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Electrical Impedance Tomography for Artificial
Sensitive Robotic Skin: A Review

David Silvera-Tawil, Member, IEEE, David Rye, Member, IEEE, Manuchehr Soleimani and Mari Velonaki

Abstract—Electrical impedance tomography (EIT) is a non-
destructive imaging technique used to estimate the internal
conductivity distribution of a conductive domain by taking
potential measurements only at the domain boundaries. If a thin
electrically conductive material—that responds to pressure with
local changes in conductivity—is used as a conductive domain,
then EIT can be used to create a large-scale pressure-sensitive
artificial skin for robotics applications. This paper presents a
review of EIT and its application as a robotics sensitive skin,
including EIT excitation and image reconstruction techniques,
materials and skin fabrication techniques. Touch interpretation
via EIT-based artificial skins is also reviewed.

Index Terms—Robot skin, electrical impedance tomography,
robot sensing systems, tactile sensors, human-robot interaction.

I. INTRODUCTION

O
VER the last decade the field of robotics has seen a

significant increase in human-robot interaction (HRI)

research [1]. As robots begin to be deployed outside engi-

neered factory environments and the distance between humans

and robots narrows, there is an increasing need for them to

have capabilities that will allow them to interact fluently and

intuitively with humans [2]. Although significant progress has

been made in the area of audio-visual communication [3], until

recently the field of touch has been significantly neglected.

During social interaction humans extract important infor-

mation from tactile stimuli that helps them understand the

meaning of the interaction. A similar capability in a robot

will allow for safe, natural and intuitive interactions between

humans and robots. In robotics, it is therefore important to

design a method for touch identification that can be active over

all or most of the surface of a robot, including large curved

robot surfaces. This could be achieved using an artificial

“sensitive skin” [4].

Electrical impedance tomography (EIT) [5] is a non-

destructive imaging technique used to estimate the internal

conductivity distribution of an electrically conductive body

by using measurements from electrodes attached only to its

boundary. If this body is made of a thin, flexible and stretch-

able material that responds to touch with local changes in

conductivity, it can be used to create an artificial sensitive skin
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for robotics applications. The application of EIT to robotic

skin was first described by Kato et al. [6] and Nagakubo et

al. [7] who placed electrodes on the border of a rubberised

material that responded to applied pressure with local changes

in resistivity. Changes in resistance—and therefore pressure—

were identified by applying EIT. A limited number of mea-

surement electrodes can be also placed inside the borders of

the conductive material [8].
Since most of the sensing area in EIT-based artificial skins

is made of a homogeneous thin material without any (or very

limited) internal wiring, a large, flexible and stretchable arti-

ficial skin can be created. Because EIT-based sensitive skins

are made of a single material, as opposed to multiple discrete

sensors interconnected in an array configuration [9], they are

able to provide continuous sensing. Furthermore, since the

response of the system depends on the localised conductivity

changes of the variable-conductance material in response to

an external stimulus, materials sensitive to different types of

stimuli, such as temperature, could be used to sense other types

of excitation. An EIT-based sensitive skin has the potential

to provide a low cost, easy-to-manufacture solution to the

problem of flexible and stretchable large-scale touch sensing.
Following this introductory section, Sec. II presents an

introduction to artificial skin for robotics applications. Sec. III

then gives a general overview of EIT: the forward problem,

inverse solution, regularisation methods and image reconstruc-

tion. Details of how EIT has been used for the development

of a robotics skin are presented in Sec. IV. Skin evaluation

and performance metrics are introduced in Sec. V. Touch

interpretations via an EIT-based sensitive skin is discussed in

Sec. VI, which is followed by a discussion and conclusions in

Sec. VII.

II. ARTIFICIAL SENSITIVE SKIN FOR ROBOTICS

Since the introduction of the concept of “artificial sensitive

skin” for robotics [4], a number of skin prototypes have been

created. These prototypes are commonly made of a discrete

number of sensors connected individually or in an array con-

figuration [10] and capable of measuring a range of physical

phenomena such as pressure, vibration and temperature [11].
A number of different technologies have been used in

endeavours to create better tactile sensors and sensitive skins.

A wide variety of sensing techniques has stemmed from explo-

ration of different transduction effects and materials, ranging

from the use of large-scale arrays of discrete sensors based

on organic FETs [12] or piezoresistive semiconductors [13]–

[15] to sensors that use capacitive [16], [17], magnetic [18],

0000–0000/00$00.00 c© 2012 IEEE
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[19], piezoelectric [20]–[25], optical [26]–[29] and other prin-

ciples [30]–[32]. Often, multiple layers of different sensor

types [9] are used in an attempt to imitate the sensing capa-

bilities of human skin [33]. Table I summarises and compares

various touch-based sensing techniques. A comprehensive

description of various tactile sensor types can be found in

[34]–[37], a study of the state-of-the-art in tactile sensing

for robotics applications is given in [38], [39], and a review

of artificial skin and tactile interaction in socially interactive

robots is presented in [40].

Commonly, the number of wires required to transmit data

from large-scale arrays of sensors constitutes a problem in

itself. A large number of distributed wires is not only an

excellent antenna for electromagnetic noise, but the the wires

can reduce the flexibility and stretchability of the skin to levels

that may impede the dexterity of the robot. EIT-based touch

sensors were introduced partially in response to this issue.

EIT-based sensors were first described in 2007 by [6] and

[7]. In this method, electrodes are located on the border of

a thin sheet of conductive material (such as rubber, foam or

fabric) that responds to localised pressure with local changes

in conductivity. EIT can then be used to determine the changes

in conductivity—as a result of pressure changes—across the

material. Since these sensors are constructed from flexible

and even stretchable materials without any—or very limited—

internal wiring, it is possible to create artificial skins of

arbitrary size and shape. As shown in Table I, EIT-based

pressure sensors overcome the disadvantages of most con-

ventional sensing methods. Major disadvantages, however, are

their relatively low spatial resolution and limited ability to

discriminate between pressure intensities and contact areas.

As a result, EIT-based artificial skins are not suitable for ap-

plications where reconstructions at high temporal frequencies

and millimetric spatial resolutions, such as texture recognition

[71] and object manipulation [72], are needed. The approach

is, however, suitable for human-robot interaction, where spatial

resolutions of 10-40 mm and reconstruction frequencies of

up to 60 Hz are adequate [73]–[76]. The following section

describes EIT, and how it can be used in the development of

large-scale skin-like sensors for robotics.

