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Abstract—This paper introduces the first robust self-sustained
electrical soliton oscillator. It self-starts by amplifying background
noise to produce a stable train of periodic electrical soliton pulses.
The oscillator is made possible by coupling a nonlinear transmis-
sion line with a unique amplifier that tames the instability-prone
soliton dynamics. Two experimental prototypes, built at the dis-
crete level, fully demonstrate the detailed operation of the circuit.
The soliton oscillator is an electrical analog of optical soliton mode-
locked systems.

Index Terms—Electrical solitons, mode-locking, nonlinear
transmission lines (NLTLs), oscillators, pulse generation, soliton
mode locking, soliton oscillators, solitons.

I. INTRODUCTION

SOLITONS ARE a special class of pulse-shaped waves that
propagate without changing their shape in nonlinear dis-

persive media [1]–[5]. A balancing mechanism between nonlin-
earity and dispersion is responsible for the soliton phenomena.

Nature offers a variety of soliton examples. The first-reported
soliton was a mono-pulse water wave in a narrow canal where
the shallow water possessed both nonlinearity and dispersion
[5], [6]. A mechanical spring-mass lattice can also act as a
nonlinear dispersive medium, propagating solitons in the form
of lattice waves [7], [8]. The optical fiber is yet another example
of a nonlinear dispersive medium where optical solitons are
observed [9].

In electronics, the nonlinear transmission line (NLTL) serves
as a nonlinear dispersive medium that propagates voltage soli-
tons [10], [11]. These electrical solitons on the NLTL have been
actively investigated over the last 40 years, particularly in the
microwave domain, for the generation of sharp pulse [11], [17]
and their application to microwave sampling [11], [18]–[20]. In
these past studies, the NLTL has been predominantly used as
a two-port system where a high-frequency input is required to
generate a sharp soliton output through a transient process.

One meaningful extension of the past two-port NLTL works
would be to construct a one-port self-sustained electrical soliton
oscillator by properly combining the NLTL with an amplifier
(positive active feedback). Such an oscillator would self-start
by growing from ambient noise to produce a train of periodic
electrical soliton pulses in steady state and, hence, would make a
self-contained soliton generator that does not require an external
high-frequency input. While such a circuit may offer a new

Manuscript received May 31, 2005; revised August 6, 2005. This work was
supported in part by IBM under a Faculty Partnership Award, by the National
Science Foundation under ITR Grant NSF-ECS-0313143, by the National
Science Foundation Nanoscale and Engineering Center, and by the Center for
Nanoscale Structures.

The authors are with the Division of Engineering and Applied Sciences,
Harvard University, Cambridge, MA 02138 USA (e-mail: donhee@deas.har-
vard.edu).

Digital Object Identifier 10.1109/TMTT.2005.861652

direction in the field of electrical pulse generation, there has
not been a robust electrical soliton oscillator reported to date,
to the best of our knowledge. While Ballantyne et al. indeed
demonstrated an NLTL-based soliton oscillator [21]–[23], its
oscillations were not always reproducible, lacking robustness
and controllability. The difficulty in constructing the one-port
soliton oscillator arises because the NLTL’s instability-prone
soliton dynamics do not easily lend themselves to standard
amplification techniques.

In this paper, we introduce the first robust electrical soliton
oscillator. This circuit is made possible by combining the
NLTL with a unique amplifier. This amplifier “tames” the
instability-prone NLTL dynamics by utilizing an adaptive bias
control in conjunction with its nonlinear transfer character-
istic. The essential operating properties of our amplifier are
remarkably similar to an amplifier developed by Cutler for
an electrical linear-pulse (nonsoliton) oscillator using a linear
transmission line [24]. Due to the nonlinearity in the NLTL,
however, the signal dynamics and stability/design issues of
our soliton oscillator are fundamentally different from those of
Cutler’s linear-pulse oscillator.

