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The electron spins of semiconductor defects can have complex interactions with their host, particularly
in polar materials like SiC where electrical and mechanical variables are intertwined. By combining pulsed
spin resonance with ab initio simulations, we show that spin-spin interactions in 4H-SiC neutral
divacancies give rise to spin states with a strong Stark effect, sub-10−6 strain sensitivity, and highly
spin-dependent photoluminescence with intensity contrasts of 15%–36%. These results establish SiC color
centers as compelling systems for sensing nanoscale electric and strain fields.

DOI: 10.1103/PhysRevLett.112.187601 PACS numbers: 76.30.Mi, 42.50.Ex, 71.70.Ej

Silicon carbide is increasingly recognized as a potential
material host for quantum-information and sensing tech-
nologies that leverage advanced semiconductor processing
alongside solid-state spin control [1–9]. Much like nitrogen-
vacancy (NV) centers in diamond [10], neutral diva-
cancies in SiC have ground-state electronic spins [1,2]
that exhibit optical addressability [11–14] and long spin-
coherence times that persist up to elevated temperatures,
even up to room temperature for certain defect forms [5,7].
The NV center in diamond is currently being developed for
applications ranging from quantum communication [15] to
nanoscale nuclear magnetic resonance [16,17]. The exten-
sive uses of SiC in industry, including wafer-scale growth
[18], high-power devices, and substrates for epitaxially
grown GaN [19] and graphene [20], could propel such
applications and many others [21–23] forward. Underlying
the success of such advancements will be an improved
understanding of how spins in semiconductor defects
interact with their host crystal.
In this Letter, we demonstrate that the spin states of

neutral divacanices and related defect states in 4H-SiC are
highly sensitive to electrical and mechanical perturbations
of their host. Their electric field response is 2–7 times
stronger than that [24,25] of NV spins in diamond, and they
exhibit significant spin-dependent photoluminescence (PL)
contrast for high-fidelity spin readout. Moreover, ac strain-
sensing protocols demonstrated here lead to an optimized
sensitivity projected to be in the 10−7=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Hz · N
p

range,
where N is the number of interrogated spins. Although
electric- and strain-field effects on SiC spins are interrelated
due to SiC’s piezoelectricity, our ab initio simulations
disentangle these two effects and attribute the strong spin
response to electric fields to the high electron polarizability

in SiC. Because our techniques are based on point defects
and measure intrinsic quantities, their applicability extends
down to the nanometer scale. In the future, they could be
applied towards sensing intracellular electric fields, inte-
grating nanoscale sensing into SiC bioelectronics [26], or
coupling spins to SiC nanomechanical resonators [27].
Neutral divacancies, consisting of neighboring C and Si

vacancies, exist in four inequivalent forms in 4H-SiC,
distinguished by whether vacancies are located on the
hexagonal (h) or quasicubic (k) lattice sites [5]. These
forms have been alternatively labeled as PL1–PL4 [5,7],
P6=P7 centers (in electron paramagnetic resonance studies)
[1,2,28], and the UD2 lines (in PL studies) [12]. Their
electronic ground states are spin triplets and described by
the Hamiltonian [24,29]:

H ¼ hDσ
2
z þ gμBσ ·B − Exðσ2x − σ

2
yÞ þ Eyðσxσy þ σyσxÞ;

(1)

where the defect axis is aligned along z, h is Planck’s
constant, g ¼ 2.0 is the electron g factor, μB is the Bohr
Magneton, σ is the vector of spin-1 Pauli matrices, B is the
magnetic field, and D, Ex, and Ey are the zero-magnetic-
field splitting parameters. These terms can be expanded as
D¼D0 þ d∥Fz þ e∥εz and Ex;y ¼ E0

x;yþ d⊥Fx;y þ e⊥εx;y;
where the D0 and E0

x;y terms are the crystal-field splittings
in the absence of applied strain and electric fields, d∥ and
d⊥ are the Stark-coupling parameters of the ground-state
spin to an electric field (F) that is, respectively, parallel and
perpendicular to the defect axis, e∥ and e⊥ are the strain-
coupling parameters, and ε is the effective strain field
defined in Ref. [29]. PL1 and PL2 (the hh and kk
divacancies, respectively) are oriented along the SiC
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c axis and have C3v symmetry (i.e., E0
x;y ¼ 0). PL3 and