III. ELECTRICAL IMPEDANCE TOMOGRAPHY FOR

SENSITIVE SKIN APPLICATIONS

The practice of using electrical impedance tomography

(EIT) as a non-destructive technique to infer the internal

conductivity characteristics of a body was first suggested

by Henderson and Webster [77] in their work on medical

imaging, and Lytle and Dines [78] in the field of geophysical

imaging. Since then EIT has been used in a number of

areas such as geophysical exploration [79], [80], industrial

applications [81]–[83], biomedical imaging [5], [84]–[90], and

most recently in robotics for sensitive skin applications [6]–

[8], [68], [73].

In a typical EIT application, multiple electrodes are placed

equidistantly around a conductive body (e.g. a person’s thorax)

and a small alternating current (0.1–1 mA at 10–100 kHz in

humans) is applied across two of the electrodes. Consequently,

current will flow not only between the source and sink

electrodes, but also within the whole conductive body. The

potentials at all electrodes resulting from the applied current

are measured. Local variations in the internal impedance of

the body will alter the distribution of current inside the body,

resulting in changes of potential on the boundary. By scanning

around various driving electrode pairs and applying an imaging

technique, the approximate distribution of current within the

conductive body can be calculated through an inverse solution

of Maxwell’s equations. If direct current (DC) is used instead

of alternating current (AC) and the same method is applied to

measure only conductivity changes, the technique is referred

to as electrical resistance tomography.

The first practical method for EIT reconstruction was back-

projection [84], [91], a linear, non-iterative method in which

the equipotential volume between a pair of electrodes is back-

projected along the whole boundary of the body. This method

is similar to X-ray computed tomographic (CT) reconstruction,

with the main difference being that in EIT current does not

move in a straight line but floods a region from source to

drain, as shown in Fig. 1. Although back-projection was very

successful for simple two-dimensional geometries, a number

of deterministic algorithms based on the Jacobian of the

discrete forward solution have been introduced [92]–[95]. This

Jacobian is the linearised mapping from boundary potential to

internal conductivity.

(a) X-ray computed tomography (CT).

(b) Electrical impedance tomography (EIT).

Fig. 1. Principle of back-projection for X-ray CT and EIT reconstructions.
Red (dashed) lines in (b) represent the likely equipotential lines. Orange
regions in (a) and (b) represent the volume projected during three scanning
steps. Part (a) adapted from Dai [96]. Current paths in (b), represented by the
black solid lines, are diagrammatic only.

The EIT reconstruction problem of finding an internal con-

ductivity distribution of a body when a set of injected currents

and measured potentials is known is mathematically an ill-

posed non-linear inverse problem in which the aim is find the
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TABLE I
SUMMARY AND COMPARISON OF VARIOUS TOUCH-BASED SENSING TECHNIQUES.

Type Sensing Principle Advantages Disadvantages

Capacitive [17],
[41]–[44]

Change in
capacitance

Excellent sensitivity; good spatial resolution;
large dynamic range.

Stray capacitance; noise susceptibility;
complexity of measurement electronics.

Piezoresistive [10],
[45]–[49]

Change in resistance
High spatial resolution; structured sensors; high
scanning rate; low cost.

Low repeatability; high hysteresis; high power
consumption; fragile; noise susceptibility.

Strain gauges [50],
[51]

Change in resistance
Large sensing range; high sensitivity; low cost;
simple calibration.

Susceptible to humidity and temperature
changes; complex design; non-linearity;
susceptible to EMI induced errors.

Optoelectric [28],
[29], [52]–[55]

Light intensity and/or
spectrum change

Good sensing range; good reliability; high
repeatability; high spatial resolution; immune
to EMI; rapid response.

Bulky in size; non-conformable; high power
consumption.

Piezo-electric strain
(stress) polarisation
[24], [25], [56]–[60]

Strain (stress)
polarisation

High frequency response; high sensitivity; high
dynamic range.

Poor spatial resolution; dynamic sensing only;
susceptible to temperature changes.

Inductive/Magnetic
[18], [19], [61]–[63]

Change in magnetic
coupling

Linear output; high dynamic range.
Moving parts; low spatial resolution; bulky;
highly susceptible to noise.

Multi-component
sensors [11],
[64]–[66]

Coupling of multiple
intrinsic parameters

Ability to overcome certain limitations via
combination of intrinsic parameters; discrete
assembly.

High assembly costs.

Electrical Impedance
Tomography [7], [8],
[67]–[70]

Change in electrical
impedance

Scalable; versatile; low cost; low power
consumption; no mechanical parts; no internal
wiring in sensing pad; conformable; design
simplicity; low assembly costs; good sensing
range; good reliability; high repeatability;
immunity from EMI.

Low spatial resolution.

cause given the effect. According to Hadamard [97] a problem

is well-posed if: (1) for all data a solution exists, (2) the

solution is unique and (3) the solution depends continuously

on the data. In this sense, the problem of recovering the

internal conductivity given a set of potentials on the boundary

is strongly ill-posed. Even if some conditions are assured to

guarantee the existence of a solution (Hadamard’s criteria 1

and 2), the EIT reconstruction problem fails the third criterion:

small changes at the boundary (e.g. electrical noise on the

electrodes) can result in large, unpredictable changes in the

reconstructed image.

A common approach to solving this kind of numerically ill-

posed problem is to add some prior information to the solution

and thereby replace the original problem with a nearby well-

posed problem. This technique is known as regularisation. The

remainder of this section briefly describes the EIT forward and

inverse problems, forward solution, regularisation and inverse

solution, and how they can be used to effect an artificial skin

sensitive to touch.

A. The EIT Forward Problem

The starting point for the solution of the EIT forward

problem is Maxwell’s equations for electromagnetism [5].

For a conducting domain Ω with boundary ∂Ω and known

conductivity distribution σ, the forward problem is to find the

potentials on the boundary due to the given currents injected

through the boundary. The mathematical model can be derived

by solving the Laplacian elliptic partial differential equation

0 = σ∇2u in Ω , (1)

which describes the steady-state conductivity distribution in

the absence of current sources and sinks within the domain Ω.

In a practical EIT application, current is injected (sourced

and sunk) through electrodes attached to the boundary ∂Ω of

the domain, as shown in Fig. 2. Assuming that there are no

current sources inside the domain (Js

2 = 0) and no electric

fields outside the domain (E1 = 0) then

−σE · n|
inside

= −Js · n|
outside

holds, where n is the unit normal to the boundary ∂Ω. By

applying the Neumann boundary condition to the Laplacian

(1) we obtain

σ
∂u

∂n
= −Js · n ≡ j on ∂Ω , (2)

where u is the electric potential and j is the inward-pointing

normal component of the injected current density Js on

the boundary. Full derivations of the boundary condition are

presented by Vauhkonen [92] and Noor [98]. For the remainder

of this document j will be referred to as the injected current.