In[25],wehaverecentlyreportedthepreliminaryresultsfroma
megahertzprototypeofoursolitonoscillator.Thepaperpresented
here is a complete account of the novel soliton oscillator concept
with new, extensive experimental verification of its governing
principles and detailed operation using the prototype of [25]. In
addition, a new microwave prototype is demonstrated to illustrate
the generality of the soliton oscillator concept and feasibility
of higher frequency designs. We start by briefly reviewing the
NLTL and its soliton dynamics in Section II as the background.
Section III discusses a feasible soliton oscillator topology and its
instability mechanisms. In Section IV, we describe the operating
principles of our NLTL-based soliton oscillator that circumvents
the instability issues, while the experimental demonstration
is presented in Sections V and VI. Section VII juxtaposes
our soliton oscillator with Cutler’s linear-pulse oscillator to
elucidate their fundamental differences.

II. NLTL AND ELECTRICAL SOLITONS

Here, we briefly review the NLTL and soliton propagation on
the NLTL to provide the necessary background.

As illustrated in Fig. 1(a), an NLTL can be constructed from a
linear transmission line by periodically loading it with varactors,
suchasreverse-biasedpnjunctiondiodesorMOScapacitors[11].
Varactors are nonlinear capacitors whose capacitance changes
with the applied voltage. An NLTL can be alternatively obtained
by replacing linear capacitors of an artificial LC transmission
line with varactors as shown in Fig. 1(b).

The NLTL is a nonlinear dispersive system. The nonlinearity
originates from the varactors. The dispersion arises from the
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Fig. 1. (a) NLTL consisting of a linear transmission line and varactors.
(b) Artificial NLTL. (c) General soliton wave formed on an infinitely long
NLTL, which is a soliton pulse train, also known as a cnoidal wave. (d) The
mono-pulse case.

structural periodicity. If the nonlinearity balances out the disper-
sion in the NLTL, a special type of pulse-shaped voltage wave
can propagate down the line, while maintaining its shape. This is
an electrical soliton [10], [11]. Fig. 1(c) shows a general soliton
wave formed on an infinitely long NLTL, which is a train of pe-
riodic solitons. This waveform is also known as a cnoidal wave
[3]–[5]. There are an infinite number of possible cnoidal waves
that can form on the NLTL by varying the amplitude , pulse
spacing , and the pulsewidth . Initial and/or boundary con-
ditions will determine the specific cnoidal waves that can prop-
agate on the line. Fig. 1(d) shows the special mono-pulse case.

In addition to maintaining their shape, solitons on the NLTL
possess other important properties [3]–[5]. To begin with, a
taller soliton travels faster than a shorter one on the NLTL.
Due to this amplitude-dependent speed, as shown in Fig. 2(a),
a taller soliton originally placed behind a shorter one catches
up with the shorter one and moves ahead of it after a collision.
Another important set of properties is observed in this collision
process. During the collision [middle of Fig. 2(a)], the two
solitons do not linearly superpose (nonlinear collision), and as
a result experience a significant amount of amplitude modula-
tion. After the collision [bottom of Fig. 2(a)], the two solitons
return to their original shapes, however, they have acquired
a permanent time (phase) shift due to the nonlinear collision
shown by the difference in and in Fig. 2(a) (with no time
shift, and would be equal, since the time elapse before and
after the collision is the same). These soliton properties, i.e.,
amplitude-dependent speed, amplitude modulation during the
nonlinear collision, and phase modulation after the nonlinear
collision, make the NLTL dynamics instability-prone, creating
an adverse design environment for the soliton oscillator, as we
will detail later.

Nonsoliton waves can also travel on the NLTL as well, but
only by changing their shape into a soliton(s) in the course

Fig. 2. (a) Hypothetical depiction of amplitude-dependent soliton speeds and
nonlinear soliton collision on an NLTL. d 6= d . (b) Simulated breakup of a
square pulse into multiple solitons on the NLTL. (c) Hypothetical illustration of
a damping soliton on a lossy NLTL.

of propagation. A pulse close to the soliton shape will be
sharpened into a single soliton while shedding extra energy
in the form of a dispersive tail (ringings). A pulse that is
significantly different from the soliton shape will break up
into multiple solitons of different amplitudes and a dispersive
tail. Once a soliton or solitons are formed, they propagate
without further sharpening or breakup. Fig. 2(b) illustrates a
simulated example in which a square pulse input on the NLTL
breaks up into multiple soliton pulses. This soliton-forming
transient behavior has been positively exploited for sharp soliton
pulse generation in the two-port NLTL scheme [11]. In the
one-port NLTL oscillator design, the transient behavior can be
detrimental (see Section III-B) or beneficial (see Section V-E).

