ELECTRICAL INSULATION FOR ROTATING MACHINES

Design, Evaluation, Aging, Testing, and Repair

GREG C. STONE EDWARD A. BOULTER IAN CULBERT HUSSEIN DHIRANI

IEEE Press Series on Power Engineering Mohamed E. El-Hawary, Series Editor

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

ELECTRICAL INSULATION FOR ROTATING MACHINES

IEEE Press

445 Hoes Lane Piscataway, NJ 08854

IEEE Press Editorial Board

Stamatios V. Kartalopoulos, Editor in Chief

M. Akay	R. J. Herrick	M. Padgett
R. J. Baker	D. Kirk	W. D. Reeve
J. E. Brewer	R. Leonardi	S. Tewksbury
M. E. El-Hawary	M. S. Newman	G. Zobrist

Kenneth Moore, Director of Business and Information Services Catherine Faduska, Senior Acquisitions Editor Anthony VenGraitis, Project Editor

Other Books in the IEEE Press Series on Power Engineering

Electric Power Systems: Analysis and Control Fabio Saccomanno 2003 Hardcover 728 pp 0-471-23439-7

Power System ProtectionP. M. Anderson1999Hardcover1344 pp0-7803-3427-2

Understanding Power Quality Problems: Voltage Sags and Interruptions Math H. J. Bollen 2000 Hardcover 576 pp 0-7803-4713-7

Electric Power Applications of Fuzzy Systems Edited by M. E. El-Hawary 1998 Hardcover 384 pp 0-7803-1197-3

Principles of Electric Machines with Power Electronic Applications, Second Edition
M. E. El-Hawary
2002 Hardcover 496 pp 0-471-20812-4

Analysis of Electric Machinery and Drive Systems, Second Edition Paul C. Krause, Oleg Wasynczuk, and Scott D. Sudhoff 2002 Hardcover 634 pp 0-471-14326-X

ELECTRICAL INSULATION FOR ROTATING MACHINES

Design, Evaluation, Aging, Testing, and Repair

GREG C. STONE EDWARD A. BOULTER IAN CULBERT HUSSEIN DHIRANI

IEEE Press Series on Power Engineering Mohamed E. El-Hawary, Series Editor

IEEE PRESS

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2004 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com.Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is available.

ISBN 0-471-44506-1

Printed in the United States of America.

10 9 8 7 6 5 4 3 2 1

CONTENTS

Preface				
1	Rota	ating M	Iachine Insulation Systems	1
	1.1	Types	of Rotating Machines	1
		1.1.1	AC Motors	2
		1.1.2	Synchronous Generators	4
		1.1.3	Classification by Cooling	6
	1.2	Purpo	se of Windings	7
		1.2.1	Stator Winding	7
		1.2.2	Insulated Rotor Windings	9
		1.2.3	Squirrel Cage Induction Motor Rotor Windings	9
	1.3	Types	of Stator Winding Construction	9
		1.3.1	Random-Wound Stators	10
		1.3.2	Form-Wound Stators—Coil Type	10
		1.3.3	Form-Wound Stators—Roebel Bar Type	12
	1.4	Stator	Winding Insulation System Features	12
		1.4.1	Strand Insulation	12
		1.4.2	Turn Insulation	17
		1.4.3	Groundwall Insulation	18
		1.4.4	Groundwall Partial Discharge Suppression	20
		1.4.5	Groundwall Stress Relief Coatings	24
		1.4.6	Mechanical Support in the Slot	27
		1.4.7	Mechanical Support in the End-Winding	29
			Transposition Insulation	31
	1.5		Winding Insulation System Components	34
		1.5.1	Salient Pole Rotor	35
		1.5.2	Round Rotors	36
		1.5.3	Induction Motor Wound Rotors	38
	Refe	erences		40
2	Eva	luating	Insulation Materials and Systems	43
	2.1	Aging	Stresses	44
		2.1.1	Thermal Stress	45

3

	2.1.2 Electric Stress	46
	2.1.3 Ambient Stress (Factors)	47
	2.1.4 Mechanical Stress	48
	2.1.5 Multiple Stresses	49
2.2	Principles of Accelerated Aging Tests	49
	2.2.1 Candidate and Reference Materials/Systems	50
	2.2.2 Statistical Variation	50
	2.2.3 Failure Indicators	55
2.3	Thermal Endurance Tests	56
	2.3.1 Basic Principles	56
	2.3.2 Thermal Identification and Classification	57
	2.3.3 Insulating Material Thermal Aging Tests	58
	2.3.4 Insulation Systems Thermal Aging Tests	58
	2.3.5 Future Trends	60
2.4	Electrical Endurance Tests	60
	2.4.1 Proprietary Tests for Form-Wound Coils	61
	2.4.2 Standardized Test Methods for Form-Wound Coils	62
2.5	Thermal Cycling Tests	63
	2.5.1 IEEE Thermal Cycling Test	63
	2.5.2 IEC Thermal Cycling Test	64
2.6	Multifactor Stress Testing	65
2.7	•	65
	2.7.1 Environmental Qualification (EQ) by Testing	66
	2.7.2 Environmental Qualification by Analysis	66
	2.7.3 Environmental Qualification by a Combination	67
	of Testing and Analysis	
2.8	1 2	67
Refe	rences	69
Hist	orical Development of Insulation Materials and Systems	73
3.1	Natural Materials	74
3.2	Early Synthetics	76
3.3	Plastic Films and Nonwovens	78
3.4	Liquid Synthetic Resins	79
	3.4.1 Polyesters	79
	3.4.2 Epoxides (Epoxy Resins)	81
3.5	Mica	83
	3.5.1 Mica Splittings	83
	3.5.2 Mica Paper	84
3.6	Glass Fibers	86
3.7	Laminates	87
3.8	Evolution of Wire and Strand Insulation	88
3.9	Manufacture of Random-Wound Stator Coils	89
3.10	Manufacture of Form-Wound Coils and Bars	89
	3.10.1 Early Systems	89

