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ABSTRACT 

A former dolerite quarry and landfill site was investigated using 2D and 3D electrical 

resistivity tomography (ERT), with the aims of determining buried quarry geometry, 

mapping bedrock contamination arising from the landfill, and characterizing site 

geology. Resistivity data were collected from a network of intersecting survey lines using 

a Wenner-based array configuration. Inversion of the data was carried out using 2D and 

3D regularized least-squares optimization methods with robust (L1-norm) model 

constraints. For this site, where high resistivity contrasts were present, robust model 

constraints produced a more accurate recovery of subsurface structures when compared 

to the use of smooth (L2-norm) constraints. Integrated 3D spatial analysis of the ERT and 

conventional site investigation data was shown in this case to provide a highly effective 

means of characterizing the landfill and its environs. The 3D resistivity model was 

successfully used to confirm the position of the landfill boundaries, which appeared as 

electrically well-defined features that corresponded extremely closely to both historic 

maps and intrusive site investigation data. A potential zone of leachate migration from 

the landfill was identified from the electrical models; the location of this zone was 

consistent with the predicted direction of groundwater flow across the site. Unquarried 

areas of a dolerite sill were imaged as a resistive sheet-like feature, whilst the fault zone 

appeared in the 2D resistivity model as a dipping structure defined by contrasting 

bedrock resistivities. 
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INTRODUCTION 

Electrical resistivity tomography (ERT) is now a well-established tool for 

environmental and engineering site investigation, and is routinely applied to the detection 

of pollution (Daily et al., 1998; Goes and Meekes, 2004), the characterization of 

geological (Meads et al., 2003) and engineered structures (Daily and Ramirez, 2000), and 

hydrogeological studies (Binley et al., 2002; Sandberg et al., 2002). The great strengths 

of ERT are that it provides a relatively low cost, non-invasive and rapid means of 

generating spatial models of physical properties of the subsurface. It is especially 

beneficial for contaminated land investigations where it is generally desirable to 

minimize ground disturbance. A category of environmental and engineering problems for 

which ERT has proved to be particularly useful is the investigation of landfill sites, 

where it has been used to map landfill geometry (Reynolds and Taylor, 1996; Bernstone 

and Dahlin, 1997) and compositional variations (Yuval and Oldenburg, 1996; Bernstone 

et al., 2000; Guerin et al., 2004), and to detect bedrock contamination (Aristodemou and 

Thomas-Betts, 2000; Yoon et al., 2003; Abu-Zeid et al., 2004; Naudet et al., 2004). Most 

published studies have detailed the application of 2D ERT to landfill investigation; 

however, given that waste deposits are typically highly heterogeneous, full 3D solutions 

are often preferable (Chambers et al., 1999; Ogilvy et al., 1999; Dahlin et al., 2002; 

Ogilvy et al., 2002; Chambers et al., 2005). 

Landfill sites are ubiquitous across the industrialized world, and represent a legacy 

going back many decades (e.g., Walsh and LaFleur, 1995). Although most modern 

landfill sites are carefully selected and engineered to minimize the potential for bedrock 

and groundwater contamination (e.g., USEPA, 1993; EU, 1999), there are huge numbers 

of sites that were developed before the hazards associated with waste disposal (Williams, 

1991) were well understood. Consequently, many older landfill locations were chosen on 
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the basis of convenience and their proximity to the waste source, rather than 

environmental, geological or engineering considerations, and in many cases former 

minerals workings were used as they provided ready made voids in which to deposit 

waste (Williams, 1999).  

Study objectives 

In this study both 2D and 3D ERT were applied to the investigation of a former quarry 

and waste disposal site. The study site is an example of a UK waste disposal facility that 

began operating prior to 1
st
 January 1976, at which time legislation controlling landfill 

operations came into effect in the form of the Control of Pollution Act (Great Britain, 

1974). This site is therefore similar to hundreds of other landfill sites around the UK 

dating from this time, for which there were few controls on the tipping of waste, and no 

requirements to keep records of waste disposal or to engineer sites in such a way as to 

reduce the potential for the spread of pollution. 

The principal objectives of the electrical surveys were to accurately define the 

northerly and westerly edges of the landfill, i.e., the boundaries of the former quarry, to 

assist in the planning of a proposed development adjacent to the site, and to provide 

information relating to landfill depth. Secondary objectives included the identification of 

potential pollution pathways from the landfill associated with the lack of an engineered 

barrier, and the characterization of site geology. 