Thus far, we have ignored the loss inherent in any practical
NLTL. Therefore, a note should be made about lossy NLTLs
and their dynamics. When a nonsoliton waveform travels down
a lossy NLTL, it will be shaped into a single or multiple solitons
through the sharpening and/or breakup processes, just like in the
lossless case (while losing some energy in the process). Once the
solitons are formed, they do not undergo any further sharpening
or breakup, but do continue to lose energy in the course of
propagation, decreasing in amplitude and speed while increasing
in width, as shown in Fig. 2(c), which is a key signature of a
damping soliton [26]. Although solitons change their shape on
the lossy NLTL due to damping, they remain solitons, exhibiting
the key properties such as amplitude-dependant speed, nonlinear
collision and its aftereffects. It should be also mentioned that
the distinctive dynamics between the soliton’s damping and the
nonsoliton’s breakup/sharpening process provide an important
criterion to determine when a soliton has actually formed on
the lossy NLTL.



RICKETTS et al.: ELECTRICAL SOLITON OSCILLATOR 375

Fig. 3. (a) Ring NLTL. (b) Mode 1 (l = �). (c) Mode 2 (l = 2�). (d) Mode 3
(l = 3�).

III. NLTL SOLITON OSCILLATOR—BASIC TOPOLOGY

AND INSTABILITY MECHANISMS

In this section, we present the basic structure of our NLTL
soliton oscillator and identify its oscillation instability mecha-
nisms. This section serves as a primer for Section IV, where we
describe our working soliton oscillator that overcomes the in-
stability issues.

A. Basic Topology

Let us first consider a closed-loop (ring) NLTL shown in
Fig. 3(a). If only unidirectional propagation is allowed, then the
possible soliton propagation modes (cnoidal wave modes) on
the ring are the ones that satisfy the periodic boundary condi-
tion , [27], where and are the cir-
cumference of the ring and the spacing between neighboring
solitons, respectively [for , refer to Fig. 1(c)]. The first three
soliton propagation modes formed on the ring are shown in
Fig. 3(b)–(d).

Our starting idea to construct an electrical soliton oscillator
is to break the ring NLTL and insert a noninverting amplifier,
as shown in Fig. 4. The purpose of the amplifier is to enable
initial startup from noise and to compensate for system loss in
the steady state (as is commonly done in sinusoidal oscillators,
e.g., [28] and [29]). The ultimate goal is for the circuit of Fig. 4
to self-generate and self-sustain one of the soliton propagation
modes (Fig. 3) of the ring NLTL. The termination in Fig. 4 is
needed to absorb energy: in the soliton oscillator, it is not energy
but rather a voltage signal that circulates around the loop. The
termination of the NLTL is not trivial since its characteristic
impedance varies with signal voltage. A resistor with a value
that is the average of the characteristic impedance seen by a
desired signal is used in our approach. Resulting reflections
from the imperfect termination will be treated as perturbations
in this paper.

Fig. 4. Basic soliton oscillator topology.

Fig. 5. (a) Transfer function of a voltage-limiting amplifier. (b) Simulated
unstable oscillation of Fig. 4 with the voltage-limiting amplifier. (c) Impact of
signal clipping or distortion.

As will be seen shortly, the proposed topology will indeed
lead to an oscillation. However, the oscillation stability depends
strongly on the amplifier characteristics. For the oscillator to
generate a stable soliton pulse train, it is essential for the am-
plifier to “tame” the complex soliton dynamics of the NLTL,
which, unfortunately, is not the case for standard amplification
techniques.

B. Instability Mechanisms

In this section, we examine the dynamics of the circuit in
Fig. 4 with two commonly used amplifiers. This will lead us
to identify the instability mechanisms associated with the os-
cillator, which will be key to constructing our soliton oscillator
discussed in Section IV.

Case I—Voltage-Limiting Amplifier: Let us first consider the
case where a standard voltage-limiting noninverting amplifier is
used in the circuit of Fig. 4. The transfer function of this am-
plifier is shown in Fig. 5(a). The amplifier is biased at a fixed
operating point. Simulations show that the circuit of Fig. 4 in-
deed self-starts into oscillation, but the oscillation is unstable
with significant amplitude and pulse repetition variations, often
tending toward what appears to be a chaotic state, as shown in
Fig. 5(b).