2E

1E

n

J
s

1

J
s

2

Fig. 2. EIT boundary conditions: J
s

1
and J

s

2
are respectively the current

source densities outside and inside the domain; E1 and E2 are the corre-
sponding electric fields. Adapted from [92].

To complete the mathematical model, it is necessary to de-

termine an appropriate electrode model that takes into account
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the effects of current injection and potential measurement

through the electrodes. The simplest model is the continuum

model [88]. This model assumes that the injected current j is a

continuous function, without considering the influence of any

discrete electrodes present on the boundary. The continuum

model considers the Laplacian (1) and the boundary condition

(2), together with a conservation of charge condition
∫

∂Ω

j = 0 and

∫

∂Ω

u = 0 ,

which amounts to choosing a reference voltage or “ground”.

In a practical application, however, current is injected

through a discrete number L of finite electrodes attached to the

boundary. The gap model [92] takes into account the existence

of these electrodes and assumes that the total injected current

j is

j =
Il

|el|
on el, l = 1, 2, ...., L (3)

within the electrode and zero elsewhere. Here Il is the current

injected at the l’th electrode and |el| is the electrode contact

area, or length for the two-dimensional case.

Alternatively, the shunt model [88], [92] takes into account

the fact that the potential Vl measured across the l’th electrode

is constant across the highly-conductive electrode:

u = Vl on el, l = 1, 2, ...., L ,

and the boundary condition (2) is exchanged for one that

requires the current density over the surface s of an electrode

to equal the current Il flowing through the electrode
∫

el

σ
∂u

∂n
ds = Il on el, l = 1, 2, ...., L . (4)

Finally, the complete electrode model [88], [92] considers

the existence of a discrete number of electrodes of finite size

(gap model), the shunting effect of a conductive electrode

(shunt model) and the potential drop due to the electrode’s

contact impedance zl. The complete electrode model is then

expressed as (1) together with boundary conditions (3), (4)

and

u+ zlσ
∂u

∂n
= Vl on el, l = 1, 2, ...., L (5)

σ
∂u

∂n
= 0 in the gaps between electrodes . (6)

To ensure a unique solution, the conservation of charge

theorem must also hold, together with a choice of a reference

voltage
L
∑

l=1

Il = 0 and

L
∑

l=1

Vl = 0 .

B. Numerical Approximation and Forward Solution

A technique often used to solve the system of partial differ-

ential equations (1–6) is the finite element method (FEM) [99],

[100]. This technique is based on transforming the continuous

form of the problem into a discrete approximation constructed

as a finite collection of K elements with constant conductivity,

interconnected through N nodes (Fig. 3). Considering that

during the fabrication of an artificial sensitive skin a thin

material (or layers of thin materials) is used, only the two-

dimensional surface EIT problem is commonly considered;

interpolation can be used, however, to project the elements of

the two-dimensional FEM to a three-dimensional space [101].

Then, applying FEM theory [101], [102] and rearranging the

discretized system of equations leads to

Y = QA−1 (7)

where Y is a vector of potentials at the N finite element nodes,

Q is a set of current injection patterns at the electrodes, and

A is known as the symmetric admittance matrix. This matrix

associates each of the K elements with its constituent nodes

and its conductivity.

(a) FEM discretization. (b) Electrode close-up.

Fig. 3. Finite element discretization for a circular two-dimensional domain
formed by a finite number of triangles. Filled blue circles mark the nodes
associated with electrode positions. The electrode close-up in (b) shows the
use of multiple nodes to represent the length of the electrode as required
by the complete electrode model. The FEM mesh was generated using
DistMesh [103].

Given the discrete FEM approximation for a known conduc-

tivity distribution within the domain, and a current injection

pattern, the resulting boundary potentials can be calculated as

the solution to the forward problem which—in contrast to the

inverse problem—is well-posed and has a unique solution. For

the small two-dimensional problems encountered in the case of

an artificial sensitive skin, standard approaches to solving the

linear system can be used; for example QR factorisation [104],

LU factorisation or Cholesky factorisations [105]. Direct so-

lution of large three-dimensional EIT systems can be compu-

tationally expensive and iterative methods such as conjugate

gradient [5], preconditioned conjugate gradient [106] and

algebraic multigrid preconditioned conjugate gradient [107]

should be used.

C. Inverse Solution and Image Reconstruction

The EIT reconstruction problem is to find the internal

conductivity distribution of an electrically conductive domain

when a set of injected currents and the resulting boundary

potentials are known. This is an ill-posed non-linear inverse

problem in which the main complications are that the recon-

structed image is not necessarily a unique solution and small

changes in the boundary data can result in large unpredictable

changes in the reconstructed image.

A number of methods exist for EIT inverse solution and

image reconstruction. They all follow the same basic approach
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to some extent: if the problem is non-linear, then linearise it;

if the problem is ill-posed, then use regularisation to find a

nearby well-posed problem; if the linear approximation is not

accurate, then approach the solution iteratively. In principle

these methods are divided into two groups: static imaging and

dynamic imaging.
In static imaging [108], the absolute values of the con-

ductivity distribution inside the domain are reconstructed,

commonly in a “slow” iterative manner. Dynamic imaging [86]

or difference imaging, on the other hand, is a fast one-

step (non-iterative) method that reconstructs only the dynamic

time-varying distribution of conductivity changes. Although

the reconstruction of conductivities based on static imaging

methods has the potential to be more accurate, for the robotics

application presented in this review only the conductivity

changes are required and the ability to perform reconstructions

in real time is a high priority. Dynamic imaging is therefore

commonly used in applications that require real-time image

reconstruction.
The essence of dynamic imaging is to first calculate the

initial set of potentials V on the boundary of an assumed

homogenous domain with “known” conductivity σσσ0. The dis-

crete model is then replaced by a linear approximation that is

used to compute only the conductivity difference δσσσ from the

homogeneous case. Then, after calculating the Jacobian J be-

tween changes in boundary potential and internal conductivity,

the discrete form of the linearised problem becomes

δV ≈ Jδσσσ +w , (8)

where δV = V2 −V1 is the difference in potential between

two measurements and w is a vector of measurement noise.