Site description 

The site comprises a former dolerite quarry, which during the 1970s was in-filled with 

domestic waste and inert materials, and capped with clay. The area known to include the 

landfill site is disused, though much of the surrounding land has until recently been used 
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for agriculture. The site is dominated by grassland and marsh, though areas of dense 

vegetation and woodland are present in the north, and across the southwestern side. A 

marked topographic feature defining low ground to the south, which is likely to be 

associated with the northern limit of the dolerite sill, extends along the northwestern and 

northeastern edges of the site. In addition, an embankment running in a northwesterly 

direction is located within the site. This feature is characterized by a sharp change in 

slope, and defines an area of high ground to the northeast, which is thought to contain the 

landfill. It is likely that the sharp change in slope represents the limit of quarry spoil 

deposited in the area to the west of the former quarry. 

Intrusive site investigation 

In addition to the ERT surveys, three phases of intrusive investigations have been 

undertaken. The first (I) was carried out prior to the ERT surveys, and was very limited, 

comprising only a few sample locations (e.g., Figures 1 and 2, CP10, R01 and R02). The 

second intrusive investigation (II), which was focused on the fields adjacent to the quarry 

to the north and west, was carried out approximately 2 months after the ERT surveys, and 

was more extensive (e.g., Figures 1 and 2, BH50 to BH67). The final phase (III) was 

carried out approximately 11 months after the ERT surveys, and involved sample 

locations in and immediately adjacent to the quarry (Figures 1a and 2, BH01 to BH13). 

The phase III investigation confirmed that a mixture of domestic and inert wastes were 

contained in the landfill. Other information relating to the site included historic Ordnance 

Survey (OS) maps showing the extent of quarrying during the 1950s after the point at 

which quarrying was thought to have ceased. 

Geology and hydrogeology 
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The landfill is situated within a quartz dolerite sill, which forms part of the late 

Carboniferous Midland Valley sill complex (Francis, 1982). Borehole records (i.e., 

BH60) from the site show a maximum sill thickness of 12.6 m. The sill has been partially 

excavated during quarrying operations, which in places extended to the base of the sill 

(e.g., BH05, BH06, BH07B and BH08). The sill was intruded into the Upper Limestone 

Formation (Cameron and Stephenson, 1985), which consists principally of coal-cyclic 

sequences that have been widely replaced by erosive sandstones. Intrusive records in this 

area have shown that the Upper Limestone Formation comprises mudstones, siltstones, 

sandstones and occasional thin coal bands. 

The northern tip of the site is cut by an east-west trending fault, which is downthrown 

to the south. Consequently, the Upper Limestone strata to the north of the site are likely 

to be older that those underlying the landfill. 

Drift deposits directly associated with the landfill have been removed by quarrying, 

and, likewise, trial pit and borehole records indicate that deposits are thin or absent in the 

area directly to the west of the landfill. However, Quaternary tills are present directly to 

the south and east of the site, and glaciofluvial sand and gravel drift deposits extend from 

its northern limits. 

Intrusive investigations have revealed a shallow water table across the site, typically 

less than 3 m below ground level (bgl), which broadly follows the topography. A Kriged 

groundwater surface for the area was calculated using a 2.5 m surface grid from water 

levels observed during the phase II intrusive investigation (Figures 1b and 2). Data from 

phase II were used as they were collected shortly after the ERT surveys, and represented 

the widest distribution of sample points. Though none of the sample points were located 

within the quarry, the distribution of points did allow the regional hydraulic gradient in a 

broad area around the quarry to be considered. 
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DATA AQUISITION, INTERPRETATION AND DISPLAY 

Survey strategy 

The 3D electrical survey covered a rectangular area, along the western boundary of the 

landfill. The area was chosen to maximize coverage of the central, northern and western 

regions of the landfill. Dense vegetation, steep slopes and other physical impediments 

limited further extension of the survey to the north and east. In accordance with the local 

coordinate system adopted for this site, which is shown in red in Figure 1, the survey area 

extends from 0 to 155 m NE (x-axis) and from 0 to 210 m NW (y-axis). Elevations 

referred to in this paper are related to an arbitrary site datum. 