This oscillation instability arises from the signal clipping in
the amplifier in connection with the unique NLTL properties. To
see this, let us assume that a soliton pulse appears at the input
of the amplifier at a certain time [ on the left-hand side of
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Fig. 6. (a) Linear amplifier transfer function. (b) Soliton oscillation of Fig. 4
with the linear amplifier [21]–[23]. (c) Depiction of other possible output
waveforms [21]–[23].

Fig. 5(c)]. This soliton pulse, after passing through the amplifier,
will turn into a square pulse due to the clipping of the amplifier
[ in Fig. 5(c)]. As explained in Section II, this square pulse
will break up into several solitons with different amplitudes
while propagating down the NLTL [see the rightmost wave-
form in Fig. 5(c)]. The multiple soliton pulses will travel at dif-
ferent speeds due to their amplitude-dependant speed, eventu-
ally appearing again at the input of the amplifier. This process
repeats itself, creating many soliton pulses with various ampli-
tudes in the loop. These soliton pulses propagate at different
speeds and continually collide with one another. As discussed
in Section II, these soliton collisions lead to phase/amplitude
modulations making the oscillation unstable

Case II—Linear Amplifier: The discussion above shows that
signal distortion has a negative impact on the oscillation stability,
suggesting that one might be able to attain a stable soliton
oscillation if signal distortion is mitigated. Ballantyne et al.
[21]–[23] implemented such a system by using a linear amplifier
whose transfer function is shown in Fig. 6(a). By using the
linear amplifier and adding additional frequency-dependent loss
to the NLTL, he could produce a periodic soliton pulse train
as illustrated in Fig. 6(b). In the same system, however, other
oscillations uncontrollably appeared with slight changes in
gain, termination, or with external perturbations, indicating
a lack of robustness. These waveforms sometimes contained
multiple solitons with varying amplitudes/spacings and pulses
continuously moved relative to one another and collided (see
Fig.6(c) foradepiction).WhileBallantyne’s systemis invaluable
for providing an opportunity to examine soliton dynamics, it
is not able to reproduce a stable soliton pulse train, which
is the goal of this study.

Identification of Three Instability Mechanisms: Ballantyne’s
work suggests that distortion reduction is a necessary but not a
sufficient condition to completely stabilize the oscillation and
ensure reproducibility. There are two other important instability
mechanisms that we overlooked in the previous arguments.

First, perturbations arising from inherent noise and from re-
flections caused by imperfect terminations can excite various
solitons in addition to the existing desired soliton pulse train.
The perturbing solitons and the desired soliton train do not gen-
erally have the same amplitude (speed) and, therefore, collide
with each other. These collisions cause significant amplitude
and phase modulations, leading to unstable oscillations. Second,

Fig. 7. Our soliton oscillator with the unique amplifier that performs the
adaptive bias control.

unless it is ensured that a single mode is generated every time
(see Fig. 3 for possible mode examples), nonlinear intermode
collisions on the NLTL, which occur due to the modes generally
different amplitudes (speeds) could lead to instability. Summa-
rizing, to attain a stable robust soliton oscillation with the circuit
of Fig. 4, the amplifier should possess at least the following three
capabilities:

1) distortion reduction;
2) perturbation rejection;
3) single mode selection.
Clearly, the voltage-limiting amplifier does not satisfy con-

dition 1). Neither the voltage-limiting amplifier nor the linear
amplifier satisfies 2) or 3), which will become evident in Sec-
tion IV.

IV. NLTL SOLITON OSCILLATOR—WORKING MODEL

Our approach to attain a stable robust soliton oscillation with
the circuit of Fig. 4 was the development of a unique ampli-
fier. The amplifier incorporates an adaptive bias control that
exploits the amplifier’s nonlinear transfer function in order to
allow the simultaneous satisfaction of the three stability require-
ments mentioned above. This section discusses the operating
principle of our amplifier/oscillator.