The time-varying distribution of conductivity changes can be

evaluated by taking two different sets of potential measure-

ments (V1 and V2) at two different time intervals (t1 and

t2) and computing the difference δσσσ from δV. Since only

conductivity changes are calculated this method is fast and also

reduces possible problems with unknown contact impedance

and inaccurate electrode positions. Due to its robustness in

computing conductivity changes, this method is often used in

combination with a point-electrode model in which electrodes

are considered to be single nodes in the mesh, and contact

impedance between the electrode and the conductive domain

are ignored [8]. The complete electrode method, however, will

give improved accuracy of the reconstructions with negligible

increase in computational cost.

Jacobian Calculation

The Jacobian J or sensitivity matrix is the derivative with

respect to conductivity of the non-linear function that maps

perturbations in the internal conductivity of the domain to

changes of potential on the boundary. The Jacobian can be

calculated numerically by perturbing the conductivity of each

of the K elements in the FEM mesh by δσσσ, and then solving

the forward problem (7) to calculate the changes of potential

δV at the electrodes. A difference approximation for J is

obtained by dividing δV by δσσσ to give the Jacobian

Ji,j ≈
∂Vi

∂σj

; i = 1 ... M ; j = 1 ... K ,

where M is the number of potential measurements on the

boundary. A direct calculation is computationally expensive

and is therefore not recommended for large three-dimensional

domains. The reader is referred to [93], [94], [109] for

alternative approaches suitable for the three-dimensional case.

Since little current passes through most of the elements,

many entries in the Jacobian matrix will have values close

to zero. Dividing by such small values causes numerical

sensitivity in the solution so that small changes in measured

potentials, such as those due to electrical noise, can cause large

changes in the reconstruction; this ill-conditioned problem has

to be solved by regularisation.

Regularisation

Informally, regularisation means that additional (prior) in-

formation is introduced so that an ill-posed problem—such as

recovering the internal conductivity changes given the poten-

tials on the boundary (8)—can be replaced by a nearby well-

posed problem. Regularisation involves a trade-off between the

“exact” but unstable solution based on the measured data, and

a more stable “approximate” solution controlled by an imposed

prior. In EIT-based artificial skin the additional information is

usually an assumption that the spatial distribution of δσσσ is

smooth; see Fig. 13 for an example.

Conventional regularisation methods include Tikhonov reg-

ularisation and approaches based on the singular value decom-

position (SVD) [5], [92]. Although SVD is an important tool

for understanding the ill-conditioning of matrices, Tikhonov

regularisation is more commonly accepted because its compu-

tation is simpler and more efficient.

The essence of the generalised Tikhonov regularisation is

to solve the ill-conditioned problem

δσσσ = J−1δV

through minimisation of the least-square function

min
δσσσ

{

‖Jδσσσ − δV‖
2

2
+ α2‖R(σσσ0 − σσσr)‖

2

2

}

, (9)

where α is a scalar hyperparameter that controls the amount

of regularisation, R is a regularisation matrix that controls the

“smoothness” of the solution and σσσr is the initial reference

conductivity, which is not necessarily the same as σσσ0.

Here, the trade-off is achieving a solution δσσσ = J−1δV

without δσσσ becoming unstable. As α → 0 the solution for

δσσσ tends to the generalised (ill-conditioned) solution J−1δV,

while large amounts of regularisation (large α) tend to ignore

the solution. For a regularisation matrix R = I, where I is

the identity matrix, the penalty term α2‖R(σσσ0 − σσσr)‖
2

2
in (9)

prevents extreme values of conductivity σσσ but does not enforce

any constraints on the solution. The formal solution to the

problem (9), as given by Lionheart et al. [5], is

δσσσ = (JTJ+ α2Q)−1(JTδV + α2Q(σσσr − σσσ0)) , (10)

where Q = RTR. In addition, since in dynamic imaging only

the changes in conductivity are measured, it can also be as-

sumed that σσσr = σσσ0. Then, for a fixed initial conductivity σσσ0,

the Jacobian J and (JTJ+ α2Q)−1JT can be pre-calculated

off-line, greatly speeding up the solution.
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Selection of a Regularisation Prior

In EIT imaging applied to artificial sensitive skin, it is

commonly assumed that the conductivity of each element

of the FEM mesh is constant and the spatial conductivity

distribution is smooth (nearby elements have similar conduc-

tivity values) and a smoothing prior is therefore appropriate as

the regularisation matrix R. Naturally, if the real distribution

of conductivity inside the domain is not smooth, then a

different assumption for R should be used. Three different

regularisation methods are commonly used [8].

1) Gaussian-type prior [86], [110]: A smoothing filter

created by evaluating the regularisation matrix R as a dis-

crete invariant Gaussian high-pass spatial filter. This approach

penalises components with high spatial frequency in the re-

constructed image by assuming higher correlation between

neighbouring elements and a gradually diminishing correla-

tion with increased distance. According to [102], in two-

dimensional EIT, the best performance can be obtained by

using a Gaussian-type prior with a cut-off frequency selected

so the spatial period is 10% the domain’s length (or diameter).

2) Laplacian-type prior [86]: A smoothing approach that

uses a discrete approximation of the Laplacian edge filter. This

is a second-order filter that models inter-element correlations,

penalises high spatial frequencies (edges), and smooths the

solution.

3) Newton’s one-step error reconstructor prior [111]: This

algorithm utilises the first step of the Newton-Raphson method

for non-linear equations with assumed homogeneous conduc-

tivity. When combined with the Tikhonov regularisation, it can

be seen as a smoothing approach in which the regularisation

matrix is scaled by the sensitivity of each element

Q = diag
[

JTJ
]p

,

where p ∈ [0, 1].

D. Hyperparameter Selection

The hyperparameter α in (9) controls the trade-off between

the solution based on measured data and an imposed prior

controlled by the regularisation matrix. Correct selection of

this parameter is crucial to achieving accurate reconstruction.

A number of selection algorithms—such as the L-curve,

generalised cross validation and fixed noise figure—exist in

the field of inverse problems, but in EIT heuristic selection is

still very common.

Comparisons between different regularisation algorithms

can be subjective, complicated and inconsistent if heuristic

methods are used. The above-mentioned methods were com-

pared in Graham and Adler [110], where a new method

of hyperparameter selection was introduced: the “BestRes”

method. This method was shown to consistently produce a

“good” reconstruction which in principle is similar to the

“best” heuristic choice. A similar method, using resolution

and error curves, was proposed by Silvera Tawil et al. [8].

This method, which allows for the comparison of several

regularisation matrices in addition to hyperparameter values,

was primarily implemented for EIT-based artificial skin appli-

cations.