The survey comprised 15 lines orientated parallel to the x-axis, positioned at 15 m 

intervals from 0 m NW to 210 m NW. In addition, data were collected from 4 tie lines 

orientated parallel to the y-axis, located at 30, 80, 120 and 155 m NE respectively. The 

tie lines were included to improve the resolution of linear features orientated parallel to 

the x-axis (Chambers et al., 2002; Gharibi and Bentley, 2005), and to improve the data 

density, and therefore resolution, within the area of most interest, i.e., the landfill and its 

western boundary. The along-line electrode separation was 5 m for all lines. All survey 

lines fell within the 3D electrical survey area shown on Figure 1 with the exception of the 

tie line at 120 m NE, which was extended northwards into the adjoining field. Data from 

this line were intended to provide additional information regarding potential bedrock 

contamination to the northwest of the landfill. 

A prototype four-channel multi-electrode resistivity instrument capable of addressing 

up to 64 electrodes was used for data collection. A Wenner configuration was employed 

on one channel, but to make full use of the instrument and to improve lateral resolution, 

additional Schlumberger array configurations (Loke, 1999) were collected on the other 
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channels. These additional configurations were reciprocals of the traditional C-P-P-C 

arrangements (i.e. P-C-C-P, with the potential electrodes outside the Wenner current 

dipole). With the advent of multi-channel instruments the use of hybrid Wenner array 

types is becoming more common (e.g. de la Vega, 2003; Leucci et al, 2004; Zume et al, 

2006) in order to harness the good signal strength of the Wenner array and the superior 

lateral resolution of other array types such as the dipole-dipole, Schlumberger and 

gradient arrays (Dahlin and Zhou, 2004). In this case a combination of Wenner and 

Schlumberger array configurations were selected to provide good lateral and vertical data 

coverage to a depth of approximately 30 m. Furthermore, the configurations had good 

signal to noise properties, and did not require the use of remote electrodes. The field 

survey was completed within a period of three days; measurement time, excluding setup 

and array deployment, amounted to 12 hours.  

Numerical inversion 

The 2D and 3D ERT field data were inverted using L1-norm implementations (Loke 

and Lane, 2002) of the regularized least-squares optimization method (Loke and Barker, 

1995 and 1996), based on the following equation: 

imiiiiiii CgRCgRJpCRCJRJ
T

d
T

m
T

d
T λλ −=





 +              (1) 

where i is the number of iterations, J is the Jacobian matrix of partial derivatives, λ is the 

damping factor, C is the roughness filter matrix, p is the perturbation vector to the model 

parameters, g is the discrepancy (data misfit) vector that contains the difference between 

the logarithms of the measured and calculated apparent resistivity values, and Rd and Rm 

(Wolke and Schwetlick, 1988) are weighting matrices that are included so that different 

elements of the discrepancy and model roughness vectors are given equal weights during 
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the inversion. The forward problem was solved using the finite-element method, in which 

node positions were adjusted to allow topography to be taken into account in the 

inversion process (Loke, 2000). The measured dataset comprised approximately 7300 

points collected from within the 3D survey area. The final 3D resistivity model consisted 

of 32 cells in x-direction, 42 cells in y-direction and 8 layers in the vertical direction, 

resulting in a total of 10416 model cells. Good convergence between the observed and 

model resistivity data was achieved after 6 iterations as indicated by an rms error misfit 

of 3.0 %. The inversion took approximately 8 hours to run on a AMD Athlon™, 2.41 

GHz, machine with 2.0 GB of RAM. 

The L1-norm (robust) optimization method minimizes the sum of absolute values of the 

changes in model resistivity and was used in preference to the L2-norm (smoothness 

constrained) method, which minimizes the sum of squares, as it provides significantly 

better results for situations where there are sharp boundaries (Loke et al., 2003). In this 

case it was important to determine the position of the boundaries between the resistive 

dolerite sill and more conductive units of the Upper Limestone formation and the highly 

conductive waste deposits. The superiority of the L1-norm method for this type of 

problem is illustrated by Figure 3. The L1- and L2-norm optimization methods were each 

used to produce 3D models from the measured data. Figure 3a shows horizontal depth 

sections at 7.3 m bgl from the L1- and L2- norm models respectively. The dolerite / waste 

interface appears as a significantly better defined feature in the L1-norm model. In Figure 

3b, model resistivities coinciding with the location of intrusive sample point R02 were 

extracted from the 3D models and displayed as vertical plots alongside the geological log 

obtained from the borehole. The L1-norm more closely reflects the abrupt change from 

the highly resistive dolerite to the more conductive underlying Upper Limestone 

Formation units shown in the corresponding geological log. 