A. Operating Principle

Our self-sustained soliton oscillator is schematically illus-
trated in Fig. 7. It is exactly the same topology as originally
proposed in Fig. 4 and, interestingly, uses the voltage-limiting
amplifier that was shown with Fig. 5 to cause apparently chaotic
oscillations. The critical difference in our amplifier is that we
operate it in a different region of its transfer curve to provide sta-
bility. This is done by using an adaptive bias control to move the
amplifier bias point as the dc component of the amplifier output
( in Fig. 7) changes. We will postpone the transistor-level
description of the amplifier to Section IV-B. Here, we discuss
how the transfer function of the amplifier together with the
movable bias scheme allows us to simultaneously meet the three
stability requirements.

Fig. 8(a) shows the transfer function of the amplifier. The
transfer curve may be divided into the attenuation, gain, and
voltage-limiting regions. In the attenuation region, the tangential
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Fig. 8. (a) Nonlinear transfer curve of our amplifier. In the initial startup,
bias point A lies in the gain region. (b) DC component of V increases
as the oscillation grows and forms into a soliton pulse train. (c) Increased
dc component is used to lower the bias point of the amplifier, leading to a
steady-state bias point B. (d) Mode-dependent steady-state bias.

slope at any point is less than 1 while in the gain region it is always
greater than 1. In the voltage-limiting region, the tangential slope
is also less than 1 but was termed the “voltage-limiting region”
due to the clipping of large input voltages that fall in the region.

Initially, the amplifier is biased at A in the gain region, which
allows startup from ambient noise. As the oscillation grows and
forms into pulses, the dc component of steadily increases

as illustrated in Fig. 8(b). The amplifier uses this increase in
the dc component to lower its bias point, as is indicated with
the broken arrow along the nonlinear transfer curve in Fig. 8(c).
The reduced bias corresponds to a net overall gain reduction,
since a portion of the pulse enters the attenuation region, thereby
reducing the amount of the pulse that receives gain. The bias
point keeps moving down on the transfer curve to the steady-
state bias point B in the attenuation region, where the net overall
gain of the amplifier becomes equal to the loss in the system.
This adaptive bias control resolves all three issues mentioned in
Section III-B.

Distortion Reduction: In the steady state shown in Fig. 8(c),
the input bias has been sufficiently reduced so that the peak
portions of the input and output pulses do not go into the
voltage-limiting region of the amplifier transfer curve, thereby
preventing significant signal distortion.

Perturbation Rejection: In the steady-state shown in
Fig. 8(c), small perturbations at the input of the amplifier are
attenuated at the output since they fall in the attenuation region
of the transfer curve. This perturbation rejection is possible
since the steady-state bias point B has been reduced into the
attenuation region. However, the higher portions of the pulses
lying in the gain region still receive enough gain to compensate
loss.

This threshold-dependent gain-attenuation mechanism vital
for stabilizing our soliton oscillator has been actually widely
employed in optical mode-locked systems where it is known as
saturable absorption [30], [31]. The saturable absorption tech-
nique has seen limited use in the electrical domain, and there
only for linear-pulse oscillators [24], [32] (see Section VII).

It should be noted that we avoid the nonlinearity across the
gain and voltage limiting regions in distortion reduction, but
exploit the nonlinearity across the attenuation and gain regions
for perturbation rejection.

Single Mode Selection: The single-mode selection is also
made possible by the adaptive bias control. Since a higher mode
has a higher dc component and correspondingly a lower steady-
state bias due to the adaptive bias control [see Fig. 8(d)], the
higher mode receives a lower gain. One can take advantage
of this mode-dependent gain to select a particular mode. Only
those modes with sufficient gain to overcome the loss of the
system can be sustained in steady-state oscillations. When more
than one mode has sufficient gain, only the highest mode is
stable since any small perturbation to a lower mode will grow
into a soliton, resulting in a higher mode oscillation. Conse-
quently, the mode-dependent gain allows only one soliton prop-
agation mode.

