Electrical Operation of the West Jersey \& Seashore Railroad - Source link

B. F. Wood

Published on: 01 Apr 1911 - Transactions of The American Institute of Electrical Engineers (IEEE)
Topics: Railway engineering and Information engineering

Related papers:

- The Pennsylvania Railroad Electrification
- The slot in the road: Manhattan's forgotten underground electric trolley system
- Railroad electrification: past, present, and future Development of the great European systems
- Great Western railway electrification, UK: civil engineering works
- Electrification Of The New Peck Drawbridge And Bridgeport Viaduct - New Haven rail Line Bridgeport, Connecticut

ELECTRICAL OPERATION OF THE WEST JERSEY \& SEASHORE RAILROAD

BY B. F. WOOD

The proceedings of our engineering societies abound in papers and discussions on the merits of steam and electric operation of railroads in which data are used, which to a large extent are lacking in figures taken from the actual cost of operation. A general impression prevails that operating officers of railroads will not consent to the publication of their operating costs. This to some extent may be true, but where such figures are correctly understood and properly used there should be no objection to their publication.

When the question of presenting certain data pertaining to the operation of the electrified portion of the West Jersey \& Seashore Railroad before the American Institute of Electrical Engineers was discussed with the management of the Pennsylvania Railroad, the reply was made that not only would the information be furnished but that it would be a pleasure to have such information made public through the proceedings of the Institute. The following data were taken direct from the operating records with only such additions as would make them more readily understood. No effort has been made to curtail or to modify in any respect the data selected.

It is the object of this paper to present these data in as concrete form as possible without comparison with the operation of the parallel steam service, and no attempt will be made to analyze or compare the data with any that have heretofore been presented.

This paper will be of value if railroad engineers are encouraged to present before the Institute similar data, and if some standard
form for the compilation of such data is agreed upon. Comparisons could then be made more readily and their value enhanced.

It is hoped that a discussion will be developed which will

Fig. 1
-rade operating officers and engineers to improve the efficiency, add to the reliability and reduce the costs of operation of electrically operated railroads.

No attempt will be made to describe in detail the construction used in the electrification of the West Jersey \& Seashore Railroad as complete descriptions can be found by reference to the files of the Electric Railway Journal. ${ }^{1}$

The portion of the line which is electrically operated extends from Camden, via Newfield, to Atlantic City, a distance of 64.6 miles; and from Newfield to Millville, a distance of 10 miles. With the exception of the Millville Branch, which is a single track railroad, the line is double tracked with a third track extending for a distance of about six miles north from Woodbury.

This portion of the W. J. \& S. R.R. was originally operated by steam and was a single track line south of Newfield. In the latter part of the year 1905 it was decided to electrify. The work was undertaken in December 1905 and had progressed to such a point that in the early part of July 1906 the first train was moved electrically. Regular operation by electric service was established in September of the same year.

The direct current over-running third-rail system operating at 675 volts was chosen for this installation.

A map of the West Jersey \& Seashore Railroad is shown in Fig. 1, from which the electrified portion can be readily followed. The locations of the power station and the substations are shown, as well as the position of the transmission line with respect to the line of the railroad.

In order that the statements of cost of operation and detentions to train service may be more readily understood, the general characteristics of the electrified portion are given.

General Description

[^0]1. Street Railway Journal, November 10, 1906. Street Railway Journal, October 12, 1907.

Equipment turbine room:
Four 2000 kw. 6600 volt, threc-phase, 25 cycle, Curtis turbogenerators.
Twelve $700 \mathrm{kw} .6600 / 33000$ volt, single-phase, 25 cycle, air blast transformers.
Three 75 kw ., 125 volt, Curtis turbo-exciters.
Three $12 \mathrm{~h} . \mathrm{p}$. blowers, $20,000 \mathrm{cu}$. ft. per min. each.
Equipment auxiliary room:
Four Williamson Bros. barometric condensers.
Four I. P. Morris \& Co., dry vacuum pumps.
Four I. P. Morris \& Co., centrifugal circulating pumps. (three driven by Reeves engines; one by Curtis turbine).
Two Cochrane feed water heaters, each $539 \mathrm{cu} . \mathrm{ft}$. capacity to overflow.