PL4 (the hk and kh divacancies, respectively) are oriented
along basal planes, at 109.5° from the c axis. This
orientation reduces their symmetry to C1h, resulting in
nonzero E0

x;y and thus broken degeneracy between all three
spin sublevels at zero magnetic field.
Our experiments use high-purity semi-insulating 4H-SiC

wafers, purchased from Cree Inc., in which neutral diva-
cancies are incorporated during crystal growth. We thinned
500 μm-thick chips of SiC down to 50 μm-thick mem-
branes and used epoxy to mount them on top of piezo
actuators, which are, in turn, mounted to copper cold
fingers for cryogenic operation. The neutral divacancies’
zero-phonon line (ZPL) optical transitions can be seen as
peaks in their PL spectra [12] when we illuminate a SiC
membrane with 1.27 eV light at a temperature T ¼ 20 K.
Each inequivalent divacancy has a distinct ZPL energy
ranging from 1.0 − 1.2 eV. In addition, two other observed
species (labeled PL5 and PL6) have similar optical and spin
transition energies to the neutral divacancies [5], but the
defects with which they are associated have not been
identified.
Microwave radiation for electron spin resonance is

supplied by waveguide antennae on the chip or below
the sample [5,7]. The piezo actuation applies tensile
strain to the SiC membrane transverse to the c axis
[Fig. 1(a)], an estimated 5 × 10−7 strain=Vpiezo � 40%
(see the Supplemental Material [30]), where Vpiezo is the
voltage applied to the piezo. Controls assure that electric
fields within the measurement volume due to Vpiezo are too
weak to interfere with any measurements.
As strain is applied, the energy of each defect species’

ZPL splits and shifts as much as 2.3 meV, or 550 GHz

[Fig. 1(b)]. The ZPLs corresponding to the c axis-oriented
defects bifurcate, with the two resulting branches having
orthogonally polarized PL [Fig. 1(c)]. This splitting,
approximately 12 eV=strain, reflects the reduction of the
C3v symmetry of the c axis-oriented defects, whose doubly
degenerate excited state orbitals at zero strain are predicted
[2] to closely match the structure of NV centers in
diamond [31,32]. In contrast, the basal-oriented defects
have highly split ZPLs even at zero strain due to the crystal
field. Each ZPL branch of the basal-plane-oriented defects
trifurcates as strain is applied, with the polarization from
each branch offset by 120°. This splitting indicates that, as
expected, strain breaks the symmetry between orientations
of defects in the basal plane that are equivalent at zero
strain.
Applying transverse strain to the SiC membrane also

shifts the defect’s electronic spin transition energies. We
measure these shifts with optically detected magnetic reso-
nance (ODMR). Here, we read out the ground-state spin by
exploiting the defects’ spin-dependent (ms ¼ 0 vsms ¼ �1)
PL intensity (I) and monitoring the changes to IðΔIÞ as an
applied microwave field rotates spins via electron spin
resonance [5,7]. The ΔI resonances as the frequency of the
applied microwave field is swept correspond to spin
transition energies [Fig. 2(a)].
As we apply uniaxial strain transverse to the c axis, the

average frequency of the two Δms ¼ �1 spin transitions
shift [Fig. 2(a)], corresponding to a D-term shift of the spin
Hamiltonian (Eq. 1). Although we observe dc spin reso-
nance shifts of up to 0.8 MHz, the resolution of dc-strain
detection [29] is constrained by relatively broad 1=T2