B. Example Amplifier Implementation

The amplifier concept described in the previous section is
general and has a variety of different possible implementations.
To provide an example of how to achieve the necessary ampli-
fier functionality, we describe a specific amplifier implementa-
tion with MOS transistors (see Fig. 9) used in our low megahertz
soliton oscillator prototype (see Section V). The amplifier con-
sists of two inverting stages: one built around an nMOS tran-
sistor, M1, and the other built around a pMOS transistor M2.
Together they form an overall noninverting active network. The
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Fig. 9. Example amplifier implementation used.

adaptive bias scheme is implemented for both inverting stages. It
functions as follows for the pMOS stage. The output waveform

is sensed by the voltage divider consisting of the two resis-
tors and and then is integrated by the - low-pass
filter. The integrated voltage represents a scaled dc compo-
nent of the waveform . This dc component is fed back to the
gate of M2 to set its bias. As the dc level of increases, will
rise with respect to ground. The increase in corresponds to
a reduction in the gate–source voltage of M2, effectively low-
ering its bias. A similar argument applies to the nMOS stage.
Combining the two stages, the bias of the amplifier at the input
is reduced as the dc component of increases, performing the
adaptive bias control described in the previous section.

V. EXPERIMENTAL VERIFICATION—LOW

MEGHAERTZ PROTOTYPE

To demonstrate the concept of the electrical soliton oscil-
lator, a low megahertz prototype shown in Fig. 10 was first con-
structed at the discrete board level (a microwave prototype will
be presented in Section VI). In this prototype, lower frequency
contents (the soliton pulse repetition rate of around 1 MHz and
the soliton pulsewidth of about 100 ns) are chosen to facilitate
the explicit oscilloscope measurement of various circuit nodes
for rigorous proof of concept. An artificial NLTL consisting of
discrete inductors and varactors (pn junction diodes) is used.
The prototype produces a stable soliton pulse train after an ini-
tial pulse-forming transient process. In the following, we present
a sequence of measurements that attest to the validity of the pro-
posed circuit concept and design approach.

A. Adaptive Bias Control

Fig. 11(a) shows the voltage signal measured at the output
of the amplifier during the oscillation startup transient, while
Fig. 11(b) is the corresponding measured bias adjustment in the
amplifier. As the oscillation grows and forms into soliton pulses,
the amplifier self-adjusts to lower its bias according to the adap-
tive bias control scheme explained in Section IV-A. The bias
point eventually settles to B, where the net overall gain of the
amplifier becomes equal to the system loss. Fig. 8(c) is repeated
in Fig. 11(c) for convenience and hypothetically illustrates the

Fig. 10. Low megahertz soliton oscillator prototype.

Fig. 11. (a) Measured voltage signal at the output of the amplifier during the
oscillation startup transient. (b) Measured bias response V (t) of the amplifier
(V (t) is with reference to Fig. 9) filtered by the oscilloscope with a 500-kHz
bandwidth. V (t) and V (t) in the amplifier of Fig. 9 have the same dc
component. (c) Redrawing of Fig. 8(c).

bias adjustment in the transient process. Note that the bias ad-
justment exhibits an under-damped response.

B. Startup Soliton Dynamics

Fig. 12 shows a detailed view of the oscillation startup mea-
sured at the eighth section on the NLTL (a total of 22 LC sec-
tions were used in this specific experiment to best illustrate
the startup dynamics). The oscillator starts by amplifying am-
bient noise creating a small oscillation, eventually growing into
a steady-state soliton pulse train. During this process, another
competing mode is clearly seen: it first grows with time, but is
eventually suppressed by the stabilizing mechanism of the am-
plifier. In the figure, one can also observe that the shorter pulse
(competing mode) propagates at a different speed than the taller
pulse (main mode that survives): in this time-domain measure-
ment at the fixed point on the NLTL, the shorter pulse originally
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Fig. 12. Measured startup transient.

Fig. 13. Input–output measurements of the stand-alone amplifier biased at B.

behind the taller pulse catches up with the taller pulse and even-
tually moves ahead of it after collision. In the space domain,
this corresponds to the taller pulse propagating faster than the
shorter pulse, which is a key signature of solitons on the NLTL
as explained in Section II.

C. Perturbation Rejection

Fig. 13 shows input–output measurements of the stand-alone
amplifier when the amplifier is biased at its steady-state bias
point B. The test input signal consists of two main pulses and
perturbations between them. The perturbations are significantly
attenuated at the output of the amplifier while the main pulses
are amplified, due to the threshold-dependent gain-attenuation
mechanism (e.g., saturable absorption, see Section IV-A). Note
that, in addition to the perturbation attenuation, the amplifier
has sharpened the main pulses. This is because the saturable
absorption mechanism attenuates the lower portion of the input
main pulses while amplifying their higher portion.