		3.10.2	Asphaltic Mica Systems	90
			Individual Coil and Bar Thermoset Systems	90
		3.10.4	Global VPI Systems	91
	3.11	Wire	Transposition Insulation	92
	3.12	Insula	ting Liners, Separators and Sleeving	93
		3.12.1	Random-Wound Stators	93
		3.12.2	2 Rotors	93
	Refe	rences		94
4	State		ding Insulation Systems in Current Use	95
	4.1		ods of Applying Form-Wound Stator Coil Insulation	97
	4.2		iption of Major Trademarked Form-Wound Stator	99
			tion Systems	
			Westinghouse Electric Co.:Thermalastic TM	99
		4.2.2	General Electric Co.: Micapals I and II TM	100
			Epoxy Mica Mat TM , Micapal HT TM , and Hydromat TM	
		4.2.3	Alsthom, GEC Alsthom, Alstom Power: Isotenax, TM	101
			Resitherm, TM Resiflex, TM Resivac TM , and Duritenax TM	
		4.2.4		102
		4.2.5	ABB Industrie AG: Micadur TM , Micadur Compact, TM Micapact, TM Micarex TM	102
		4.2.6		103
		4.2.7	Mitsubishi Electric Corporation	104
		4.2.8	*	104
		4.2.9	Summary of Present-Day Insulation Systems	104
	4.3	Recen	t Developments for Form-Wound Insulation Systems	105
	4.4	Rando	om-Wound Stator Insulation Systems	107
		4.4.1	Magnet Wire Insulation	107
		4.4.2	Phase and Ground Insulation	108
		4.4.3	Varnish Treatment and Impregnation	108
	4.5	Revol	utionary Stator Winding Insulation Systems	108
		4.5.1		108
		4.5.2	PowerFormer [™]	109
	Refe	rences		110
5			ding Insulation Systems	113
	5.1	Rotor	Slot and Turn Insulation	114
	5.2		ctor Insulation	115
	5.3		Vinding Insulation and Blocking	116
	5.4		ning Ring Insulation	116
	5.5	Direct	t-Cooled Rotor Insulation	117
6			nations and Their Insulation	119
	6.1		omagnetic Materials	119
		6.1.1	Magnetic Fields	119

		6.1.2	Ferromagnetism	119
		6.1.3	Magnetization Saturation Curve	120
			Ferromagnetic Materials	120
		6.1.5	Permeability	121
			Hysteresis Loop	121
			Eddy Current Loss	122
		6.1.8	Other Factors Affecting Core Loss	122
		6.1.9	Effect of Direction of the Grain	124
		6.1.10	Effect of Temperature	124
		6.1.11	Effect of Heat Treatment	124
		6.1.12	Effect of Impurities and Alloying Elements	124
		6.1.13	Silicon/Aluminum Steels	125
	6.2	Mill-A	applied Insulation	125
	6.3	Lamin	ation Punching and Laser Cutting	125
	6.4	Annea	ling and Burr Removal	126
	6.5		eling or Film Coatings	127
	Refe	erences		127
7	Gen	eral Pri	inciples of Winding Failure, Repair and Rewinding	129
	7.1	Failure	e Processes	129
		7.1.1	Relative Failure Rates of Components	131
		7.1.2	Factors Affecting Failure Mechanism Predominance	132
	7.2	Factor	s Affecting Repair Decisions	133
	7.3	Cutting	g Out Stator Coils After Failure	134
	7.4		ding	134
	Refe	erences		135
8	Stat	or Failu	re Mechanisms and Repair	137
	8.1	Therm	al Deterioration	137
		8.1.1	General Process	137
		8.1.2	Root Causes	139
			Symptoms	140
			Remedies	141
	8.2		al Cycling	141
			General Process	142
		8.2.2	Root Causes	144
		8.2.3	Symptoms	145
		8.2.4	Remedies	145
	8.3		uate Impregnation or Dipping	146
		8.3.1	General Process	146
		8.3.2	Root Causes	146
		8.3.3	Symptoms	148
		8.3.4	Remedies	148
	8.4		Coils in the Slot	148
		8.4.1	General Process	148

	8.4.2 F	Root Causes	149
	8.4.3 S	Symptoms	151
	8.4.4 F	Remedies	152
8.5	Semicon	ductive Coating Failure	152
	8.5.1 (General Process	152
	8.5.2 F	Root Causes	153
	8.5.3 S	Symptoms	153
	8.5.4 F	Remedies	154
8.6	Semicon	ductive/Grading Coating Overlap Failure	155
	8.6.1 (General Process	155
	8.6.2 F	Root Causes	156
	8.6.3 S	Symptoms	156
	8.6.4 F	Remedies	156
8.7	Repetitiv	ve Voltage Surges	157
	8.7.1 C	General Process	158
		Root Cause	159
	8.7.3 S	Symptoms	160
	8.7.4 F	Remedies	160
8.8	Contami	nation (Electrical Tracking)	161
	8.8.1 C	General Process	161
		Root Causes	164
		Symptoms	164
		Remedies	164
8.9	Abrasive	e Particles	165
		General Process	165
	8.9.2 F	Root Causes	165
		Symptoms and Remedies	166
8.10	Chemica	hl Attack	166
		General Process	166
	8.10.2 F	Root Causes	167
		Symptoms	167
		Remedies	167
8.11	-	ate End-Winding Spacing	168
	8.11.1 (General Process	168
	8.11.2 F	Root Causes	170
		Symptoms	170
		Remedies	171
8.12		nding Vibration	172
		General Process	172
		Root Causes	173
		Symptoms	174
		Remedies	174
8.13		oolant Water Leaks	175
		General Process	175
	8.13.2 F	Root Causes	176