 10 

Interpretative criteria 

The survey area includes a wide range of geological and man-made materials with 

greatly differing electrical properties. The dolerite sill is likely to be associated with the 

highest resistivities. Crystalline igneous rocks, such as quartz dolerite, are typically 

represented by resistivities of hundreds to tens of thousands of Ωm, depending on 

moisture content and degree of weathering (e.g., Telford et al., 1990). The Upper 

Limestone Formation in this area comprises mudstone, siltstone and sandstone; the 

resistivity of these materials will increase with increasing grain size and decreasing water 

content. Mudstones are expected to display resistivities of 10 to several tens of Ωm, 

whilst the sandstones may be characterized by resistivities from tens up to thousands of 

Ωm. The Quaternary sand and gravel to the north of the landfill is anticipated to display 

resistivities of a few tens to a few hundred Ωm, depending on moisture content.  

Buried domestic waste is usually highly electrically conductive, with resistivities of 

less than 20 Ωm, particularly in water-saturated conditions where resistivities of less than 

1 Ωm may occur (Ogilvy et al., 2002). The clay capping material is also likely to be 

characterized by low resistivities of less than 35 Ωm. 

Pore fluid conductivity exerts a major influence on bulk material resistivity. 

Consequently, the migration of highly conductive landfill leachate in surrounding 

bedrock may be distinguished as a zone of low resistivity. 

Integrated spatial modeling and visualization 

Resistivity models resulting from numerical inversions are typically displayed as either 

2D sections or 3D volumetric images. Beyond the display of physical property values 

alone, the calibration and interpretation of resistivity models requires spatial comparison 
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with reference data. To aid this process, relevant site investigation data and ground-truth 

information (Figure 2) has been integrated with the geophysical models in virtual 3D 

space using generic geological modeling software (Figures 4 and 5). Borehole logs in and 

around the survey area, the water table model, geophysical survey line positions, 

topographic surfaces and historic OS data have all been included along with the 

resistivity model in a dynamic 3D representation of the site. 

Particular care was taken with the accurate visualization of the 3D resistivity model. 

Although spatial discretization of the subsurface for the purpose of inverse modeling is 

somewhat arbitrary, it is sensible and good practice to choose a mesh geometry that 

reflects the capabilities of the ERT method. Semi-automatic mesh generators employed 

by many popular ERT inversion algorithms fulfill these criteria. The resulting model grid 

is typically non-uniform and two key aspects of non-uniformity must be considered for 

the purpose of quantitative analysis and interpretation. Firstly, model layer thicknesses 

usually increase with depth to account for the loss in resolution away from the surface. 

Secondly, the effect of surface topography can be incorporated in the inversion process 

by means of a spatial transformation of the 3D finite-element grid. Hence the geometry 

of the resulting resistivity model is distorted accordingly and layers of cells conform to 

the surface topography over the entire vertical extent of the model. Visualization of such 

non-uniform model geometries can be achieved in advanced 3D geomodeling 

environments (Kuras, 2004). For presentation purposes, we have used Rockworks™ 

v.2004 to display the 2D and 3D resistivity models using a re-sampled grid with regular 

node spacings. In the case of the 3D model the re-sampled grid was generated using an 

inverse distance squared interpolation method in which a weighted average of the closest 

control point in each 90
o
 sector around each node was calculated. 
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RESULTS AND INTERPRETATION 

Model overviews 

The 3D resistivity model includes resistivity values ranging from less than 1 Ωm to 

approximately 3000 Ωm. In order to accommodate the wide range of resistivities present, 

a logarithmic color scale has been used for visualization. The main features and 

components of the model are shown in Figures 4 and 5, which comprise 3D tomograms 

with opaque volumes showing resistivity distributions greater than 50 Ωm and less than 

15 Ωm respectively.  