�

spin-resonance linewidths, where T2
� is the inhomo-

geneous spin-dephasing time (1.5 μs for these defects [5]).
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FIG. 1 (color). (a) A 4H-SiC membrane is epoxied to the top of a piezo actuator, which applies strain to the SiC membrane as it
stretches. (b) PL spectra as a function of Vpiezo (strain) at T ¼ 20 K, showing that the optical transitions of SiC defects can be tuned with
strain. The applied strain splits the ZPL optical transitions, with the c axis-oriented defects (PL1, PL2, and PL6) bifurcating and the
basal-oriented defects (PL3, PL4, and PL5) trifurcating. (c) Polarization dependence of the PL from the strain-split ZPL branches,
measured at the points indicated by purple circles in (b). The analyzed polarization is in the plane perpendicular to the c axis.
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We developed an ensemble ac sensing technique that
leverages the much longer homogeneous coherence time
(T2) of SiC divacancies (up to 360 μs [7]) to enable more
sensitive strain measurements. Here, a Hahn-echo pulse
sequence is applied between ms ¼ 0 and one of the
ms ¼ �1 spin states [7,24,33]. During the free precession
segment (of total length tfree) of this sequence, a synchron-
ized strain perturbation (generated by�Vpiezo applied to the
piezo) causes a strain-induced phase to accumulate between
the ms ¼ 0 and ms ¼ �1 spin superposition (Fig. 2(b) and
[30]). The final pulse of the Hahn-echo sequence projects
this strain-induced phase shift into a spin population
difference and, thus, a measurable ΔI. We normalize ΔI
by ΔIHahn, the Hahn-echo signal strength with no strain
applied. As strain is increased, ΔI oscillates [Fig. 2(c)]
according to this phase shift, demonstrating coherent spin-
based strain sensing.
Despite the large uncertainty in our strain calibration, we

infer that the spin transitions of PL1–PL4 exhibit strain
shifts approximately ranging from 2 − 4 GHz=strain, and
that our ensemble measurements demonstrate sub-10−6

strain sensitivity after averaging for two minutes per
point. In an ideal measurement, with high optical collection
and small background PL, ac strain sensing with neutral
divacancies has a projected sensitivity in the 10−7=

ffiffiffiffiffiffiffiffiffiffiffiffiffi

Hz · N
p

range (see the Supplemental Material [30]). Optical inter-
ferometry is a more precise technique for sensing strain
in bulk samples, but it relies on measuring mechanical
displacement (with sensitivities down to the 10 − pm level
[34]). Spin-based strain sensing should, thus, be a com-
petitive technique for measuring strain in micro- and
nanostructures, where absolute displacements are
extremely small, as well as in applications involving full
tensor-strain measurements [32].
Tomeasure the SiC spin states’ response to electric fields,

we use the same pulse sequence as for strain measurements
(Fig. 2(b) and Ref. [24]), substituting a c axis-oriented
voltage applied across the SiC membrane (Vmem) for piezo-
induced strain [Fig. 3(a)]. As in Fig. 2, ΔI oscillations are
observed, in this case with increasing Vmem, which corre-
spond to electric field-induced phase shifts of the spin
superposition [Figs. 3(b) and 3(c)]. The basal-oriented
defect spins primarily couple to the c axis electric field
via d⊥ (i.e.,E term shifts in Eq. 1), resulting in mirror-image
ΔI oscillations from the two Δms ¼ �1 spin-transition
frequencies [Fig. 3(b), left] as they are split by the electric
field. The c axis-oriented defects have slowerΔI oscillations
[Fig. 3(c)], indicating that their d∥ parameter (Table I)
is significantly smaller than d⊥ for the basal-oriented
defects.UsingPL5,which exhibits strong room-temperature
ODMR, we show that SiC defect spins can sense
electric fields at room temperature [Fig. 3(b), right].