		8.13.3	Symptoms	177
			Remedies	177
	8.14	Poor E	lectrical Connections	177
		8.14.1	General Process	178
		8.14.2	Root Causes	178
		8.14.3	Symptoms	178
			Remedies	179
	Refe	rences		179
9	Rote	or Wind	ling Failure Mechanisms and Repair	181
	9.1	Round	Rotor Windings	181
		9.1.1	Thermal Deterioration	181
			Thermal Cycling	183
			Abrasion Due To Imbalance or Turning Gear Operation	186
			Pollution (Tracking)	187
			Repetitive Voltage Surges	188
			Centrifugal Force	189
			Remedies	191
	9.2		Pole Rotor Windings	192
			Thermal Aging	192
			Thermal Cycling	193
			Pollution (Tracking and Moisture Absorption)	194
			Abrasive Particles	195
			Centrifugal Force	195
			Repetitive Voltage Surges	196
			Remedies	196
	9.3		d Induction Rotor Windings	198
			Transient Overvoltages	198
			Unbalanced Stator Voltages	199
		9.3.3	High-Resistance Connections—Bar Lap and Wave Windings	199
		934	End-Winding Banding Failures	200
			Slip Ring Insulation Shorting and Grounding	200
			Remedies	200
	9.4		el Cage Induction Rotor Windings	202
	2.1	-	Thermal	202
		9.4.2		202
			Poor Design/Manufacture	206
			Repairs	208
	Refe	rences		209
10	Cor	e Lamin	nation Insulation Failure and Repair	211
-	10.1		nal Deterioration	211
		10.1.1		212
		10.1.2		212

		10.1.3	Common Symptoms	213
	10.2	Electric	cal Degradation	214
		10.2.1	General Process	214
		10.2.2	Root Causes	214
		10.2.3	Common Symptoms	217
	10.3	Mechai	nical Degradation	218
			General Process	218
		10.3.2	Root Causes	218
		10.3.3	Symptoms	221
	10.4		s Due To Manufacturing Defects	221
			General Process	221
			Root Causes	222
		10.4.3	5 1	222
	10.5	Core R		222
			Loose Cores	223
			Core Insulation Shorting	223
			Core Damage Due to Winding Electrical Faults	224
			False Tooth	225
		10.5.5	Cracked Through-Bolt Insulation	225
	Refer	rences		225
11			ciples of Testing and Monitoring	227
	11.1		e of Testing and Monitoring	227
		11.1.1	Assessing Winding Condition and Remaining Winding Life	227
		11.1.2	•	228
			Commissioning and Warranty Testing	228
		11.1.4		228
	11.2		ne Testing Versus On-Line Monitoring	229
	11.3		Visual Inspections	230
	11.4		Systems to Convert Data into Information	230
		11.4.1	-	231
		11.4.2	On-Line Expert Systems	231
	Refer	rences		233
12	Off-I	Line Rot	or and Stator Winding Tests	235
	12.1	Insulati	ion Resistance and Polarization Index	235
		12.1.1	Purpose and Theory	238
		12.1.2	Test Method	240
		12.1.3	Interpretation	241
	12.2	DC Hip	pot	243
		12.2.1	Purpose and Theory	243
		12.2.2	Test Method	243
		12.2.3	Interpretation	245
	12.3	DC Co	nductivity Test	246

	12.3.1	Purpose and Theory	246
	12.3.2	Test Method	246
	12.3.3	Interpretation	247
12.4	AC Hip	ot Test	247
	12.4.1	Purpose and Theory	248
	12.4.2	Test Method	249
	12.4.3	Interpretation	249
12.5	Capacita	ance Test	249
		Purpose and Theory	250
	12.5.2	Test Method	250
	12.5.3	Interpretation	251
12.6	Capacita	ance Tip-Up Test	252
	12.6.1	Purpose and Theory	252
	12.6.2	Test Method	253
	12.6.3	Interpretation	253
12.7	Capaciti	ive Impedance For Motor Stators	254
12.8		tion (or Power) Factor Test	254
	12.8.1	Purpose and Theory	255
	12.8.2	Test Method	255
	12.8.3	Interpretation	257
12.9		Dissipation) Factor Tip-Up Test	257
	12.9.1	Purpose and Theory	257
	12.9.2	Test Method	258
	12.9.3	Interpretation	259
12.10	Off-Lin	e Partial Discharge Test	259
	12.10.1	Purpose and Theory	259
	12.10.2	Test Method	261
	12.10.3	Interpretation	262
12.11	Partial I	Discharge Probe Tests	263
	12.11.1	Purpose and Theory	263
	12.11.2	Test Method	264
	12.11.3	Interpretation	264
12.12	Stator S	urge Comparison Test	265
	12.12.1	Purpose and Theory	265
	12.12.2	Test Method	267
	12.12.3	Interpretation	267
12.13	Inductiv	re Impedance Test	268
12.14	Semicor	nductive Coating Contact Resistance Test	269
		Purpose and Theory	269
	12.14.2	Test Method	269
	12.14.3	Interpretation	270
12.15	Conduct	tor Coolant Tube Resistance	270
	12.15.1	Purpose and Test Method	270
12.16	Stator W	Vedge Tap Test	270
	12.16.1	Purpose and Theory	271

12.16.2 Test Method	271
12.16.3 Interpretation	271
12.17 Slot Side Clearance Test	272
12.17.1 Purpose and Theory	272
12.17.2 Test Method	272
12.17.3 Interpretation	272
12.18 Stator Slot Radial Clearance Test	273
12.18.1 Purpose and Theory	273
12.18.2 Test Method	273
12.18.3 Interpretation	273
12.19 Stator End-Winding Resonance Test	273
12.19.1 Purpose and Theory	274
12.19.2 Test Method	274
12.19.3 Interpretation	274
12.20 Rotor Voltage Drop Test	274
12.20.1 Purpose and Theory	275
12.20.2 Test Method	275
12.20.3 Interpretation	275
12.21 Rotor RSO and Surge Test	275
12.21.1 Purpose and Theory	275
12.21.2 Test Method	276
12.21.3 Interpretation	276
12.22 Rotor Growler Test	277
12.22.1 Purpose and Theory	277
12.22.2 Test Method	277
12.22.3 Interpretation	278
12.23 Rotor Fluorescent Dye Penetrant	278
12.23.1 Purpose and Theory	278
12.23.2 Test Method and Interpretation	278
12.24 Rotor Rated Flux Test	278
12.24.1 Purpose and Theory	278
12.24.2 Test Method	278
12.24.3 Interpretation	279
12.25 Rotor Single-Phase Rotation Test	279
12.25.1 Purpose and Theory	279
12.25.2 Test Method	279
12.25.3 Interpretation	279
12.26 Stator Blackout Test	279
12.26.1 Purpose and Theory	280
12.26.2 Test Method	280
12.26.3 Interpretation	280
12.27 Stator Pressure and Vacuum Decay Test	281
12.27.1 Purpose and Theory	281
12.27.2 Test Methods and Interpretation	281
References	282