A highly resistive zone, i.e. 10
2
 to 10

3
 Ωm, showing the extent of the dolerite sill 

covers much of the near surface of the model. The dimensions of this zone closely 

correspond to the thickness of the sill indicated by the borehole records, i.e. 10 to 15 m; 

moreover, the model resistivities are consistent with the high resistivities that are 

generally associated with dolerite. In the area of the model coinciding with the quarry, as 

shown by the intrusive and historic OS data, the resistive zone is absent, indicating the 

removal of dolerite. Towards the center of the survey area a resistive zone extends to the 

base of the model; this feature is shown in the northeast striking vertical sections in 

Figure 5. It is likely that this resistive feature is not a reflection of resistive material 

persisting to depth, but is instead due to a weakness of the inversion method and 

insufficient depth of investigation of the surface arrays. The lateral position of this 

resistive anomaly broadly coincides with an area of relatively conductive overburden 

above the sill. The greater depth to the base of the dolerite in this area is likely to have 

resulted in poorer resolution of the sill base, giving the appearance of high resistivities 

persisting below the sill. This hypothesis is supported by a 2D synthetic modeling study 

(Figure 6) designed to represent this situation, in which a dolerite sill with and without 
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conductive overburden is simulated (see Interpretative Criteria). In the case of 

overburden overlying the sill, the model produced from synthetic apparent resistivity data 

was unable to resolve the base of the sill. Instead the resistive zone representing the sill 

extended to the base of the model. Poor model resolution at the base of the buried sill is 

further confirmed by the sensitivity plot in Figure 6c; sensitivities are particularly low in 

the region of the buried sill due to current channeling in the conductive overburden.  

The second dominant feature in the model is the conductive zone coinciding with the 

estimated location of the landfill. It is shown in blue on the vertical sections in Figure 4, 

and as a solid volume along the northeastern edge of Figure 5. A more resistive zone 

representing the clay capping materials and unsaturated waste overlies much of the 

conductive feature. Although a range of waste types with differing resistivities were 

disposed of at the site, the 3D ERT model shows relatively little variation within the area 

of the landfill. It is likely that this is due to mixing of leachate within the landfill, which 

has led to the homogenization of saturated waste resistivities. The western boundary of 

the quarry in particular appears in the model as a steep sided feature (Figure 4). Hard 

rock quarries are often steep sided due to the competent nature of the materials in which 

they are situated. Evidence from BH07 to BH07B and BH10A, which were located at the 

margins of the quarry, supports this observation. 

A highly conductive anomaly at the base of the model can be seen in Figures 5 and 7 

extending from 0 to 120 m NW along the southwestern model boundary. This anomaly 

appears to be unconnected to the landfill, and does not relate to any known feature 

associated with the site. The low resistivity values associated with this feature are lower 

than most natural occurring resistivities. Without further investigations it is impossible to 

identify the source of this feature. Given that it is located in a poorly constrained area of 
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the model and does not intersect any of the tie lines, it is likely that this feature is a 

spurious artifact of the inversion process. 

Those areas of the model below the level of the dolerite sill and the landfill, which are 

characterized by resistivities ranging from approximately 10 to 200 Ωm, are likely to 

represent the sedimentary units of the Upper Limestone Formation. 

The 2D model of the extended line 120 m NE is shown in Figure 8. Of most interest in 

this model is the area beyond 210 m NW, which is outside the area covered by the 3D 

survey. We consider the 3D model of the landfill to be inherently more reliable than the 

2D model (e.g. Chambers et al., 2002; Bentley and Gharibi, 2004); discussion of the 2D 

model will therefore be limited to the area extending from 210 m NW. It can be seen that 

the conductive anomaly underlying the resistive surface zone is contiguous with the main 

conductive anomaly associated with the landfill and extends from approximately 160 to 

230 m NW. An abrupt change to greater resistivities then occurs at this point, potentially 

indicating a fault controlled change to different units of the Upper Limestone Formation. 

Towards the end of the line, at Y = 276 m NE, a resistive zone is shown in the model. 

Borehole BH51 reveals the presence of dolerite to at least 13.9 m bgl at this location. 

Neighboring boreholes BH50 and BH52, in which no dolerite was observed, indicate that 

the dolerite in this area is not laterally extensive. It is likely the dolerite dike indicated on 

the geological map (Figure 1a) extends further to the east than originally predicted, and 

falls between boreholes BH50 and BH52. 