Fig. 2.-Power house at Westville, N. J.
Three Worthington boiler feed pumps.
Two Worthington make-up pumps.
Two Worthington step bearing pumps.
One R. D. Wood accumulator for step bearing, 800 lb . per sq. in, 100 gal . capacity.
One R. D. Wood accumulator for step bearing, 100 lb . per sq. in.
One Worthington oil pump.
One Blake oil pump.
Equipment boiler room:
Sixteen Sterling water tube boilers, $358 \mathrm{~h} . \mathrm{p}$. each, with superheaters
Fourteen boilers equipped with Roney stokers.
Two boilers equipped with Taylor stokers.
Hunt gravity return system of coal handling used.

A general view of the exterior of the plant is shown in Fig. 2. In Fig. 3 a plan of the station is shown.

Transmission Line:

Length, 69.3 miles.
Line in duplicate, 33,000 volt, Y connected, neutral grounded.
Poles of chestnut, 45 ft . high, spaced 125 ft . apart -100 ft . at road crossings.
Head guys used every quarter mile, approximately.
Lightning protective ground wire strung on top of poles, 4 ft . above nearest wire, wire of 7 stranded steel galvanized cable, $5 / 10 \mathrm{in}$. diameter. Grounded every fifth pole.
Two cross arms on each pole. Top arm 12 ft . long carries 4 insula-

Fig. 3.-Plan of power house at Westville, N. J.
tors; lower arm 8 ft .6 in . long carries 2 insulators. Insulators 42 in . apart, forming equilateral triangle.
Wire, No. 1 B. \& S., hard drawn, solid copper.
Wires transposed by one complete spiral between each substation, making a total of seven transpositions.
Signal line and lighting circuit, 1100 volt, single-phase, runs below 33,000 volt line from Camden to Newfield and from Pleasantville to Atlantic City.

Substations:

The high-tension, three-phase current is reduced in pressure and converted to direct-current at 675 volts in eight substations located as follows:

South Camden, 2.3 miles from Camden terminal.
Westville (in power house) 3.6 miles south from South Camden.
Glassboro, 12.1 miles south from Westville.
Newfield, 12.2 miles south from Glassboro.
Mizpah 10.9 miles south from Newfield.
Reega, 10.1 miles south from Mizpah.
Atlantic City, 12.5 miles south from Reega.
Clayville, 8.0 miles from Newfield (on Millville branch).
Equipment:

	Converters	Total cap.	Transformers	Alternating current line panels	Direct current feeder panels
South Camden	Two $750-\mathrm{kw}$. One $1000-\mathrm{kw}$.	2500-kw.	$\begin{array}{ll} \text { Six } & 275-\mathrm{kw} . \\ \text { Three } \\ 370-\mathrm{kw} . \end{array}$	2	2
Westville	Two $750-\mathrm{kw}$. One 1000 kw .	$2500-\mathrm{kw}$.	$\begin{array}{ll}\text { Six } & 275-\mathrm{kw} \text {. } \\ \text { Three } & 370-\mathrm{kw} \text {. }\end{array}$	2	6
Glassboro.	Two $750-\mathrm{kw}$. One 1000-kw.	$2500-\mathrm{kw}$.	Six $275-\mathrm{kw}$. Three $370-\mathrm{kw}$.	4	4
Newfield.	Two $750-\mathrm{kw}$. One $1000-\mathrm{kw}$.	2500-kw.	$\begin{array}{ll} \text { Six } & 275-\mathrm{kw} \\ \text { Three } \\ 370-\mathrm{kw} . \end{array}$	6	5
Mizpah	Two 500-kw.	1000-kw.	Six 185-kw.	4	4
Reega.......	Two 750 kw .	$1500-\mathrm{kw}$.	Six 275-kw.	4	4
Atlantic City	Two $750-\mathrm{kw}$. One $1000-\mathrm{kw}$.	2500 -kw.	$\begin{array}{ll} \text { Six } & 275 \mathrm{kw} \\ \text { Three } & 370-\mathrm{kw} \end{array}$	2	4
Clayville...	Two $500-\mathrm{kw}$. One $1000-\mathrm{kw}$.	$2000-\mathrm{kw}$.	$\begin{array}{ll} \text { Six } & 185-\mathrm{kw} . \\ \text { Three } \\ 370-\mathrm{kw} . \end{array}$	2	2

Converters, 6-phase, diametrically connected, started from alternating current end in three steps.
Transformers air cooled, placed over air duct, supplied by two blowers.
Automatic oil line switches.
Multigap lightning arresters in all stations.
The plan and section of a typical substation are shown respectively
in Fig. 4 and 5. Fig. 6 shows the exterior of the substation at
Newfield.
Third Rail:
Length, single rail, main line and branch............ 137.12 miles

Total. 141.73 miles
Rails:
Standard P. R.R. cross section and composition, $100-1 \mathrm{~b}$. per yd.
Conductivity equal to that of copper rod of $1,200,000 \mathrm{~cm}$. cross section. Located 2 ft .2 in . from gauge line of track and $3 \frac{1}{2} \mathrm{in}$.
higher than running rails.
Contact made on top of rail.