(b)
RF

light

π/2π/2 π

t
pulse

/2

t
free

/2V
piezo

(a) (c)

V
piezo

 (V)

∆
I/

∆
I H

a
h

n

1.3 1.305 1.31
0.2

0.4

0.6

0.8

1

Frequency (GHz)

∆
I/

I 
×
 1

0
4 V

piezo
= -150 V

V
piezo

= 150 V

PL2 (kk)

0 5 10 15

−0.5

0

0.5

1

1.5

2

2.5

3

PL1 (hh)

PL2 (kk)

PL4 (kh)

PL3 (hk)

time
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0.8 MHz shift to the PL2 spin transition energies is observed,
with the split peak within each curve due to a stray B field of
0.35 G. (b) The Hahn-echo pulse scheme used for T2-limited ac
strain sensing. During the tfree evolution periods, �Vpiezo pulses
phase shift the spin superposition. The final pulse of the Hahn-
echo sequence projects this phase onto a measurable spin
population difference. (c) ac strain sensing data for the neutral
divacancies, with tfree ¼ 100 μs, tpulse ¼ 80 μs, T ¼ 20 K, and
B ¼ 0. The fits are to single exponentially decaying sine curves
and have frequencies of 0.07 V−1, 0.07 V−1, 0.12 V−1, and
0.16 V−1 for PL1–PL4, respectively. The three curves are offset
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Room-temperature sensitivity is a significant property for
future applications such as biosensing.
An important parameter for high-fidelity sensing is the

ODMR contrast (Cdefect) between spin states, defined as the
fractional change in PL due to an optically polarized spin
population being flipped by Δms ¼ �1. We use spectrally
resolved ODMR measurements to measure Cdefect from
ZPLs [Fig. 4(a)], avoiding interference from back-
ground PL. Instead of applying π pulses to flip spin states,
we mix the spin populations with strong continuously
applied microwave radiation and weak laser illumination.

Calculating Cdefect from the measured fractional change in
PL intensity (ΔImixed=I) requires detailed knowledge of
spin mixing dynamics, but we use 3=2 × ΔImixed=I as a
conservative lower bound for Cdefect [30], which is found
to range from 0.15–0.21 for the neutral divacancies
(PL1–PL4), and from 0.33–0.36 for PL5 and PL6 at
20 K. These high Cdefect values are comparable to that
for the NV center in diamond, whose optimized ODMR
contrast is typically around 0.3 [35,36]. The optical life-
times of the SiC divacancies, another important quantity for
spin readout, is found to range from 12–15 ns [Fig. 4(b)],
also comparable to that for NV centers in diamond [35].
These favorable ODMR characteristics make SiC defects
compelling systems for precision sensing.
In order to understand the interplay between strain-and

electric field-induced spin shifts in SiC, we carry out
ab initio density-functional calculations of the zero-field
splitting parameters in the ground-state Hamiltonian, along
with electric- and strain-field perturbations to them. Since
our simulations calculate spin-spin interactions between
electrons localized to the defects but neglect spin-orbit
coupling, we focus on the c axis-oriented divacancies,
whose C3v symmetry implies low spin-orbit coupling. Our
simulation methodology [30] provides excellent agreement
with the ground state D0 values for the c axis-oriented
divacancies in 4H-SiC as well as for the NV center in
diamond (within 1.5%). As a corroboration for our sim-
ulation methods, we also verify the change in zero-field
splitting due to external pressure acting on NV center in
diamond (10.3 MHz=Gpa (cryogenic) calculated vs
14.6 MHz=Gpa (room-temperature) experiment [29]).
The experimental observation that tensile and compres-

sive strain perpendicular to the c axis primarily shifts the D
term of the Hamiltonian for the c axis oriented defects
[see Fig. 2(a)] is supported by simulations. These show that
this strain causes only a small deviation fromC3v symmetry
for the defect’s electronic orbitals, with their spin exhibiting
a correspondingly small Ex;y term but a larger D shift of
7 GHz=strain, neglecting Poisson effects. These magni-
tudes are comparable to the experimentally determined
(2 − 4 GHz=strain) values, but both are only order-of-
magnitude estimates. For c axis-oriented strain, a D shift
of 5 GHz=strain is calculated.
The measured electric field-spin coupling coefficients

are consistently found to be higher than those [24,25] for
the diamond NV center, up to 1.9x higher for d⊥ and 7.6x
higher for d∥ (Table I). While our simulations overestimate
d∥ in both SiC and diamond, they accurately corroborate
(within 30%) the experimentally observed relative
enhancement of d∥ for neutral divacancies in SiC over
that for diamond NV centers.
Two physical effects contribute to d∥. First, electric fields

distort the positions of atoms in the SiC lattice neighboring
the divacancy. Second, electric fields shift the electron
distribution surrounding the defect. Although these effects