D. Steady-State Soliton Oscillation

Fig. 14(a) shows a steady-state soliton pulse train measured
at the eighth section on the NLTL (30 LC sections in total). This
waveform corresponds to the mode (Mode 1) shown in
Fig. 3(b): at this mode, there exists only one pulse propagating
around the NLTL. The measured period for this partic-
ular mode was 1.3 s.

By tuning the gain (bias), the mode (Mode 2) os-
cillation shown in Fig. 14(b) was controllably obtained. This
mode corresponds to the mode (Mode 2) shown in
Fig. 3(c), where two pulses copropagate in the NLTL. The mea-
sured period for this mode was 0.7 s. It is noteworthy
that while . This is
because the two modes have different amplitudes and, hence,

Fig. 14. Measured stable soliton oscillation in steady state. (a) l = �

oscillation. (b) l = 2� oscillation.

propagate at different speeds, which is another signature of the
soliton propagation.

In both oscillation modes, the amplitude and pulse repetition
rate remained stable and showed no discernable variation. Even
when deliberately perturbed with large external signals, the os-
cillation always returned to the same steady-state soliton pulse
train. Additionally, for a given set of circuit parameters, every
start-up led to the same steady-state oscillation. These experi-
ments demonstrate the level of robustness and controllability as
found in traditional sinusoidal oscillators.

E. Spatial Dynamics in the Steady State

Fig. 15 shows the steady-state waveforms of the oscillator
measured at three different positions on the NLTL. This exper-
iment elucidates how the pulse shape changes as it circulates
in the oscillator. The pulse at the output of the amplifier is not
an exact soliton and, hence, sharpens into a soliton propagating
down the NLTL. Once the soliton is formed at the eighth section,
it exhibits damping soliton dynamics [26] as it further travels
down the NLTL due to the loss, lowering in amplitude and ve-
locity while increasing in width, as was explained in Section II.
It is this clear existence of the transition point (eighth section)
between the pulse sharpening and the stable damping that con-
firms the formation of the soliton at that transition point.

The measurement in Fig. 15 also shows that the amplifier
sharpens the pulse from 110 ns FWHM to 100 ns FWHM. This
narrowing by the amplifier is due to the saturable absorption, as
mentioned earlier. However, it is important to note that, in our
oscillator, the pulse sharpening by the NLTL (from 100 to 43 ns)
is much more significant than the sharpening by the amplifier.

VI. EXPERIMENTAL VERIFICATION—MICROWAVE PROTOTYPE

The soliton oscillator concept is general and the oscillator
can be, in principle, scaled in frequency. To illustrate the fre-
quency scalability of the circuit and demonstrate the design fea-
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Fig. 15. Measured steady-state soliton oscillation at various points. Pulsewidth
measured is the pulse full-width at half-maximum (FWHM) amplitude.

Fig. 16. Microwave soliton oscillator prototype.

sibility in the microwave region, the second prototype shown in
Fig. 16 was constructed at the discrete board level. This proto-
type generates frequency content whose substantial portions lie
in a lower microwave region. The amplifier in the microwave
prototype is realized with RF bipolar transistors and performs
the adaptive bias control on its nonlinear transfer curve, oper-
ating similarly to the MOS amplifier (see Section IV-B) used for
the low megahertz prototype. An artificial NLTL is used where
pn junction diodes are utilized as varactors.

The steady-state soliton oscillation from the second prototype
is measured using an Agilent 54855A real-time oscilloscope and
is shown in Fig. 17(a). A periodic soliton pulse train is clearly
seen. The soliton pulse repetition rate is 130 MHz (which is
inverse of the pulse repetition period 7.7 ns) while the soliton
pulsewidth is 827 ps FWHM, which corresponds to a frequency
well into the microwave region. The corresponding power spec-
tral density (PSD) of the steady-state signal measured using the
PSD measurement capability of the oscilloscope is shown in
Fig. 17(b). The fundamental frequency of 130 MHz corresponds
to the soliton repetition rate, as mentioned earlier. The signifi-
cant harmonic content above 130 MHz is what determines the
narrow soliton shape.

This prototype has demonstrated that the general soliton os-
cillator concept can be realized in a low microwave region. Im-
plementations of the electrical soliton oscillator at even higher
frequencies (possibly at a chip scale) would be a natural future
extension of this study.