Bonded with concealed ribbon bonds, solid copper terminals, pressed into one inch holes drilled in the rail. Two bonds per joint, $500,000 \mathrm{~cm}$. each.
Road crossing jumpers consist of one cable per rail, of $1,000,000$ cm ., in bituminized fibre conduit laid in concrete.
Jumpers brought out of concrete posts with removable hoods and bonded to rail by two stub-end bonds.
Third rails are provided with protection boards at all stations and for 20 ft . on each side of all road crossings. At stations side protection boards are also used. Top board, two in. plank, supported on castings held by maple posts placed six ft . apart.

TRANSVEREE SECTION OF TYPICAL SLESTATION
Fig. 4.--Transverse section of typical substation.

The third rails are sectionalized at each substation, each northbound and each south-bound rail having a separate feeder.
The two rails are cross-bonded at three points between substations.
No feeders are used in connection with third rall.
In Fig. 7 is shown a view of the third rail approach block, the top and side protection for the third rail.
In Fig. 8 is shown the third rail arrangement at cross-over and shows unprotected as well as protected rail.
In Fig. 9 is shown a general view of the yard at Camden, in which all of the third rail is protected.

Trolley:

Length of single wire,

Main line	8.60 miles
Sidings.	0.04 miles
Overlapping	0.91 miles

Wire is No. $4 / 0$ grooved section, supported by $\frac{3}{8}-\mathrm{in}$. galvanized steel stranded span wires at a height of 22 ft . above track rails.
There are two $750,000 \mathrm{~cm}$. feeders, South Camden substation to Haddon Avenue, Camden, and one $500,000 \mathrm{~cm}$. cable South Camden substation to South Gloucester.

Fig. 5.-Plan of typical substation.

Track Bonding:

Concealed ribbon bonds used with solid copper terminals compressed into one inch holes drilled in the rail.
Two bonds per joint, $400,000 \mathrm{~cm}$. each.
Special splice bars used to admit bonds.
Bonds tested every six months by means of millivoltmeters and Whitney Bond Tester.

Cars and Equipment:

Car equipment consists of:
79 coaches, seating capacity 58 .
2 combined passenger and baggage, seating capacity 36 .
6 baggage and mail.
6 baggage.

Coaches weigh $94,500 \mathrm{lb}$. or $1,630 \mathrm{lb}$. per passenger.
Electrical equipment of each car consists of two $200 \mathrm{~h} . \mathrm{p}$. motors with multiple unit system of automatic control.
Gear ratio. 46:29.
Additional equipment has been authorized consisting of 15 steel

Fig. 6.-Exterior of Newfield substation

Fig. 7.-Third rail approach block, top protection and side protection
coaches, having a seating capacity of 72 . The cars will weigh $103,500 \mathrm{lb}$. or 1445 lb . per passenger.

Inspection Sheds:

All inspections and repairs made in Camden shed. Other sheds used for emergency inspection and light repairs.

Camden shed, three tracks, accommodates 9 cars.
Atlantic City shed, two tracks, accommodates 6 cars. Millville shed, one track, accommodates 3 cars.
Third rail is not continued into sheds, overhead trolly being used.

Fig. 8.-Third rail at cross-over

Fig. 9.-View of electrified yard at Camden terminal

Cost of Construction

A table is included showing the cost of construction in connection with the electrification and includes costs made necessary by electrification. It will be noted that the electrification
costs represent less than half of the total cost involved in the change of motive power.

Costs are also presented showing the unit costs of power station transmission line, substations etc.