13	In-Se	ervice Mo	onitoring of Stator and Rotor Windings	285
	13.1	Therma	l Monitoring	286
		13.1.1	Stator Winding Point Sensors	286
		13.1.2	Rotor Winding Sensors	288
		13.1.3	Data Acquisition and Interpretation	288
		13.1.4	Thermography	289
	13.2	Condition	on Monitors and Tagging Compounds	290
		13.2.1	Monitoring Principles	291
		13.2.2	Interpretation	292
	13.3	Ozone		293
		13.3.1	Monitoring Principles	293
		13.3.2	Interpretation	294
	13.4	On-Line	e Partial Discharge Monitor	295
		13.4.1	Monitoring Principles	295
		13.4.2	Interpretation	302
	13.5	End-Wi	inding Vibration Monitor	307
		13.5.1	Monitoring Principles	307
		13.5.2	Data Acquisition and Interpretation	308
	13.6	Synchro	onous Rotor Flux Monitor	308
		13.6.1	Monitoring Principles	308
		13.6.2	1 1	310
	13.7		Signature Analysis	311
		13.7.1	Monitoring Principles	311
		13.7.2	Data Acquisition	313
		13.7.3	Interpretation	314
	13.8	Air Gap	Monitoring for Salient Pole Machines	315
		13.8.1	Monitoring Principles	315
	13.9	Voltage	e Surge Monitor	316
		13.9.1	Monitoring Principles	316
		13.9.2	1	316
	13.10	-	y Vibration Monitor	317
			Induction Motor Monitoring	317
		13.10.2	Synchronous Machine Monitoring	318
	Refer	rences		319
14	Core	Testing		321
	14.1	Knife T	Test	321
		14.1.1	Purpose and Theory	321
		14.1.2	Test Method	322
		14.1.3	Interpretation	322
	14.2	Rated F	lux Test	323
		14.2.1	Purpose and Theory	323
		14.2.2	Test Method	324
		14.2.3	Interpretation	328
	14.3	Core Lo	oss Test	328

355

		14.3.1	Purpose and Theory	328
		14.3.2	Test Method	328
		14.3.3	Interpretation	328
	14.4	Low Co	ore Flux Test (EL-CID)	329
		14.4.1	Purpose and Theory	329
		14.4.2	Test Method	330
		14.4.3	Interpretation	331
	Refer	rences	-	332
15	Acce	ptance a	nd Site Testing of New Windings	333
	15.1	Stator V	Windings Insulation System Prequalification Tests	333
		15.1.1	Power Factor Tip-Up Test	333
		15.1.2	Partial Discharge Test	334
		15.1.3	Impulse (Surge) Test	335
		15.1.4	Voltage Endurance Test	335
			Thermal Cycling Test	337
		15.1.6	Thermal Classification Tests	338
	15.2		Winding Insulation System Factory and On-Site Tests	339
		15.2.1	Insulation Resistance and Polarization Index Tests	339
		15.2.2	AC and DC Hipot Tests	340
		15.2.3	Impulse (Surge) Tests	341
		15.2.4	Strand-to-Strand Test	342
		15.2.5	Power Factor Tip-Up Test	342
		15.2.6	Partial Discharge Test	343
			Capacitance Test	343
		15.2.8	Semiconductive Coating Test	344
		15.2.9	Wedge Tap	344
	15.3	-	and On-Site Tests for Rotor Windings	345
		15.3.1	Tests Applicable to All Insulated Windings	345
		15.3.2	Round-Rotor Synchronous Machine Windings	346
		15.3.3	Salient Pole Synchronous Machine Windings	347
		15.3.4	Wound Induction Rotor Windings	347
		15.3.5	Squirrel Cage Rotor Windings	347
	15.4		sulation Factory and On-Site Tests	348
		15.4.1	Core Tightness Test	348
		15.4.2	Rated Flux Test	348
	D (15.4.3	EL-CID Test	349
	Refer	rences		350
16			Strategies	351
	16.1		nance and Inspection Options	351
		16.1.1	Breakdown or Corrective Maintenance	352
		16.1.2	Time-Based or Preventative Maintenance	352
		16.1.3	Condition-Based or Predictive Maintenance	354

16.1.4 Inspections

XVI CONTENTS

16.2	Maintenance Strategies for Various Machine Types and Applications		
	11	Turbogenerators	357
	16.2.2	Salient Pole Generators and Motors	359
	16.2.3	Squirrel Cage and Wound-Rotor Induction Motors	361
Index			365

About	the	Authors
-------	-----	---------

371

PREFACE

This book arose out of the conviction that both designers and users of large motors and generators would appreciate a single reference work about the electrical insulation systems used in rotating machines. We also wanted to document how and why the insulation systems in current use came to be. Since rotating machine insulation is not the most glamorous field of study in the engineering world, it is sometimes treated as an afterthought. The result has been a gradual loss of knowledge as innovators in the field have retired, with few new people specializing in it. We hope that the archiving of the information in this book will slow this gradual loss of knowledge and be a useful starting point for future innovations.

This book is unique in that two of the authors (Alan Boulter and Ian Culbert) have a machine design background, whereas the other two have experience as primarily users of machines. With luck, both users and manufacturers of machines can find their interests represented here.

Collectively, three of us (Greg Stone, Ian Culbert, and Hussein Dhirani) want to thank Ontario Hydro (now Ontario Power Generation) for enabling us to become specialists in this field. It seems that the current business climate enables few engineers to become as specialized as we were allowed to be. We would also like to thank John Lyles, Joe Kapler, and Mo Kurtz, all former employees of Ontario Hydro, who taught us much of what we know. EPRI, and Jan Stein in particular, are acknowledged for allowing the three of us to have a "dry run" at this book when they sponsored the writing of a handbook in the 1980s.