TABLE I. Experimentally measured and calculated Stark
parameters for the PL1–PL6 ground-state-spin Hamiltonians in
4H-SiC, in units of hHz cm=V and a comparison to those for the
NV center in diamond, with Ref. [25] used as an experi-
mental reference for the diamond NV center. The experimental
(calculated) values of d∥ are compared to the experimental
(calculated) value for the diamond NV center. The rightmost
column is d∥ calculated with only distorted ions due to the
piezoelectric effect, i.e., without any extra charge polarization.
The experimental uncertainty for the SiC data is 5%.

Experiment Theory
Defect/Configuration d⊥ d∥ d∥ d∥

a

NV center 17 0.35 0.76
PL1 (hh) 2.65 5.2 0.38
PL2 (kk) 1.61 4.2 0.23
Ratio of PL1:NV 7.6∶1 6.8∶1 0.5∶1
Ratio of PL2:NV 4.6∶1 5.5∶1 0.3∶1
PL3 (hk) 32.3 <3 0.41
PL4 (kh) 28.5 0.44 0.79
PL5 32.5 < 3

PL6 0.96
aCalculated with only atom-distortion effect
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FIG. 4 (color). (a) A plot of the ZPL intensity of PL4 without
microwave radiation (blue curve) and the change in PL when
strong microwave irradiation is applied to the sample (grey
curve). ΔImixed=I is measured to be −0.10, þ0.11, −0.14, −0.10,
−0.24, and −0.22 for PL1–PL6, respectively. (b) Time-resolved
PL from PL4 as a function of delay from an excitation laser pulse
(blue dots). The decay constant of the exponential fit (black) is
the optical lifetime (τ).T ¼ 20 K,B ¼ 0. See [30] for the calcu-
lation of Cdefect from ΔImixed=I and for the other defect species’
lifetimes and ODMR contrasts.
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occur simultaneously and cannot be distinguished by
experiments alone, simulations can separate the two effects.
By calculating d∥ with a distorted lattice but no extra field-
induced shifts to electron wave functions, we find d∥ to be an
order of magnitude smaller than its value when electric fields
are fully turned on (Table I). Thus, direct field-induced shifts
of electron wave functions are primarily responsible for the
Stark-shift parameters, not the piezoelectric effect.
The enhanced Stark effect of divacancy spins in SiC over

NV-center spins in diamond can be generally understood by
the relative electron polarizability in the two materials. The
polar crystal bonds in SiC have high electron polarizability,
which can be seen by the material’s high (10.0) dielectric
constant. Since defect wave functions derive from dangling
bond orbitals, they inherit this high polarizability. In turn,
this polarizability causes a strong spin response to external
electric fields.
Our results show that the spins of neutral divacancies in

SiC can sensitively detect both strain and electric fields.
They exhibit high optical polarization [7], high intrinsic
ODMR contrasts, and a stronger response to electric fields
than those of NV centers in diamond. In the future,
SiC defects could also be used for temperature sensing
[22,23,37–39], particularly since basal-oriented defects
exhibit first-order insensitivity to magnetic fields.
Moreover, the combination of the spin-strain interactions
measured here and the outstanding electromechanical
properties of SiC [27] makes SiC an excellent material
for coupling spins to mechanical resonators [40]. These
coupled systems could lead to mechanically induced
spin squeezing [41], strong coupling between spins and
phonons, and phonon lasing [42].
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