COST OF CONSTRUCTION

Power Stations:		
Building, stacks, coal and ash handling machinery	\$354,000	
Equipment...	640,900	
Total...		\$994,900
Transmission line.		241,500
Substations:		
Buildings.	72,000	
Equipment.	419,560	
Total.		491,560
Third rail..		557,636
Overhead trolley.		80,500
Track bonding.		102,659
Cars...		1,135,900
Car repair and inspection sheds.		46,674
Right-of-way, additional.		592,100
Reconstructing tracks.		763,800
Constructing new tracks.		2,071,000
Terminal facilities and changes at stations.		252,400
Signals and interlocking plants..		561,900
Changing telegraph and adding telephone facilities.		105,100
Fencing right-of-way, cattle guards, etc.	-	88,400
Miscellaneous items.		44,200
Total.		8,130,229

UNIT COST OF ELECTRIFICATION

Power station, cost per kw.	\$124.36
Transmission line, cost per mile.	3,485.00
Substations, building and equipment cost per kw.	28.90
Third rail, cost per mile.	4,235.00
Overhead trolley, cost per mile.	4,120.00
Track bonding, cost per mile.	684.50
Cars, including electrical equipment	12,214.00

Organization

With the introduction of the electric service the organization of the road was not changed but was expanded to provide for the new duties. A chart of the Motive Power Organization is
shown below, which shows the number of employees engaged in the various departments:

Cost of Operation and Maintenance

The cost of operation and maintenance is shown under several headings as follows:

1. Cost sof operation in cents per car mile.
2. Cost of operation and maintenance of Westville power station.
3. Cost of maintenance of high-tension transmission line.
4. Cost of operation and maintenance of substations.
5. Cost of maintenance of third rail.
6. Cost of maintenance of trolley.
7. Cost of maintenance of bonding.

Table I shows the cost of operation for the years 1909 and 1910, in cents per car mile, and subdivides the cost of operation into the general headings, repairs, electric equipment of cars; repairs, passenger cars; other maintenance of equipment costs; electric power at car shoes; yard service, shifting cost; motormen; trainmen; train supplies and expenses; total of above; other expenses; total expenses. The table also shows the total car miles per month and the average cars per train. The headings of this statement are probably sufficiently explanatory, other than " other expenses," which includes cost of maintenance of way and structures, despatching trains, telephone and tele-
graph, crossing gatemen, together with traffic expenses and general expenses.

Table II shows the cost of operation and maintenance of the Westville power station for the year 1910. This statement is subdivided under the general headings of operation and

TABLE I
WEST JERSEY \& SEASHORE RAILROAD
Electric train service
Passenger train statistics
Cost of operation in cents per car mile
Year 1909

	$\left.\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$			$\begin{aligned} & \text { E } \\ & \text { E } \\ & 0 \\ & 0 \\ & 0 \\ & 2 \end{aligned}$							
January	1.06	$2.05 \mid 0.48$	4.780 .51	0.93	1.53	1.20	12.53		22.78	279,210	3.113
February	1.07	2.420 .38	4.630 .51	0.91	1.49	1.22	12.63	10.99	23.62	258,130	3.163
March	1.18	1.970 .35	4.990 .52	0.99	1.65	1.18	12.83	10.17	23.00	279,193	3.092
April.	1.26	2.030 .25	4.430 .46	0.89	1.40	0.61	11.32	9.14	20.46	317,963	3.483
May.	0.84	1.730 .26	3.980 .44	0.88	1.45	0.45	10.03	9.18	19.21	318,006	3.482
June.	0.40	0.680 .31	3.580 .25	0.86	1.41	0.42	7.91	9.35	17.26	339,294	3.530
July .	0.33	0.440.12	2.820 .200	0.80	1.25	0.40	6.36	6.95	13.31	478,203	3.669
August.	0.28	0.400 .14	2.750 .20	0.75	1.18	0.36	6.06	6.29	12.35'	517,223	3.921
September	0.43	0.670 .14	2.750 .25	0.83	1.32	0.42	6.81	6.87	13.68	428,571	3.584
October	0.64	0.710 .24	3.840 .31	0.92	1.53	0.62	8.81	10.21	19.02	307,825	3.046
November	0.52	0.390 .29	3.850 .29	0.95	1.70	0.82	8.81	9.30	18.15	291,816	3.327
December	0.87	1.08 '0.29	12.31030	1.00	1.72	1.30	18.87	15.05	33.92	292,175	3.318
Avg...	0.68	1.10:0.25	4.300 .33	0.88	1.44	0.69	9.67	19.08	18.75	4,107,609	3.457

Year 1910

maintenance and under the further sub-headings of material and labor. The statement shows the total monthly cost as well as the cost in cents per kw-hr. for each item.