We thank Resi Lloyd, who worked valiantly to put a consistent style on the various chapters, created many of the figures, and brought the book together.

Hussein Dhirani thanks his family for allowing him to sneak away to the office on some weekends to work on the book on the dubious pretext of better productivity. Hussein is grateful for the generosity of the many who shared their knowledge, from tradesmen working on generators, to designers poring over drawings, to staff in sister utilities discussing common problems, to supplier organizations explaining the intricacies of their insulation systems design. The understanding and support of Derek Sawyer and Bill Wallace at Ontario Power Generation is particularly appreciated. Ian Culbert thanks Ontario Power Generation for allowing him to participate in a number of internal and EPRI projects from which he gained much of the information he contributed to this book. He also appreciates the opportunities his former employers Reliance Electric and Parsons Peebles gave him to learn how to design, test, and troubleshoot motors.

Finally, Greg Stone wants to thank his original partners at Iris Power Engineering—Blake Lloyd, Steve Campbell, and Resi Lloyd—for allowing his attention to wander from day-to-day business matters to something as esoteric as contributing to a book. Of course, Greg's wife, Judy Allan, is thanked because she never did question the premise that most folks use vacations for writing books and papers.

> Greg C. Stone Edward A. Boulter Ian Culbert Hussein Dhirani

Toronto, Ontario, Canada October 2003

CHAPTER 1

ROTATING MACHINE INSULATION SYSTEMS

In the hundred years since motors and generators were invented, a vast range of electrical machine types have been created. In many cases, different companies called the same type of machine or the same component by completely different names. Therefore, to avoid confusion, before a detailed description of motor and generator insulation systems can be given, it is prudent to identify and describe the types of electrical machines that are discussed in this book. The main components in a machine, as well as the winding subcomponents, are identified and their purposes described.

Although this book concentrates on machines rated at 1 kW or more, much of the information on insulation system design, failure, and testing can be applied to smaller machines, linear motors, servomotors, etc. However, these latter machines types will not be discussed explicitly.

1.1 TYPES OF ROTATING MACHINES

Electrical machines rated at about 1 HP or 1 kW and above are classified into two broad categories: (1) motors, which convert electrical energy into mechanical energy (usually rotating torque) and (2) generators (also called alternators), which convert mechanical energy into electrical energy. In addition, there is another machine called a synchronous condenser that is a specialized generator/motor generating reactive power. Consult any general book on electrical machines for a more extensive description of machines and how they work [1.1, 1.2, 1.3].

Motors or generators can be either AC or DC, that is, they can use/produce alternating current or direct current. In a motor, the DC machine has the advantage that its output rotational speed can be easily changed. Thus, DC motors and generators were widely used in industry in the past. However, with variable speed motors now easily made by combining an

AC motor with an electronic "inverter-fed drive" (IFD), DC motors in the 100's of kW range and above are becoming less common.

Machines are also classified according to the type of cooling used. They can be directly or indirectly cooled, using air, hydrogen, and/or water as a cooling medium.

This book concentrates on AC induction and synchronous motors, as well as synchronous generators. Other types of machines exist, but these motors and generators constitute the vast majority of electrical machines rated more than 1 kW presently used around the world.

1.1.1 AC Motors

Nearly all AC motors have a single-phase (for motors less than about 1 kW) or three-phase stator winding through which the input current flows. For AC motors, the stator is also called the armature. AC motors are usually classified according to the type of rotor winding. The rotor winding is also known as a field winding in most types of machines. A discussion of each type of AC motor follows.

Squirrel Cage Induction (SCI) Motor (Figure 1.1). The rotor produces a magnetic field by transformer-like AC induction from the stator (armature) winding. This is by far the most common type of AC motor made, with millions manufactured every year. SCI motors can range in size from a fraction of a horsepower motor (< 1 kW) to tens of thousands of horsepower (greater than 30 MW). The predominance of the squirrel cage induction motor is attributed to the simplicity and ruggedness of the rotor. In an SCI motor, the speed of the rotor is usually 1% or so slower than the "synchronous" speed of the rotating magnetic field in the air gap created by the stator winding. Thus, the rotor speed "slips" behind the speed of the air gap magnetic flux [1.1, 1.2]. The SCI motor is used for almost every conceivable application, including fluid pumping, fans, conveyor systems, grinding, mixing, and power tool operation.

Wound Rotor Induction Motor. The rotor is wound with insulated wire and the leads are brought off the rotor via slip rings. In operation, a current is induced into the rotor from the stator, just as for an SCI motor. However, in the wound rotor machine it is possible to limit the current in the rotor winding by means of an external resistance or slip-energy recovery system. This permits some control of the rotor speed. Wound rotor induction motors are relatively rare due to the extra maintenance required for the slip rings. IFD SCI motors are often a more reliable, cheaper alternative.

Synchronous Motor. This motor has a direct current flowing through the rotor (field) winding. The current creates a DC magnetic field, which interacts with the rotating magnetic field from the stator, causing the rotor to spin. The speed of the rotor is exactly related to the frequency of the AC current supplied to the stator winding (50 or 60 Hz). There is no "slip." The speed of the rotor depends on the number of rotor pole pairs (a pole pair contains one north and one south pole) times the AC frequency. There are two main ways of obtaining a DC current in the rotor. The oldest method, still popular, is to feed current onto the rotor by means of two slip rings (one positive, one negative). Alternatively, the "brushless" method uses a DC winding mounted on the stator to induce a current in an auxiliary three-phase winding mounted on the rotor to generate AC current, which is rectified (by "rotating" diodes) to DC. Synchronous motors require a small "pony motor" to run the rotor up to near synchronous speed. Alternatively, an SCI type of winding on the rotor can be used to drive the motor up to speed, before DC current is permitted to flow in the main

Figure 1.1. Photograph of a SCI rotor being lowered into the squirrel cage induction motor stator.

rotor winding. This winding is referred to as an amortisseur or damper winding. Because of the more complicated rotor and additional components, synchronous motors tend to be restricted to very large motors today (greater than 10 MW) or very slow speed motors. The advantage of a synchronous motor is that it usually requires less "inrush" current on startup in comparison to a SCI motor, and the speed is more constant. Also, the operating energy costs are lower since, by adjusting the rotor DC current, one can improve the power factor of the motor, reducing the need for reactive power and thus the AC supply current. Refer to the section on synchronous generators below for further subdivision of the types of synchronous motor rotors. Two-pole synchronous motors use round rotors, as described in Section 1.1.2.