On-line solution and image reconstruction

Once the forward model is created, all the parameters for

inverse solution in (10) can be computed off-line from an

assumed homogeneous conductivity distribution, as shown

in Fig. 4. For difference imaging, two sets of potentials

V1 and V2 are obtained at different times. The difference

in potentials δV is then used to calculate the changes in

conductivity δσσσ inside the domain. The inverse solution is

computed inside a continuous loop that constantly updates

both V2 and the inverse solution. Within the same loop δσσσ can

be reorganised to display a two-dimensional representation (or

three-dimensional interpolation) of conductivity changes based

on the FEM model.

Create foward

model

Calculate 

Jacobian (J) (JTJ + α2Q)-1JT

Inverse solution 

from δV

Fig. 4. Flow chart of experimental EIT. Grey shaded boxes in the figure
represent off-line calculations.

The rate at which the continuous loop in Fig. 4 executes

defines the sampling and image reconstruction rates of the EIT

system. This rate is affected by the complexity of the inverse

solution, which depends linearly on the number of elements

in the Jacobian (10). Any dynamic touch signal that contains

frequency components exceeding one half of the sampling

frequency would not be accurately determined by the system,

according to the Nyquist sampling theorem [112].

To simplify prototyping and development of EIT systems,

the numerical implementation of the forward and inverse

problems, together with image reconstruction, can be achieved

using the EIDORS (electrical impedance tomography and

diffuse optical tomography reconstruction software) project

[113]. EIDORS is an open source software suite for image

reconstruction in electrical impedance tomography and diffuse

optical tomography, designed to facilitate collaboration, testing

and new research in these fields.

IV. EIT-BASED SKIN FABRICATION

The main component of an EIT-based artificial skin is the

variable-conductivity material used for its fabrication. An ideal

material would have continuous and homogeneous conduc-

tivity, give large, linear and local changes in conductivity in

response to external stimulus (i.e. touch and pressure), and

have no conductivity change as a result of flexing, stretching

or changes in temperature or humidity, etc.

A number of materials have been investigated with the

aim of finding one that satisfies these criteria. The first

EIT-based sensitive skin was created using a rubber mixed
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with conductive carbon particles to develop a flexible, single-

layered, pressure-sensitive skin [6]. Due to the characteristics

of the rubber, this skin was flexible but not stretchable. It also

had high hysteresis and gave only small conductivity changes

in response to pressure.

Conductive fabrics were investigated by Nagakubo et al.

[7] who creating a highly-stretchable fabric by spraying a

conductive water-based carbonic paint over the surface of an

ordinary knit fabric. The surface conductivity of the material

changed as it was stretched in-plane or compressed normal to

the plane of the fabric. These changes were due to changes

in the area of contact between the conductive yarns in the

structure of the fabric. The conductive knit was not only more

stretchable than the conductive rubber used in [6], but also

had less hysteresis. Large conductivity changes due to stretch

were, however, a significant disadvantage. The efficiency of

this material was demonstrated by placing the artificial skin

over flat and three-dimensional surfaces; see Fig. 5.

(a) Stretchable artificial skin. (b) Points of pressure.

(c) 2-D representation of conductivity changes.

Fig. 5. Highly-stretchable single-layered EIT-based artificial skin. (a) Squared
artificial skin placed over a complex three-dimensional surface. (b) Pressure
applied over the artificial skin. (c) Two-dimensional representation of the
reconstructed conductivity changes due to pressure applied at the locations
represented by the white circles in (b). Figures reproduced from [7].

A similar approach, again using single-layered fabrics, was

reported by Yao and Soleimani [69] and Yao et al. [114]. In

[69] Yao and Soleimani used a highly conductive (σ ≈ 1000

mS/sq) medical-grade silver-plated Nylon Dorlastan fabric,

from Less EMF Inc., with the ability to stretch in both

directions (Fig. 6(a)). As in [7], the surface conductivity of

this material changes as it is stretched in-plane or compressed

normal to the plane of the fabric. Furthermore, in [114] the

authors used a non-woven microfibre conductive (σ ≈ 0.667

mS/sq) fabric from Eeonyx Corp. (Fig. 6(b)). The reduced

stretchability of this fabric reduces potential hysteresis effects,

since no large-scale deformation can occur when pressure is

applied.

(a) Highly-stretchable single-layered EIT-based skin.

(b) Single-layered EIT-based skin with reduced stretchability.

Fig. 6. Single-layered EIT-based artificial skin. (a) Circular sensor manufac-
tured using a highly stretchable conductive fabric (left) and two-dimensional
representation of the reconstructed conductivity changes due to multiple
points of pressure/stretch (right). (b) Squared sensor manufactured using a
microfibre non-woven fabric (left) and two-dimensional representation of the
reconstructed conductivity changes due to pressure (right). Figures adapted
and reproduced from [69], [114] with the author’s permission.

To improve the response to pressure and to minimise

changes in conductivity due to stretch, Silvera Tawil et al.

[115] used two layers of different fabrics instead of one.

The bottom layer was a carbon-loaded conductive fabric from

Eeonyx Corp. The surface conductivity (σ ≈ 12.5 mS/sq) of

this material changes as it is stretched (maximum stretch ≈
60% in length and ≈ 35% in width). Measuring electrodes

were fixed to this layer. A second layer of thin, stretchable,

highly conductive (σ ≈ 660 mS/sq) silver-plated fabric (Less

EMF Inc.) was placed on top of the first layer. By applying

the theory of area of contact between the two layers, it was

possible to detect conductivity changes as a result of applied

pressure while reducing conductivity changes as a response to

stretch. To allow the detection of multiple simultaneous points

of pressure, the second layer was made of unconnected discrete

squares of fabric. This reduced the risk of current flowing

between different contact points via the highly conductive

fabric. To provide a more natural-looking artificial skin with

a “pleasant” feel to touch, a soft suede fabric was placed on

top to cover the active skin, see Fig. 7.
Alirezaei et al. [68] used a similar approach to [115] with

the only difference being that instead of using two layers of

fabrics, the bottom layer was made of a net of conductive

copper sulphide bonded nylon yarn. By using wavelike yarns

the total length of the yarns remained constant when the fabric

was stretched, completely eliminating changes in conductivity

(Fig. 8). In both these approaches, conductivity varies non-

linearly with pressure due to the non-linear changes in the

area of contact between the two layers, and within/between

yarn in the conductive fabrics. Both approaches were tested
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(a) Exploded three-dimensional model.

(b) Finished artificial skin. (c) 2D pressure reconstruction.

Fig. 7. Multi-layered fabric-based artificial skin. Three-dimensional model of
the irregularly shaped artificial skin (a), artificial skin placed over the surface
of a three-dimensional artificial arm (b) and two-dimensional representation
of the reconstructed conductivity changes due to pressure applied to the
artificial arm (c). Figures reproduced and adapted from [102] with the author’s
permission.

over flat and three-dimensional surfaces.