The total net output from the station is also shown as well as the pounds of coal per kw-hr. and the cost of coal per ton of $2,000 \mathrm{lb}$.

Table III is given showing the cost of maintenance of the transmission system, which includes high-tension transmission, overhead trolley, third rail and running track bonding.

In connection with the maintenance cost of overhead trolley, it should be borne in mind that the trolley construction is of

TABLE III
WEST JERSEY \& SEASHORE RAILROAD ELECTRIC TRAIN SERVICE
Cost of maintenance of transmission systems
Year 1910

	High tension		Overhead trolley		Third rail		Running track bonding	
	Total	Per mile	Total	$\begin{aligned} & \text { Per } \\ & \text { mile } \end{aligned}$	Total	Per mile	Total	Per mile
January.	\$142.96	\$2.04	\$690.84 \$3	35.32	\$492.96	\$3.74	$\$ 26.67$	\$1.51
February..	409.74	5.85	266.38	13.62	580.80	4.41	562.82	3.75
March.	198.62	2.84	381.28	19.49	495.55	3.76	39.26	0.26
April.	403.44	5.76	446.57	46.71	745.16	5.26	$\dagger 30.24$	0.20
May .	256.14	3.66	291.51	30.49	1,126.40	7.95	190.05	1.27
June.	123.21	1.76	864.62	90.44	957.42	6.75	312.08	2.08
July..	167.90	2.40	393.62	41.17	818.29	5.77	494.79	3.30
August.	357.20	5.10	317.49	33.21	1,631.72	11.51	32.99	0.22
September.	508.51	7.26	389.73	40.77	838.87	5.92	202.05	1.35
October....	604.93	8.64	245.75	25.70	647.27	4.57	98.66	0.66
November.	171.58	2.45	363.35	38.01	1,062.98	7.50	189.83	1.26
December.	100.34	1.43	244.02	25.52	1,466.71	10.35	125.03	0.83
Total and avg. per mi. per mo....	\$3,444.57	\$4.10	\$4,895.16 \$	\$36.70	\$10,864.13	\$6.46	\$2,445.72	\$1.36

\dagger Credit for scrap 58.75
TABLE IV
WEST JERSEY \& SEASHORE RAILROAD ELECTRIC TRAIN SERVICE
Cost of operation and maintenance of substations
Year 1910

	Total for eight substations				
	Operation	Maintenance	Total	Cost per kw-hr.	$\|$Substation output kw-hr. 675 volts direct-current
January .	\$1,573.82	$\$ 373.10$	\$1,946.92	\$0.001136	1,655,800
February	1,601.78	147.39	1,749.17	0.001157	1,460,200
March.	1,618.16	174.27	1,792.43	0.001035	1,678,400
April.	1,728.98	275.64	2,004.62	0.001251	1,554,900
May.	1,760.46	370.91	2,131.37	0.001267	1,635,900
June.	1,794.44	432.55	2,226.99	0.001310	1,655,600
July..	2,006.97	317.62	2,324.59	0.001047	2,175,700
August. .	1,751.03	194.13	1,945.16	0.000811	2,349,000
September.	1,776.14	903.45	2,679.59	0.001285	2,035,200
October....	1,744.23	145.99	1,890.22	0.001069	1,712,100
November.	1,750.62	142.23	1,892.85	0.000986	1,860,100
December. .	1,745.68	130.02	1,875.70	0.000829	2,199,400
Year.	\$20,852.31	\$3,607.30	\$24,459.61	\$0.001082	21,972,300

rigid span type and also that current is collected by a trolley wheel on each car of a train, the number of cars per train varying from two to seven, the average being about three.

Originally the ten mile line from Newfield to Millville was equipped with overhead trolley of the same construction as the present line. This trolley was replaced by third rail the latter part of March, 1910, hence the maintenance cost per mile in Table 3 is based on 19.55 miles to March, inclusive, and on 9.55 miles from that time on.

The operation and maintenance of substations for the year 1910 is shown in Table IV. This shows the cost of operation and maintenance of the eight substations during the year 1910 , by month, as well as the cost per kw. hr. output per substation and the output in direct current at 675 volts.

