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Electrically driven electron spin resonance mediated by

spin–valley–orbit coupling in a silicon quantum dot
Andrea Corna 1,2, Léo Bourdet2,3, Romain Maurand1,2, Alessandro Crippa1,2, Dharmraj Kotekar-Patil1,2, Heorhii Bohuslavskyi1,2,4,

Romain Laviéville2,4, Louis Hutin2,4, Sylvain Barraud2,4, Xavier Jehl1,2, Maud Vinet2,4, Silvano De Franceschi1,2, Yann-Michel Niquet2,3 and

Marc Sanquer1,2

The ability to manipulate electron spins with voltage-dependent electric fields is key to the operation of quantum spintronics
devices, such as spin-based semiconductor qubits. A natural approach to electrical spin control exploits the spin–orbit coupling
(SOC) inherently present in all materials. So far, this approach could not be applied to electrons in silicon, due to their extremely
weak SOC. Here we report an experimental realization of electrically driven electron–spin resonance in a silicon-on-insulator (SOI)
nanowire quantum dot device. The underlying driving mechanism results from an interplay between SOC and the multi-valley
structure of the silicon conduction band, which is enhanced in the investigated nanowire geometry. We present a simple model
capturing the essential physics and use tight-binding simulations for a more quantitative analysis. We discuss the relevance of our
findings to the development of compact and scalable electron–spin qubits in silicon.
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INTRODUCTION

Silicon is a strategic semiconductor for quantum spintronics,
combining long spin coherence and mature technology.1

Research on silicon-based spin qubits has seen a tremendous
progress over the past 5 years. In particular, very long coherence
times have been achieved with the introduction of devices based
on the nuclear-spin-free 28Si isotope, enabling the suppression of
hyperfine coupling, the main source of spin decoherence.2 Single
qubits with fidelities exceeding 99% as well as a first demonstra-
tion of a two-qubit gate have been reported.3–5

Finding a viable pathway towards large-scale integration is the
next step. To this aim, access to electric-field-mediated spin
control would facilitate device scalability, circumventing the need
for more demanding control schemes based on magnetic-field-
driven spin resonance. Electric-field control requires a mechanism
coupling spin and motional degrees of freedom. This so-called
spin–orbit coupling (SOC) is generally present in atoms and solids
—due to a relativistic effect, electrons moving in an electric-field
gradient experience in their reference frame an effective magnetic
field. In the case of electrons in silicon, however, SOC is
intrinsically very weak.
Possible approaches to circumvent this limitation have so far

relied either on the introduction of micromagnets, generating
local magnetic field gradients and hence an artificial SOC,6–9 or on
the use of hole spins,10 for which SOC is strong. In both cases,
relatively fast coherent spin rotations could be achieved through
resonant radio-frequency (RF) modulation of a control gate
voltage. While the actual scalability of these two solutions remains
to be investigated, other valuable opportunities may emerge from
the rich physics of electrons in silicon nanostructures.1,11–16

Silicon is indeed an indirect band-gap semiconductor with six
degenerate conduction-band valleys. This degeneracy is lifted in

quantum dots (QD) where quantum confinement leaves only two
low-lying valleys that can be coupled by potential steps at Si/SiO2

interfaces. The resulting valley eigenstates, which we label v1 and
v2, are separated by an energy splitting Δ ranging from a few tens
of μeV to a few meV.17–20 Δ depends on the confinement
potential, and can hence be tuned by externally applied electric
fields.4,21,22 Even if weak,23 SOC can couple valley and spin
degrees of freedom when, following the application of a magnetic
field, EZ ~ Δ, where EZ is the Zeeman energy splitting. It has been
shown that this operating regime can result in enhanced spin
relaxation.3,22,24

Here we demonstrate that it can be exploited to perform
electric-dipole spin resonance (EDSR).25–28 This functionality is
enabled by the use of a QD with a low-symmetry confinement
potential. We discuss the implications of these results for the
development of silicon spin qubits.

RESULTS

The experiment is carried out on a silicon nanowire device
fabricated on a 300-mm diameter silicon-on-insulator (SOI) wafer
using an industrial-scale fabrication line.10 The device, shown in
the schematic of Fig. 1a and in the scanning electron micrograph
of Fig. 1b, consists of an undoped, 30-nm-wide and 12-nm-thick
silicon channel oriented along [110], with n-doped contacts. Two
35 nm-wide top-gates (gate 1 and gate 2), spaced by 30 nm,
partially cover the channel. An additional gate (gate 3) is located
on the opposite side at a distance of 50 nm from the nanowire.
Electron transport measurements were performed in a dilution
refrigerator with a base temperature T = 15mK. At this tempera-
ture, two QDs in series, labeled as QD1 and QD2, can be defined
by the accumulation voltages Vg1 and Vg2 applied to gate 1 and
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gate 2, respectively. The two QDs are confined against the
nanowire edge covered by the gates, forming so-called “corner”
dots,29,30 as confirmed by tight-binding (TB) simulations of the
lowest energy states, whose wave-functions are shown in Fig. 1c.
We tune the electron filling of QD1 and QD2 down to relatively
small occupation numbers n1 and n2, respectively (n1, n2 < 10, as
inferred from the threshold voltage at room temperature and the
charging energy10). The side gate is set to a negative Vg3 = −0.28 V
in order to further push the QD wave-functions against the
opposite nanowire edges.
In the limit of vanishing inter-dot coupling and odd occupation