Permanent Magnet Motors. These motors have rotors made of a special permanently magnetized material. That is, no DC or AC current flows in the rotor, and there is no rotor winding. In the past, such motors were always rated at < 50 HP, since they can be hard to

4 ROTATING MACHINE INSULATING SYSTEMS

shut down. However, some large permanent magnet motors have been recently used in marine applications, due to their simplicity.

1.1.2 Synchronous Generators

Although induction generators do exist, particularly in wind turbine generators, they are relatively rare compared to synchronous generators. Virtually all generators used by electrical utilities are of the synchronous type. In synchronous generators, DC current flows through the rotor (field) winding, which creates a magnetic field from the rotor. At the same time, the rotor is spun by a steam turbine (using fossil or nuclear fuel), gas turbine, diesel engine or, a hydroelectric turbine. The spinning DC field from the rotor induces current to flow in the stator (armature) winding. As for motors, the following types of synchronous generators are determined by the design of the rotor, which is primarily a function of the speed of the driving turbine.

Round Rotor Generators (Figure 1.2). Also known as cylindrical rotor machines, round rotors are most common in high-speed machines, that is, machines in which the rotor revolves at about 1000 rpm or more. Where the electrical system operates at 60 Hz, the rotor speed is usually either 1800 rpm or 3600 rpm. The relatively smooth surface of the rotor reduces "windage" losses, that is, the energy lost to moving the air (or other gas) around in the air gap between the rotor and the stator—the fan effect. This loss can be substantial at high speeds in the presence of protuberances from the rotor surface. The smooth cylindrical shape also lends itself to a more robust structure under the high centrifugal forces that occur in high-speed machines. Round rotor generators, sometimes called "turbogenerators," are usually driven by steam turbines or gas turbines (jet engines). Turbogenerators using round ro-

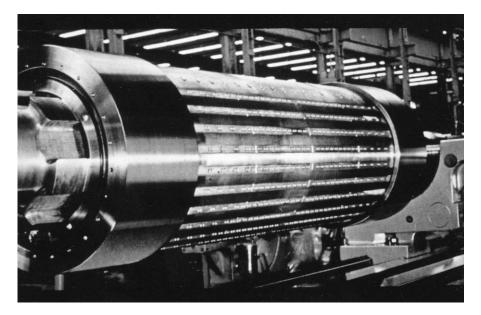


Figure 1.2. Phototgraph of a small round rotor. The retaining rings are at each end of the rotor body.

tors have been made in excess of 1500 MW. (1000 MW is a typical load for a city of 500,000 people in an industrialized country). Such a machine may be 10 m in length and about 5 m in diameter, with a rotor on the order of 1.5 m in diameter. Such large generators almost always have a horizontally mounted rotor and are hydrogen-cooled (see Section 1.1.3).

Salient Pole Generators (Figure 1.3). Salient pole rotors usually have individual magnetic field poles that are mounted on a rim, with the rim in turn fastened to the rotor shaft by a "spider"—a set of spokes. Since the magnetic field poles protrude from the rim with spaces between the poles, the salient pole rotor creates considerable air turbulence in the air gap between the rotor and the stator as the rotor rotates, resulting in a relatively high windage loss. However, since the rotational speed is usually significantly less than 1000 rpm, the loss is considered moderate. Salient pole machines typically are used with hydraulic turbines, which have a relatively low rpm (the higher the penstock, i.e., the larger the fall of the water, the faster the speed). To generate 50 or 60 Hz current in the stator, a large number of field poles are needed (recall that the generated AC frequency is the number of pole pairs times the rotor speed in revolutions per second). Fifty pole pairs are not uncommon on a hydrogenerator, compared to one or two pole pairs on a turbogenerator. Such a large number of pole pairs requires a large rotor diameter in order to mount all the poles. Hydrogenerators have been made up to about 800 MW. The rotor in a large hydrogenerator is almost always vertically mounted, and may be more than 10 m in diameter.

Pump/Storage Generator. This is a special type of salient pole machine. It is used to pump water into an upper reservoir during times of low electricity demand. Then, at times of high demand for electricity, the water is allowed to flow from the upper reservoir to the lower reservoir, where the machine operates in reverse as a generator. The reversal of the ma-

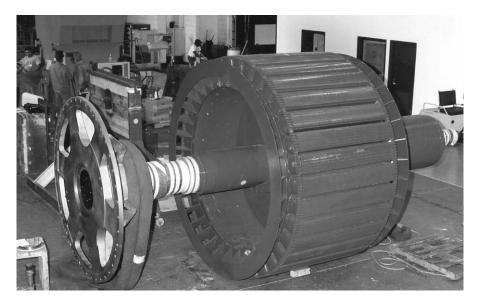


Figure 1.3. Photograph of a salient pole rotor for a large, low-speed motor. (Courtesy TECO-Westinghouse.)

chine from the pump to generate mode is commonly accomplished by changing the connections on the machine's stator winding to reverse rotor direction. In a few cases, the pitch of the hydraulic turbine blades is changed. In the pump motor mode, the rotor can come up to speed by using a SCI-type winding on the rotor (referred to as an amortisseur or damper winding), resulting in a large inrush current, or by using a "pony" motor. If the former is used, the machine is often energized by an inverter-fed drive (IFD) that gradually increases the rotor speed by slowly increasing the AC frequency to the stator. Since the speed is typically less than a few hundred rpm, the rotor is of the salient pole type. Pump storage units have been made up to 500 MW.