Detentions to Train Service

A detailed statement of the detentions to electric train service occurring during the year 1909 is given in table No. VIII. The column headed "Number of detentions," means number of trains detained and is subdivided into totals and per cent of total. The column headed, " minutes detention", shows the train minutes of detention for each cause and is subdivided into the headings of totals and per cent of totals. The column headed "car miles per minute of detention", shows the total car miles per train minute of detention for each cause.

A further subdivision of the detentions due to train equipment shown under the general heading " motive power", is given in Tables IX and X the first being for the year 1909 and the second for the year 1910. This statement shows the detentions that occurred during each year by months and it may be well to say that the figure shown above the line represents the number of detentions, while the figure below the line represents the train minutes delay for that particular detention.

Renewal of Parts of Car Equipment

The number of renewals of the various parts of car equipment for the year 1909 is given by months in Table V and the same information for the year 1910 is given in Table VI.

The car mileage for 1909 being 4,106,765 and for 1910, $4,552,056$, it is seen that the number of car miles per third rail shoe replaced in 1909 was 8068 and in 1910 was 4079 , giving an average of about 6005 car miles per replacement. As each car is
table v
WEST JERSEY \＆SEASHORE RAILROAD ELECTRIC TRAIN SERVICE
RENEWAL OF PARTS OF CAR EQUIPMENT

$$	
㞱	
8	
نٌ	
－	
$\stackrel{\text { ¢ }}{4}$	
呇	
$\stackrel{\text { \％}}{\sim}$	
$\stackrel{\text { E }}{\text { I }}$	
号	
臭	
－	
高	
	\square 5 0 0 0 0 \square 等

TABLE VI
WEST JERSEY \& SEASHORE RAILROAD ELECTRIC TRAIN SERVICE

Parts of equipment	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Year
Third rail shoes replaced	198	125	157	43	27	58	26	41	67	54	73	60	933
Brake shoes replaced.	425	454	511	469	511	570	675	780	531	416	444	514	6300
Trolley poles bent.	4	6	12	12	5	9	8	12	16	2	1	2	89
Trolley poles broken.	3	3	1	3	1	0	3	0	3	1	0	0	18
Trolley poles missing or replaced.	2	4	0	1	0	1	1	4	3	1	0	4	21
Trolley wheels lost or replaced.	19	2	13	9	10	19	18	5	13	3	1	12	124
Trolley retriever dogs broken.	0	0	0	0	0	0	0	0	0	0	0	0	0
Trolley harps broken or replaced	2	4	1	4	0	4	2	1	3	2	0	2	24
800 ampere shoe fuses blown.	186	199	284	173	178	248	229	304	287	210	197	303	2798
800 ampere trolley fuses blown.	36	55	51	23	22	48	107	75	70	32	17	19	575
800 ampere bus fuses blown.	48	11	25	29	17	29	19	22	22	6		17	248
25 ampere controller fuses blown	14	8	4	6	1	2	4	0	0	1	20	5	65
20 ampere No. 2 heater fuses blown.	17	13	19	7	0	2	0	0	0	2	33	13	106
10 ampere No. 1 heater and comp. fuses	28	31	21	19	7	9	2	1	3	5	27	25	178
5 ampere cab heater fuses blown.	0	14	0	0	0	0	0	0	0	0	0	1	15
4 ampere contrl. cable fuses blown.	0	0	2	0	0	1	6	5	6	2	4	3	29
2 ampere headlight fuses blown.	9	24	4	6	3	2	1	1	7	5	3	17	82
1 ampere car light fuses blown.	4	16	21	3	3	6	2	2	6	3	3	7	76
$50 \mathrm{c.p}$. headlights burned out..	25	14	3	18	16	14	21	13	18	14	12	9	177
$50 \mathrm{c.p}$. headlights missing.	17	21	1	3	2	3	3	2	6	0	0	6	64
16 c.p. lamps burned out.	193	211	159	125	93	76	96	109	135	163	157	182	1699
$16 \mathrm{c.p}$. lamps missing.	72	59	64	50	49	45	25	26	27	39	54	67	577
16 c.p. lamps broken.	19	20	7	6	0	2	5	4	9	5	3	3	83
Gauge lamps replaced.	27	17	6	13	9	8	10	8	7	1	4	0	110

equipped with four shoes this gives an average life of 24,020 miles per shoe.

Likewise the number of car miles per brake shoe was 775 in 1909 and 722 in 1910 or an average of about 747 car miles per replacement. The average life of each brake shoe is therefore about 5976 miles.