To provide a soft insulating surface, non-conductive materi-

als have been used to cover artificial sensitive skins [68], [75],

[114], [115]. Additionally, this layer serves to redistribute pres-

sure over the surface of the skin around the point of pressure,

generating smooth two-dimensional changes in conductivity.

A. EIT Data Collection

A typical EIT system consists of one or more current

sources, a switching mechanism for generating current injec-

tion patterns and a data acquisition unit for potential measure-

ments. Low frequency AC signals are commonly used as this

eliminates long-term polarisation effects in the electrodes and

allows measurement of the capacitive DCR and resistive com-

ponents of the conductive domain. Unfortunately, this method

also requires synchronous analogue detection circuits and low-

pass filters or other digital processing techniques that not only

significantly complicate hardware design (and increase cost),

but also consume more power and affect real-time sampling

performance [116], all of which are disadvantageous for a

robotics application.

Cilliers et al. [117] introduced a bidirectional DC current

pulse excitation technique, in which the current to the driving

electrode is kept constant during each half cycle. The driving

current waveform is then a zero-mean square wave, and

potential measurements can be taken during the “flat” parts

of the cycle once static electromagnetic conditions have been

achieved (Fig. 9). The hardware is simplified, given that the

measurements can be treated as DC signals. In addition,

this approach eliminates long-term polarisation effects at the

electrodes.

(a) Basic structure.

(b) Finished artificial skin.

Fig. 8. Multi-layered fabric and yarn-based artificial skin (a) Basic structure
of the tactile sensor (left) and photos of the two layers before integration
(right). (b) Developed tactile sensor under 2-way stretch (left) and two-
dimensional representation of the reconstructed conductivity changes due to
pressure applied to the stretched sensor (right). Figures reproduced from [68].

I

t

V

t

potential measurements

Fig. 9. Theoretical form of bidirectional excitation pulses (left) and poten-
tial measurements (right). Potential measurements are taken after stationary
electromagnetic conditions have been achieved.

For robotics applications, the use of DC current excitation

is desirable because of its simple implementation in battery-

powered mobile hardware. Although a bidirectional excitation

approach is preferred, unidirectional DC current excitation

has been used for artificial sensitive skins due to its simple

implementation [7], [115], [118]. In addition, this approach

requires only a single data measurement at each cycle instead

of the two required in the bidirectional method, thereby

doubling sampling rates.

Many different strategies for current injection and potential

measurement—henceforth termed “drive patterns”—can be

applied in EIT. In general, they can be divided into two

groups: optimal (multi-source) patterns and bipolar (single-

source) patterns.
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1) Optimal patterns: Based on the concept of distinguisha-

bility [119], which states that ideal current patterns are ob-

tained by maximising the difference between potential mea-

surements at the boundary of the conductive domain result-

ing from two predetermined conductivity distributions [120],

[121]. Optimal patterns require multiple current sources that

are simultaneously used for current injection while potential

measurements are taken at all boundary electrodes. In Hua et

al. [122], for example, L − 1 independent current injection

patterns are applied to the electrodes while potentials are

measured at all L electrodes.

It has been argued that the optimal current pattern that best

distinguishes a central circular inhomogeneity inside a circular

homogenous domain is the trigonometric current pattern [123],

[124]. However Cheney and Isaacson [125] demonstrated that

if the power consumption during electrode excitation is kept

fixed at a predefined value, the polar pattern will result in even

better distinguishability of a centred target.

Even if optimal patterns have the potential to produce

very accurate image reconstructions, they also need as many

independent AC current sources as there are electrodes. This

is not practical for a robotics application.

2) Bipolar patterns: Bipolar patterns are those in which

a single current source and sink are used to inject current

through a single pair of electrodes at a time, while potential

measurements are taken at all remaining electrodes pairs. The

bipolar drive pattern that is most commonly used is termed the

adjacent [85], [90], [126] or neighbouring [92] method. In this

method current is injected through a pair of adjacent electrodes

while the resulting potentials are measured at all other adjacent

electrode pairs, Fig 10. The current injection pair is then

systematically rotated through all adjacent electrode pairs

while potential measurements are taken from all remaining

adjacent electrode pairs. To achieve a constant dynamic range

in the data, potential measurements are typically not made at

electrodes carrying injected current.

v
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Fig. 10. First of sixteen steps for the adjacent drive pattern applied to a
circular domain with sixteen boundary electrodes. In this step, current I

is applied across a pair of adjacent electrodes (1 and 2) and the resulting
potentials V are measured across all other adjacent electrodes. In the second
step, current excitation is rotated to electrodes 2 and 3, and so on.

Since this method is symmetrical—there is complete and

symmetrical interchange of current injection and potential

measurement—the reciprocity principle [127] holds. Accord-

ingly, for the adjacent method using sixteen electrodes, a total

of 104 independent potential measurements are available. That

is,

Total Measurements =
L (L− 3)

2
, (11)

where L is the total number of electrodes on the boundary.

Several bipolar drive patterns have previously been com-

pared [8], [70], [90], [128], [129] with the aim of finding a

pattern that provides the best resolution and performance in the

presence of noise. It has been argued [128] that the best spatial

resolution can be obtained by using an adjacent pattern. This

pattern, unfortunately, also provides the worse performance in

the presence of noise [128], [129], particularly in the centre

of the conductive domain where current flow is, on average,

the least.

Although the current injected into the domain could be

increased to improve signal-to-noise ratio (SNR), in a battery-

driven application the system is limited in power so that in-

creasing current flow is not a practical solution. Increasing the

number of boundary electrodes would provide more potential

measurements which, at the same time, would yield more

information about the internal conductivity distribution—

particularly near the boundary. Unfortunately, it would also

compromise the real-time efficiency of data acquisition re-

quired for a robotics application.

An improved approach is to utilise a drive pattern that better

distributes current density across the conductive domain. Shi

et al. [90] observed that the best performance was achieved

with a pseudo-polar pattern in which the current sink electrode

is located exactly one electrode before the electrode opposite

to the source. The reason for the performance improvement is

that injecting current through electrodes that are almost oppo-

site increases the current density right across the conductive

domain, thus improving resolution in the centre of the domain.

The potentials at the boundary electrodes also increase, thus

improving SNR in the presence of the same amount of noise.

In addition, by removing symmetry between current injection

and potential measurement patterns (i.e. removing reciprocity),

all measurements are independent and more information about

the internal conductivity distribution is obtained.