1.1.3 Classification by Cooling

Another important means of classifying machines is by the type of cooling medium they use: water, air, and/or hydrogen gas. One of the main heat sources in electrical machines is the DC or AC current flowing through the stator and rotor windings. These are usually called I²R losses, since the heat generated is proportional to the current squared times the resistance of the conductors (almost always copper in stator windings, but sometimes aluminum in SCI rotors). There are other sources of heat: magnetic core losses, windage losses, and eddy current losses. All these losses cause the temperature of the windings to rise. Unless this heat is removed, the winding insulation deteriorates and the machine fails due to a short circuit.

Indirect Air Cooling. Motors and modern generators rated less than about 100 MVA are almost always cooled by air flowing over the rotor and stator. This is called indirect cooling since the winding conductors are not directly in contact with the cooling air due to the presence of electrical insulation on the windings. The air itself may be continuously drawn in from the environment, that is, not recirculated. Such machines are termed open-ventilated, although there may be some effort to prevent particulates (sand, coal dust, pollution, etc.) and/or moisture from entering the machine using filtering and indirect paths for drawing in the air. These open-ventilated machines are referred to as weather-protected or WP.

A second means of obtaining cool air is to totally enclose the machine and recirculate air via a heat exchanger. This is often needed for motors that are exposed to the elements. The recirculated air is most often cooled by an air-to-water heat exchanger in large machines, or cooled by the outside air via radiating metal fins in small motors or a tube-type cooler in large ones. Either a separate blower motor or a fan mounted on the motor shaft circulates the air. IEC and NEMA standards describe the various types of cooling methods in detail [1.4, 1.5].

Although old, small generators may be open-ventilated, the vast majority of hydrogenerators and turbogenerators (rated less than about 50 MVA) have recirculated air flowing through the machine. Virtually all hydrogenerators use recirculated air, with the air often cooled by air-to-water heat exchangers. For turbogenerators rated up to a few hundred megawatts, recirculated air is now the most common form of cooling.

Indirect Hydrogen Cooling. Almost all large turbogenerators use recirculated hydrogen as the cooling gas. This is because the smaller and lighter hydrogen molecule results in a lower windage loss and better heat transfer than air. It is then cost effective to use hydrogen in spite of the extra expense involved, due to the few percent gain in efficiency. The dividing line for when to use hydrogen cooling is constantly changing. In the 1990s, there was a definite trend to reserve hydrogen cooling for machines rated more than 300 MVA, whereas in the past, hydrogen cooling was sometimes used on steam and gas turbine generators as small as 50 MVA [1.6, 1.7].

Directly Cooled Windings. Generators are referred to as being indirectly or conventionally cooled if the windings are cooled by flowing air or hydrogen over the surface of the windings and through the core, where the heat created within the conductors must first pass through the insulation. Large generator stator and rotor windings are frequently "directly" cooled. In direct-cooled windings, water or hydrogen is passed internally through the conductors or through ducts immediately adjacent to the conductors. Direct water-cooled stator windings pass very pure water through hollow copper conductors strands, or through stainless steel tubes immediately adjacent to the copper conductors. Since the cooling medium is directly in contact with the conductors, this very efficiently removes the heat developed by I²R losses. With indirectly cooled machines, the heat from the I²R losses must first be transmitted through the electrical insulation covering the conductors, which forms a significant thermal barrier. Although not quite as effective in removing heat, in direct hydrogen-cooled windings the hydrogen is allowed to flow within hollow copper tubes or stainless steel tubes, just as in the water-cooled design. In both cases, special provisions must be taken to ensure that the direct water or hydrogen cooling does not introduce electrical insulation problems. See Sections 1.4 and 8.13.

Direct water cooling of hydrogenerator stator windings is applied to machines larger than about 500 MW. There are no direct hydrogen-cooled hydrogenerators. In the 1950s, turbo-generators as small as 100–150 MVA had direct hydrogen or direct water stator cooling. Modern turbogenerators normally only use direct cooling if they are larger than about 200 MVA.

Direct cooling of rotor windings in turbogenerators is common whenever hydrogen is present, or in air-cooled turbogenerators rated more than about 50 MVA. With the exception of machines made by ASEA, only the very largest turbo and hydrogenerators use direct water cooling of the rotor.

1.2 PURPOSE OF WINDINGS

The stator winding and rotor winding consist of several components, each with their own function. Furthermore, different types of machines have different components. Stator and rotor windings are discussed separately below.

1.2.1 Stator Winding

The three main components in a stator are the copper conductors (although aluminum is sometimes used), the stator core, and the insulation. The copper is a conduit for the stator winding current. In a generator, the stator output current is induced to flow in the copper conductors as a reaction to the rotating magnetic field from the rotor. In a motor, a current is introduced into the stator, creating a rotating magnetic field that forces the rotor to move. The copper conductors must have a cross section large enough to carry all the current required without overheating.

Figure 1.4 is the circuit diagram of a typical three-phase motor or generator stator winding. The diagram shows that each phase has one or more parallel paths for current flow. Multiple parallels are often necessary since a copper cross section large enough to carry the entire phase current may result in an uneconomic stator slot size. Each parallel consists of a number of coils connected in series. For most motors and small generators, each coil consists of a number of turns of copper conductors formed into a loop. The rationale for selecting the number of parallels, the number of coils in series, and the number of turns per coil in any par-

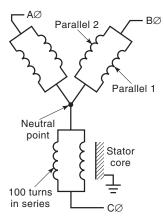


Figure 1.4. Schematic diagram for a three-phase, Y-connected stator or winding, with two parallel circuits per phase.

ticular machine is beyond the scope of this book. The reader is referred to any book on motors and generators, for example references 1.1 to 1.3.

The stator core in a generator concentrates the magnetic field from the rotor on the copper conductors in the coils. The stator core consists of thin sheets of magnetic steel (referred to as laminations). The magnetic steel acts as a low-reluctance (low magnetic impedance) path for the magnetic fields from the rotor to the stator, or vice versa for a motor. The steel core also prevents most of the stator winding magnetic field from escaping the ends of the stator core, which would cause currents to flow in adjacent conductive material. Chapter 6 contains more information on cores.