The number of replacements of the remaining items is governed rather by special occurrences than by mileage, with the exception of the lamps, the average life of which is not readily obtainable owing to incomplete data concerning number of hours burned.

A statement is also included showing the breakage of gears and pinions by month for the years 1909 and 1910 . This will be found by reference to. Table VII.

Table XI shows, by months, for the years 1907, 1908, 1909 and 1910 certain general power data, which are included as being of some interest. This statement, shows the kw-hr. output from power station, the cost in mills per kw-hr. output, pounds of coal per kw-hr., and the efficiency of transmission and conversion from the alternating current bus in the power station to direct current bus in substations.

An improvement will be noted in the reduction of cost of power, as well as a reduction in coal consumption per kilowatt hour. The most marked improvement, however, will be noted in efficiency of transmission and conversion, which is accounted for by the fact that the operation of the substations is followed up with care so as to minimize the idle operation of rotaries.

TABLE VIII
WEST JERSEY \& SEASHORE RAILROAD ELECTRIC TRAIN SERVICE Detentions
Year 1909

Causes	Train detentions, number, time and per cent for various causes				
	Number of detentions		Minutes detention		Car miles per minute detention
	Total	$\begin{array}{\|c} \text { Per cent } \\ \text { of } \\ \text { total } \end{array}$	Total	Percent of total	
Transportation.					
Boat connection.	51	0.553	180	0.403	22,815.36
Baggage, express and mail. .	1898	20.575	8373	18.749	490.47
Heavy travel.	1232	13.355	4612	10.328	890.45
Collecting tickets.	72	0.781	334	0.748	12,295.70
Train connections.	977	10.591	5517	12.354	744.38
Traffic ahead.	1723	18.677	7842	17.561	523.68
Held at signal.	1390	15.068	4767	10.675	861.50
Stops on order.	73	0.791	165	0.369	24,889.49
Fast schedule.	34	0.368	57	0.128	72,048.50
Picking up and cutting off cars.	411	4.455	1312	2.938	3,130.15
Fog.	41	0.444	127	0.284	32,336.73
Signal failure.	208	2.255	860	1.926	4,775.31
Accidents.	26	0.282	261	0.584	15,734.73
Obstructions.	33	0.358	194	0.434	21,168.89
Miscellaneous.	283.	3.068	1427	3.196	2,877.90
Total transportation.	4852	91.621	36028	80.677	113.98
Motive power.					
Power house trouble.	15	0.163	69	0.155	59,518.30
High tension line trouble.	14	0.152	81	0.181	50,700.80
Lightning. .	12	0.130	47	0.105	87,377.90
Overloads in substations	11	0.119	61	0.137	67,324.00
Third rail shorts..	3	0.032	14	0.031	293,340.40
Third rail out of place.....	1	0.011	8	0.019	513,345.13
Third rail anchor on fire.....	1	0.011	5	0.011	821,353.00
Third rail protection out of place.	1	0.011	1	0.002	4,106,765.00
Trolley wire trouble.........	253	2.742	1920	4.299	2,138.94
Train equipment............	237	2.569	1568	3.511	2,619.11
Total motive power.	548	5.940	3774	8.451	1,088.17
Weather Conditions.					
Snow, head winds, wet rail...	178	1.929	4043	9.054	1,015.77
Sleet on third rail.	47	0.510	812	1.818	5,057.59
Total weather condition..	225	2.439	4855	10.872	845.88
Grand total.	9225	100.00	44657	100.00	31.96

Total car mileage.
4,106,765
Car miles per detention. 4 . 445.18
Car miles per minute of detention.
91.96

TABLE XI
WEST JERSEY \& SEASHORE RAILROAD ELECTRIC TRAIN SERVICE
General power data

[^0]: Track:
 Main line, Camden to Newfield, double track, $100-\mathrm{lb}$. rails.
 30.2 miles

 Main line, Newfield to Atlantic City, double track, $85-\mathrm{lb}$. rails....... 34.4 miles
 Main line, South Camden to Woodbury, third track, 100-1b. rails. 6.0 miles
 Branch line, Newfield to Millville, single track, $100-\mathrm{lb}$. rails... . . . 10.0 miles
 Total length of single track, including sidings 150.0 miles

 ## Power Station:

 Location: Westville, N. J., on Big Timber Creek, 5.6 mıles from Camden Terminal. Rated capacity 8000 kw .