Landfill boundaries and quarry spoil 

The southwestern boundary of the landfill appears from the resistivity model to follow 

a line parallel to the y-axis at approximately 100 m NE. The boundary is seen in the near 

surface region of the model (i.e., Figure 7b) as a distinct feature, which corresponds 
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closely with the historic quarry boundary. Given the sharp contrast in the resistivity 

model, and the corroborative evidence provided by the historic OS data, the position 

inferred from the resistivity model is likely to be within a few meters of the landfill 

boundary; however, the accuracy of location of the boundary will not be better than the 

lateral resolution of the resistivity model. The resistivity model confirms that the edge of 

the landfill does not precisely follow the northwesterly striking topographic feature 

running across the survey area shown in Figure 1. As indicated by the historic OS data, 

the area of higher ground defined by approximately 50 to 100 m NE and 0 to 120 m NW 

has at the surface an area of made ground, up to 10 m thick, overlying bedrock. This 

surface layer is clearly defined and labeled in Figures 4 and 5, and is likely to consist of 

quarry spoil. It should also be noted that verification of the dolerite promontory 

extending from the southwestern edge of the quarry at approximately 20 m NW, as 

indicated by the historic boundary position, is provided in the resistivity model as a 

resistive anomaly extending into the quarry at this location (Figure 7a & b).    

The change in physical properties representing the northwestern quarry boundary is 

located at approximately 160 m NW, though compared with the southwestern boundary it 

is a much more gradational feature (Figure 7). The electrically diffuse nature of this 

boundary may be a consequence of leachate infiltration into the bedrock. 

Vertical landfill extent 

Borehole data from the phase III site investigation indicates that the landfill deepens to 

the northwest. This is consistent with the historic OS data (Figure 2), which shows a 

haulage road leading from the quarry’s southern end. The deepening of the landfill to the 

northwest is also seen in the resistivity model (Figure 9a). Borehole records (BH06, 

BH09 and BH11) from within the quarry area indicate that the maximum landfill depth is 
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likely to be approximately 14 to 15 m bgl. However, the conductive anomaly associated 

with the landfill includes resistivities of below 15 Ωm persisting to in excess of 25 m bgl, 

and has no distinct boundary corresponding to the landfill base. The apparent 

overestimation of landfill depth displayed by the resistivity model may be caused by 

leachate migration into underlying bedrock reducing the bedrock resistivities below the 

landfill. In addition, the appearance of greater depth is also likely to be a function of 

decreasing resolution with depth (Chambers et al., 1999; Olayinka and Yaramanci, 

2000), as indicated by the very low model sensitivities in this region shown in Figure 9b.  

The upper limits of the waste within the landfill are not immediately apparent from the 

resistivity images. However, the models do show a relatively resistive surface layer 

above the area of the landfill. This layer appears to fall at a similar level to model 

groundwater levels within the landfill at a depth of approximately 6 to 7 m (Figure 9a). 

Given that intrusive records for BH02 to BH11, and BH13 indicate the presence of a thin 

cap of only a few meters, it is clear that the more resistive zone at the surface is primarily 

a function of saturation state rather than material type. 

Identification of potential leachate migration 

The persistence of the conductive anomaly associated with the landfill to depths well 

below the landfill base provides evidence of leachate invasion into the underlying 

bedrock. However, the resolution towards the base of the model is relatively poor, and 

further groundwater sampling in the formations below the landfill is required to calibrate 

the model in this region. 

Conductive anomalies associated with leachate migration from the southwestern 

quarry boundary are absent from the resistivity model. This finding is in keeping with the 
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groundwater level model (Figure 1b), in which groundwater flow along this boundary is 

shown to be moving into the landfill. 

The anomalies with the greatest potential for association with leachate migration are 

those towards the northwestern boundary of the site. In particular, a conductive zone can 

be seen extending at depth from the landfill below the resistive surface layer in an area 

defined by 100 to 150 m NE and 160 to 205 m NW. This is potentially indicative of a 

zone of leachate migration to the northwest (Figure 7c). This conclusion is supported by 

evidence from borehole R02, in which several meters of sandstone were recorded below 

the sill in this area; sandstone would be expected to display a higher resistivity than that 

shown in the model at this location. Moreover, sandstone could have been exposed in the 

quarry, providing a more permeable pathway for leachate migration from the quarry. 

However, it is also possible that the sandstone is not laterally continuous and this 

conductive zone is associated with the presence of uncontaminated but relatively 

conductive Upper Limestone Formation strata, e.g., mudstone or siltstone units. 

The 2D resistivity model provides no compelling evidence for leachate migration 

across the estimated location of the fault into the field directly to the northwest of the 3D 

survey area (Figure 8). Whilst it is conceivable that the fault could act as either a 

preferential pathway or barrier to groundwater flow, its influence on potential leachate 

migration pathways is not known. 