The final major component of a stator winding is the electrical insulation. Unlike copper conductors and magnetic steel, which are active components in making a motor or generator function, the insulation is passive. That is, it does not help to produce a magnetic field or guide its path. Generator and motor designers would like nothing better than to eliminate the electrical insulation, since the insulation increases machine size and cost, and reduces efficiency, without helping to create any torque or current [1.8]. Insulation is "overhead," with a primary purpose of preventing short circuits between the conductors or to ground. However, without the insulation, copper conductors would come in contact with one another or with the grounded stator core, causing the current to flow in undesired paths and preventing the proper operation of the machine. In addition, indirectly cooled machines require the insulation to be a thermal conductor, so that the copper conductors do not overheat. The insulation system must also hold the copper conductors tightly in place to prevent movement.

As will be discussed at length in Chapters 3 and 4, the stator winding insulation system contains organic materials as a primary constituent. In general, organic materials soften at a much lower temperature and have a much lower mechanical strength than copper or steel. Thus, the life of a stator winding is limited most often by the electrical insulation rather than by the conductors or the steel core. Furthermore, stator winding maintenance and testing almost always refers to testing and maintenance of the electrical insulation. Section 1.3 will describe the different components of the stator winding insulation system and their purposes.

1.2.2 Insulated Rotor Windings

In many ways, the rotor winding has the same components as the stator, but with important changes. In all cases, copper, copper alloy, or aluminum conductors are present to act as a conduit for current flow. However, the steady-state current flowing through the rotor winding is usually DC (in synchronous machines), or very low frequency AC (a few Hz) in induction machines. This lower frequency makes the need for a laminated stator core less critical.

The conductors in rotor windings are often embedded in the laminated steel core or surround laminated magnetic steel. However, round rotors in large turbogenerator and highspeed salient pole machines are usually made from forged magnetic steel, since laminated magnetic steel rotors cannot tolerate the high centrifugal forces.

Synchronous machine rotor windings, as well as wound rotor induction motors, contain electrical insulation to prevent short circuits between adjacent conductors or to the rotor body. As will be discussed in Chapters 3 and 5, the insulating materials used in rotor windings are largely composites of organic and inorganic materials, and thus have poor thermal and mechanical properties compared to copper, aluminum, or steel. The insulation then often determines the expected life of a rotor winding.

1.2.3 Squirrel Cage Induction Motor Rotor Windings

SCI rotor windings are unique in that they usually have no explicit electrical insulation on the rotor conductors. Instead, the copper, copper alloy, or aluminum conductors are directly installed in slots in the laminated steel rotor core. (Smaller SCI rotors may have the aluminum conductors cast in place.) In normal operation, there are only a few volts induced on the rotor conductors, and the conductivity of the conductors is much higher than that of the steel core. Because the current normally only flows in the conductors, electrical insulation is not needed to force the current to flow in the right paths. Reference 1.9 describes the practical aspects of rotor design and operation in considerable detail.

The only time that significant voltage can appear on the rotor conductors is during motor starting. This is also the time that extremely heavy currents will flow in the rotor windings. Under some conditions during starting, the conductors make and break contact with the rotor core, leading to sparking. This is normally easily tolerated. However, some SCI motors operate in a flammable environment, and this rotor sparking may ignite an explosion. Therefore, some motor manufacturers do insulate the conductors from the rotor core to prevent the sparking [1.10]. Since such applications are rare, for the purposes of this book, we assume that the rotor is not insulated.

Although SCI rotor windings are generally not insulated, for completeness, Section 9.4 does discuss such rotors, and Chapters 12 and 13 present some common tests for SCI rotor winding integrity.

1.3 TYPES OF STATOR WINDING CONSTRUCTION

Three basic types of stator winding structures are employed over the range from 1 kW to more than 1000 MW:

- 1. Random-wound stators
- 2. Form-wound stators using multiturn coils
- 3. Form-wound stators using Roebel bars

In general, random-wound stators are typically used for machines less than several hundred kW. Form-wound coil windings are used in most large motors and many generators rated up to 50 to 100 MVA. Roebel bar windings are used for large generators. Although each type of construction is described below, some machine manufacturers have made hybrids that do not fit easily into any of the above categories; these are not discussed in this book.

1.3.1 Random-Wound Stators

Random-wound stators consist of round, insulated copper conductors (magnet wire or winding wire) that are wound continuously (by hand or by a winding machine) through slots in the stator core to form a coil (Figure 1.5). Figure 1.5 shows that most of the turns in the coils can be easily seen. Each turn (loop) of magnet wire could, in principle, be placed randomly against any other turn of magnet wire in the coil, independent of the voltage level of the turn, thus the term "random." Since a turn that is connected to the phase terminal can be adjacent to a turn that is operating at low voltage (i.e., at the neutral point), random-wound stators usually operate at voltages less than 1000 V. This effectively limits random-wound stators to machines less than several hundred kW or HP.

1.3.2 Form-Wound Stators—Coil Type

Form-wound stators are usually intended for machines operating at 1000 V and above. Such windings are made from insulated coils that have been preformed prior to insertion in the slots in the stator core (Figure 1.6). The preformed coil consists of a continuous loop of magnet wire shaped into a coil (sometimes referred to as a diamond shape), with additional insulation ap-

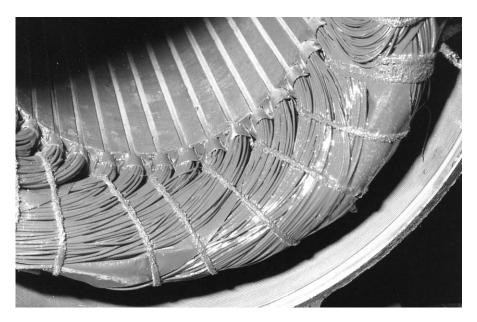


Figure 1.5. Photograph of the end-winding and slots of a random-wound stator. (Courtesy TECO-Westinghouse.)