Although the polar pattern, in which the current source and

sink are 180◦apart, shares some of the advantages (improved

current density and SNR) of the pseudo-polar pattern, its

symmetry halves the number of independent measurements,

resulting in a great loss of internal conductivity information.

Given that a thin layer (or layers) of conductive material is

used to fabricate an artificial skin, another means of improving

performance is to add electrodes in different locations within

the conducting domain [8]. Such a configuration provides

additional improvements in both resolution and robustness

to noise in the reconstructed image. The best improvements

can be attained by adding electrodes in locations where the

worst performance—due to low current flow—is otherwise

expected. Since the cited work [8] uses internal electrodes only

as references for potential measurement or current injection,

the real-time performance of the system is not sacrificed.

As there is a complete absence of conductivity changes at

the electrode locations, small internal electrodes are highly

recommended. Note that the mathematical model presented in

Sec. III only considers electrodes attached at the boundary
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of the domain. Heikkinen et al. [130], however, present a

model that allows for internal electrodes to be incorporated by

assuming that the FEM model in Sec. III-B is changed from

the conventional approach with a single external boundary to

an approach that includes internal and external boundaries.

Electrodes are thereby not strictly placed within the conductive

domain, but on the inner boundaries of the domain. When

these assumptions are made, the same mathematical model

and boundary conditions presented previously can be applied.

B. Hardware Implementation

The hardware required for an EIT-based artificial skin for

robotics applications should satisfy the requirements defined

in previous sections, summarised as:

1) All hardware should be portable, and designed for

battery-powered operation. Noise should be low.

2) Bipolar current patterns are preferred over optimal pat-

terns to simplify hardware implementation.

3) For a battery-driven application, DC current sources are

preferred. Potential measurements should be taken after

static electromagnetic conditions have been achieved.

4) To achieve a constant dynamic range in the data, po-

tential measurements from electrodes carrying injected

current are not acquired.

A variety of different approaches can be used to achieve

these requirements, but in general all hardware follows

the same configuration. A single current source is time-

multiplexed across multiple current injection channels. At

any time step, two channels are selected as current source

and current sink, and potential measurements are taken from

all remaining channels by multiplexing one or more voltage

acquisition channels. In Fig. 11, for example, a current source

is multiplexed through 16 boundary electrodes of a circular

conductive domain. A microprocessor is used to control and

synchronise both current injection and potential measurement

patterns. Data acquisition from all channels is handled by the

potential measurement multiplexer.

data 

aquisition

microprocessor

(control)

current 

source

conductive 

domain

1
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16
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current injection 

   multiplexer

potential measurement

   multiplexer

Fig. 11. Block diagram of generic EIT hardware

V. SKIN EVALUATION AND PERFORMANCE METRICS

Assessing the quality of a reconstructed image in EIT is

difficult. Reconstructed images are only approximate repre-

sentations of the internal conductivity distribution, and their

accuracy depends strongly on the reconstruction algorithm and

its parameters. In addition, several metrics have been used—

see, for example, [86], [102], [131], [132]—in attempts to find

a set that objectively measures the “quality” of a reconstructed

image. Metrics analogous to those used when evaluating the

human sense of touch were suggested in [102] to evaluate a

sensitive skin. In general, performance metrics for EIT-based

artificial skin applications can be summarised as follows:

A. Spatial resolution (RES)

Based on the “two point discrimination threshold” that

measures the ability of a person to discriminate between

two simultaneous stimuli [33], this metric evaluates a ratio

between the area of the conductive domain and the area of the

reconstructed image containing at least 50% of the maximum

amplitude. As the spatial resolution increases, so does the

capability of the system to discriminate between two different

stimuli rather than to mis-reconstruct them as one. In [131],

[132] areas were approximated by using the number of image

pixels, while in [102] the averaged size of the FEM elements

was considered. In both cases the square root of the ratio was

used to measures length ratios rather than area ratios.

The relatively low spatial resolution of EIT-based skin, as

compared with other tactile sensing technologies [12], [17],

and a poor ability to discriminate between pressure intensities

and contact areas also affects its capacity to discriminate

between stimuli and makes it unsuitable for applications

where high spatial resolution is required. Spatial resolution

varies depending on drive pattern, regularisation algorithm

and number and location of electrodes. Higher pressures mask

nearby lower pressures, and it is more difficult to discriminate

when two touches occur at the same time. See Fig. 12 for an

example of a stimulus reconstructed at two different spatial

resolutions.

(a) RES = 89. (b) RES = 71.

Fig. 12. Images of two different reconstructions of conductivity changes due
to a (simulated) stimulus on a rectangular conductive domain with sixteen
boundary electrodes. Image (a) is the best in terms of RES computed by
FEM element, as proposed in [102]. Black bordered triangles in the two-
dimensional representation are the FEM elements above the 50% maximum
amplitude, and considered for the calculation.
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B. Shape deformation (β).

The “shape” of the reconstructed image can be assessed by

using the difference between its spatial resolutions calculated

at 50% and 75% of the maximum amplitude, as proposed

in [102]. For a discontinuous reconstruction, the spatial reso-

lution at the 50% and 75% maximum amplitudes is expected

to be the same, as shown in Fig. 13. This metric is similar to

the shape deformation metric proposed by Adler et al. [132]

in which the difference between two assumed circular areas

is computed. In this case, however, a more generalised metric

is obtained by removing the assumption of “circular” recon-

structions and computing the absolute differences instead.

= 80 = 90

Fig. 13. Illustration of different reconstructed images due to a simulated
stimulus (left): smooth reconstruction (centre) and discontinuous reconstruc-
tion (right). The bottom row shows the image while the top row plots a lateral
slice of the reconstruction.

C. Position error (PE).

Inspired by the “point localisation” metric which evaluates

the capacity of a person to locate the position of a tactile

stimulus [33], this metric computes the distance between the

centroid of the stimulus (x1, y1) and the centroid of the

reconstructed image (x2, y2), see Fig. 14. In [102], Silvera-

Tawil et al. used the Euclidean distance to represent absolute

position errors, while a more generalised approach was pro-

posed by Adler et al. [132] who considered both magnitude

and direction. As a result, negative values of PE indicate

reconstructed images being “pushed” closer to the boundaries

of the conductive domain while positive values of PE indicate

reconstructed images “pushed” to the centre.

Fig. 14. Illustration of a reconstruction pushed to the centre of the conductive
domain (positive PE). The small solid (black) circle marks the real location
of the stimulus.

In both cases ( [102] and [132]), a position error of zero

(PE = 0), with no variability for stimulus at different loca-

tions would represent perfect performance by this measure.