CONCLUSIONS 

Electrical imaging surveys have been undertaken at a former quarry and landfill site in 

the Midland Valley of Scotland. Data from these surveys have been modeled using 2D 

and 3D L1-norm inversion algorithms; the L1-norm method was shown to be preferable 
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to the L2-norm as it is better able to resolve sharp boundaries between materials with 

strongly contrasting resistivities, such as dolerite and domestic waste.  

The landfill has been identified as a conductive feature, which closely coincides with 

the maximum extent of the quarry indicated by historic OS maps. The landfill base is 

seen in the resistivity models as a gradational interface extending far below the known 

base of the landfill. The low resistivity zone below the landfill base is indicative of 

leachate migration into the bedrock, though further groundwater sampling is required to 

confirm this hypothesis. Uncertainties and ambiguities associated with the interpretation 

of features at greater depth in the resistivity models (e.g. the landfill base) constitute a 

problem common to all ERT models generated from a surface electrode deployment, for 

which resolution decreases exponentially with depth, and reinforces the need for 

interpretation of such models to be carried out in conjunction with suitable ground-truth 

data. 

A conductive zone, potentially indicating contaminated bedrock, extends from the 

northwestern landfill boundary in both the 2D and 3D resistivity models. Intrusive 

investigations have indicated that the direction of groundwater flow across this area of 

the site is approximately northwards, which supports the assertion that ERT has been 

effective in identifying a leachate plume emanating from the landfill. 

Geological structures associated with the site, including the dolerite sill and dike, and 

the fault zones have been successfully imaged using ERT. The sill and dike were 

delineated as high resistivity features relative to the Upper Limestone Formation and the 

waste, whilst the fault zone was distinguished due to the contrasting resistivities of the 

Upper Limestone Formation on its upthrown and downthrown sides. 

In this case the integrated use of ERT and conventional site investigation information 

coupled with the use of 3D visualization and analysis software has led to a far better 
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understanding of the site than could have been achieved using traditional site 

investigation methods alone. 
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LIST OF FIGURES 

Figure 1. (a) Site plan, including ERT survey design and geological map (BGS © NERC 

2005), and (b) the hydrogeological model of the site. The 'Quarry outline (c. 

1950)' is based upon Ordnance Survey material © Crown copyright. All rights 

reserved. Licence Number:100037272 / 2005. 

Figure 2. 3D representation of conventional site data, including borehole logs, surface 

topography (grey mesh), ERT survey line positions (red lines), historic OS data 

and groundwater level model (blue plane). (Ordnance Survey material © 

Crown copyright. All rights reserved. Licence Number:100037272 / 2005) 

Figure 3. (a) Horizontal depth sections through the L1- and L2-norm 3D models at 7.3 m 

bgl (with dashed lines showing quarry boundary from historic OS data), and (b) 

L1- and L2-norm model resistivity variations with depth, and associated 

geological log, at intrusive sample point R02. The resistivity values shown 

were extracted from 3D resistivity models produced from the field data. 

Figure 4. Integrated 3D representation of conventional site data and 3D resistivity model, 

with a northerly aspect. Opaque volumes indicate resistivity values greater than 

50 Ωm. The explanation for the borehole logs is given in Figure 2. 

Figure 5. Integrated 3D representation of conventional site data and 3D resistivity model, 

with a southerly aspect. Opaque volumes indicate resistivity values below 15 

Ωm. The explanation for the borehole logs is given in Figure 2. 

Figure 6. (a) Forward model, designed to simulate a dolerite sill with and without 

conductive overburden, (b) the 2D inverted model result (with an rms error of 

0.5%) generated using synthetic apparent resistivity data from a Wenner-based 
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array, identical to that used for the field survey, and (c) the model sensitivity 

distribution calculated from the Jacobian matrix for the last iteration. 

Figure 7. Horizontal depth sections through the 3D model at (a) 80, (b) 75, (c) 67.5 m 

and (d) 57.5 m above datum respectively. 

Figure 8. 2D resistivity model, with an rms error of 2.3 %, generated from extended 

survey line x = 120 m NE (Figure 1). The explanation for the borehole log is 

given in Figure 2.   

Figure 9. (a) 2D section through the 3D resistivity model at x = 120 m NE. The 

groundwater model is shown as a dashed black line, and the estimated quarry 

geometry is shown by the dashed white line. The explanation for the borehole 

log is given in Figure 2. (b) Sensitivity section without topography, at x = 120 

m NE, calculated from the Jacobian matrix for the last iteration of the 3D 

inversion. 
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