
24 3985-92

White B S, Kohler W E and Srnka L J 2001 Random scattering in magnetotellurics Geophysics 1 188-204

Yorkey T J, Webster J G and Tompkins W J 1987 Comparing reconstruction algorithms for electrical impedance
tomography /EEE Trans. Biomed. Eng. 34 843-52