Similar to the spatial resolution metric, in EIT position error

accuracy varies depending on the drive pattern, reconstruction

algorithm, total number and location of electrodes.

D. Amplitude response.

This metric measures the ratio image amplitudes in the stim-

ulus, represented by pixels, to that in the reconstructed image.

As described by Adler et al. [132], the desired behaviour is to

achieve constant intensity change due to the same stimulus at

any position across the conductive domain. In EIT-based skins

amplitude response is not linear with applied pressure. This is

due to the non-linearity of EIT as a function of touch location,

the effects of the area of contact on changes in the conductivity

distribution, and the characteristics of the materials used for

skin fabrication.

E. Temporal information.

Temporal information refers to the ability of the system to

identify changes in the touch stimulus applied to the skin over

the time of contact. For an artificial skin designed for HRI,

for example, a minimum update frequency of 20 Hz is desired

(Sec II).

VI. TOUCH INTERPRETATION

The interpretation of touch in robotics and, in particular, via

a sensitive skin is a vast, unresolved research area that will

play a crucial role in the further development of robotics. In

this vein, Alirezaei et al. [68] demonstrated the possibilities

of using a stretchable EIT-based sensitive skin placed over

a three-dimensional surface to detect tactile gestures such as

pinching, pushing and rubbing. The skin used during these

experiments was manufactured by the authors of [68] using a

net of yarn over a highly stretchable knit fabric of rectangular

shape (90 mm x 160 mm) with 16 boundary electrodes; see

Fig. 5. Data were acquired using an adjacent sampling method

at a maximum image reconstruction rate of 40 Hz. Tactile

gestures were displayed on a computer screen and detected

visually.

Silvera-Tawil et al. [73], [75] used machine learning al-

gorithms to classify autonomously nine different tactile ges-

tures [75] and twelve discrete emotions and social mes-

sages [73] commonly transmitted by humans via touch. Human

touch was conveyed to a full-sized three-dimensional man-

nequin arm covered with a irregularly shaped (≈ 490 mm x

274 mm) EIT-based artificial skin, see Fig 7. The artificial

skin was manufactured using two layers of highly stretchable

conductive fabric with 16 boundary electrodes and two internal

electrodes. Data was acquired using a ‘RefTwo’ bipolar pat-

tern [8], which considers two internal reference electrodes—

in addition to boundary electrodes—during data acquisition.

Touch classification was achieved using a LogitBoost algo-

rithm and attributes of touch—such as pressure intensity,

touch location and area of contact—extracted at approximately

40 Hz. Experimental results demonstrated that autonomous

classification of social touch can be achieved at better-than-

chance levels, using an EIT-based artificial skin, and with

accuracies comparable to those achieved by humans.

Although in all the cases mentioned above touch interpreta-

tion was performed from attributes of touch extracted from

the two-dimensional reconstructed image, machine learning

algorithms allow for data to be processed at two earlier stages:
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(1) just after data acquisition (raw data), as shown in Fig. 4,

and (2) after inverse solution. By processing data at an earlier

stage, the CPU time typically required for the mathematical

calculation and image reconstruction can be reduced. Although

the first approach (before inverse solution) would reduce data

computation to a minimum the lack of prior information

introduced through the regularisation process would make the

interpretation step more complex.

VII. DISCUSSION AND CONCLUSION

This paper presented a review on EIT as the underlying

technology for the creation of an artificial sensitive skin for

robotics. The benefits of an EIT-based artificial skin are clear

when it is conceptualised as a single piece of thin, stretchable

and flexible material that could be cut into any shape and

used to cover small and large areas of three-dimensional

robotic structures. This skin, which has the ability to sense

pressures due to touch in real time, can be driven by a small

number of electrodes and associated wiring. All stages of

sensing from data acquisition to the preprocessing of localised

touch information can be controlled using the same hardware.

Because a single piece of material is used, the calibration

process is simple. That is, only one sensor element is calibrated

without the need to account for the locations of multiple

discrete sensors. As the only requirement of such a system

is that the material must change its local conductivity in

response to external excitation, materials sensitive to physical

phenomena other than pressure could also be used.
Developing an EIT-based skin is not an easy task. The

characteristics of the material used to construct the skin play a

significant role in its performance. Unfortunately, the “perfect”

material—a material that would generate large, local changes

in conductivity due to touch, would provide continuous, linear

changes as a result of increased pressure, and would not

change as a result of stretch—is not commercially available,

and the latest approaches rely in incorporating multiple layers

of different materials, such as conductive yarns and fabrics,

that allow for artificial skin that are sensitive to pressure yet

minimise the effects of stretch. These approaches, however,

also suffered the disadvantages that exist in any sensor manu-

factured using conductive fabrics. These include complicated

electrode connections, non-linear responses, susceptibility to

electrical noise, degradation of response over time and high

hysteresis. Future research is required to develop materials

better suited to EIT-based skins, and to use these materials

in combination with existing hardware and software.
When using EIT, the spatial resolution capabilities of the

artificial skin can be adjusted quickly and easily by simply

altering the number of boundary and internal electrodes that

are used during image reconstruction. Regardless of the spatial

resolution obtained, an EIT-based skin always functions as

a continuous sensor. In terms of adaptability and scalability,

EIT allows for the same manufacturing principle to be used

to create artificial skins of different sizes and shapes and

use them to cover flat and three-dimensional surfaces [68],

[75], [114]. No noticeable changes have been observed in the

characteristics of the skin as a result of its placement on a

three-dimensional surface.

Spatial resolution of EIT-based skin is, however, low com-

pared with other artificial skin technologies, and is strongly

dependent on the size of the skin and the number of electrodes

used. A compromise between the size of the skin, number

of electrodes (which affects the real-time efficiency of data

acquisition) and spatial resolution is needed. Increasing the

size of the skin without increasing the number of boundary

and internal electrodes causes a significant reduction in the

spatial resolution.

Future work should consider new flexible and stretch-

able materials with linear a electro-mechanical behaviour,

an electro-mechanical forward model which considers the

material’s characteristics and new regularisation methods that

incorporate more information about the material’s conductivity

changes in the material that would improve the quality of

the reconstructed images and allow for better discrimination

between area of contact and pressure intensity. Conductivity

changes due to electrode movement as a result of the robot’s

behaviour should be taken into account [133]. In addition,

significant work is required to integrate EIT-based artificial

skins within a full-scale robotics application in which multiple

robot body parts should be covered. In this case, a compromise

between the size of the skin, number of electrodes and spatial

resolution at different locations might be needed. Multiple

pieces of the artificial skin could be used to cover different

body parts.
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