Fig. 17. Steady-state soliton oscillation from the microwave soliton oscillator
prototype. (a) Time-domain (oscilloscope) measurement. (b) PSD obtained
from the oscilloscope’s PSD measurement capability.

VII. COMPARISON WITH CUTLER’S WORK

In 1955, Cutler constructed a linear-pulse oscillator utilizing
a circuit that has a similar topology as that in Fig. 4, but with
a linear transmission line instead of the NLTL [24]. His ampli-
fier, while based on vacuum tubes, incorporated the saturable
absorption technique derived from a similar adaptive bias con-
trol. Cutler’s work indeed marks the invention of the saturable
absorption technique, while the name was coined later in op-
tics [31]. Despite the fact that the basic operating principles of
our amplifier and Cutler’s amplifier are similar, Cutler’s linear-
pulse oscillator and our soliton oscillator have fundamentally
different signal dynamics and design issues, as well as different
physical implementations.

The most remarkable difference in design lies in the stability
requirement. To stabilize oscillations, both oscillators rely on
their amplifiers. However, our soliton oscillator has a much
stronger tendency toward instability due to the nonlinear prop-
erties of the NLTL, as detailed in Section III-B. While noise and
reflections are common sources of instability in both oscillators,
nonlinear collisions and pulse breakup are unique features in
the NLTL and are more difficult to stabilize. In addition, the
reflections cannot be totally eliminated in the NLTL because
of its voltage-dependent characteristic impedance. Therefore,
the soliton oscillator demands significantly more from the
amplifier’s stabilizing function.

The signal dynamics of the two oscillators are significantly
different as well. In Cutler’s linear-pulse oscillator, the sharp-
ening of the linear pulses is entirely executed by the amplifier
through its saturable absorption function (as mentioned ear-
lier, the saturable absorption performs not only perturbation
rejection but also pulse sharpening). In our soliton oscillator,
however, the NLTL is the dominant shaping and sharpening
mechanism. Fig. 15 clearly shows that the sharpening by the
NLTL is much more significant than that of the amplifier.
Additionally, the sharpening-damping transition described in
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Section V-E clearly demonstrates the unique properties of pulse
propagation in the soliton oscillator, which cannot be seen in
Cutler’s linear oscillator.

A historical reflection of the development of the saturable
absorption technique may provide another perspective into the
relation between ourand Cutler’s work.While born in electronics
by Cutler in 1955, the saturable absorption technique was
soon adopted into optics in 1966 [31] for optical linear-pulse
oscillators, receiving its popular name, saturable absorption.
After the discovery of the optical soliton [9], the technique was
further developed in 1992 to enable optical soliton oscillators,
e.g., fiber ring laser [33], [34]. The development of the saturable
absorption technique in optics has paved the way for the
expansive field of optical mode-locking [30]. In contrast, the
saturable absorption technique has been rarely applied in its
native electronics domain to the best of the authors’ knowledge,
with its application limited to a few electrical linear-pulse
oscillators [24], [32]. The work presented in this paper makes
the transition from the electrical linear-pulse oscillator to the
electrical soliton oscillator, mirroring the transition already
made in optical mode locking.

VIII. CONCLUSION

In this paper, we presented the first robust electrical soliton
oscillator with full experimental demonstration. The oscillator
is a one-port system that self-generates a periodic soliton pulse
train from ambient noise. The soliton oscillator consists of an
NLTL and a nonlinear amplifier utilizingan adaptive bias control.
The NLTL is responsible for soliton formation. The amplifier is
responsible for the initiation of startup, compensation of loss,
and stabilization of oscillation in the steady state. The soliton
oscillator is a direct analog of the optical soliton mode-locked
system such as a fiber ring laser.

The focus of this paper was on the introduction of the new
soliton oscillator concept and not a specific design at a certain
frequency. The two prototypes presented in this paper demon-
strated that the concept is general and scalable in frequency.
This work henceforth lays the foundation for further study of
electrical soliton oscillators (electrical soliton mode locking).
Implementations of the soliton oscillator at a chip scale to achieve
a higher speed performance (narrower pulsewidth) will be the
most significant engineering direction. The electrical soliton
oscillators may add a valuable direction in the field of high-speed
metrology and microwave sampling [18]–[20].
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