numbers, both QD1 and QD2 have a spin-1/2 ground state. At
finite magnetic field, B, the respective spin degeneracies are lifted
by the Zeeman energy EZ = gμBB, where μB is the Bohr magneton
and g is the Landé g-factor, which is close to the bare electron
value (g≃ 2) for electrons in silicon.31 In essence, our experiment
consists in measuring electron transport through the double dot
while driving EDSR in QD2. The polarized spin in QD1 acts as an
effective “spin filter” regulating the current flow as a function of
the spin admixture induced by EDSR in QD2. This Pauli blockade
regime can be achieved only when the double dot is biased in a
charge/spin configuration where inter-dot tunneling is forbidden
by spin conservation.32 The simplest case involves the inter-dot
charge transition (n1 = 1, n2 = 1)→ (n1 = 0, n2 = 2), where one
electron tunnels from QD1 into QD2. The two electrons may
indeed form singlet (S) or triplet (T) states. While the singlet S(1, 1)
and triplet T(1, 1) states are only weakly split by exchange
interations and magnetic field and may both be loaded, the triplet
T(0, 2) states remain typically out of reach because they must
involve some orbital excitation of QD2. The system may hence be
trapped for long times in the T(1, 1) states since tunneling from T
(1, 1) to the S(0, 2) ground-state is forbidden by Pauli exclusion
principle.32 This scenario can be generalized to the (n1, n2)→ (n1 −

1, n2 + 1) transitions where n1 and n2 are odd integers. The current
is strongly suppressed unless EDSR mixes T(1, 1) and S(1, 1) by
rotating the spin in QD2.
Because the opposite (0, 2)→ (1, 1) transition (or, more

generically, (n1 − 1, n2 + 1)→ (n1, n2)) is never blocked (there is
always a (1, 1) spin singlet to tunnel to), the Pauli blockade regime
can be revealed by source-drain current rectification.33 Figure 2
presents measurements of the source-drain current, Ids, as a
function of (Vg1, Vg2) in a charge configuration exhibiting Pauli
rectification. Figure 2a corresponds to a source–drain bias voltage
Vds = −2.5 mV and a magnetic field B = 0.7 T. Current flows within
characteristic triangular regions32 where the electrochemical
potential of dot 1, μ1(n1, n2), is lower than the electrochemical
potential of dot 2, μ2(n1 − 1, n2 + 1). The energy detuning ε
between the two electrochemical potentials increases when
moving along the red arrow. Current contains contributions from
both elastic (i.e., resonant) and inelastic inter-dot tunneling. Figure
2b shows that reversing the bias voltage (i.e., Vds = 2.5 mV) yields
the desired Pauli rectification characterized by truncated current
triangles (In Supplementary Note 1 we discuss the presence of a
concomitant valley-blockade effect similar to the one shown by
Hao et al.12).
The extent of the spin-blockade region measured along the

detuning axis corresponds to the energy splitting, ΔST, between
singlet and triplet states in the (n1 − 1, n2 + 1) charge configuration
(which is equivalent to (0, 2)), basically the singlet-triplet splitting
in QD2 (In the case of non-degenerate triplet states at finite B, ΔST

is the splitting with respect to the triplet state, T0, with zero spin
projection along B). We find ΔST = 1.9 meV. Figure 2c, d shows Ids
as a function of B and ε for negative and positive Vds, respectively.
As expected,33 in the non-spin blocked polarity (Fig. 2c) Ids shows
essentially no dependence on B. In the opposite polarity, spin
blockade is lifted at low field (B≲ 0.1 T), due to spin–flip
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cotunneling,34,35 as well as at B = 0.31 T. This unexpected feature
will be discussed later.
We now focus on the spin resonance experiment. To

manipulate the spin electrically, we set Vg1 and Vg2 in the spin
blocked region and apply a microwave excitation of frequency ν
on gate 2. Figure 3a displays Ids as a function of B and ν at constant
power at the microwave source (the power at the sample depends
on ν and is estimated to be −53 dBm≃ 0.7 mV peak at ν ≈ 9.6 GHz).
Several lines of increased current are visible in this plot,
highlighting resonances along which Pauli spin blockade is lifted.
They are labeled A, B, C and V. In the simplest case, spin resonance
occurs when the microwave photon energy matches the Zeeman
splitting between the two spin states of a doublet, i.e., when hν =
EZ = gμBB. We assign such a resonance to line A, because line A
extrapolates to the origin (B = 0, ν = 0). Its slope gives gA = 1.980 ±
0.005, which is compatible with the g-factor expected for electrons
in silicon.31 Also line C extrapolates to the origin but with
approximately half the slope (i.e., gC = 0.96 ± 0.01). We attribute
this line to a second-harmonic driving process.36

We now focus on resonances B and V. The slope of line B is also
compatible with the electron g-factor (gB = 2.00 ± 0.01). However,
line B crosses zero-frequency at BV = 0.314 ± 0.001 T, correspond-
ing exactly to the magnetic field at which the non-dispersive
resonance V appears. Consequently, line B can be assigned to
transitions between spin states associated with two distinct
orbitals. When these spin states cross at BV, Pauli spin blockade is
lifted independently of the microwave excitation leading to the
non-dispersive resonance V (see Supplementary Note 1 for details
on the lifting of spin blockade at BV).
In order to understand the experimental EDSR spectrum of Fig.

3a, we neglect in a first approximation the hybridization between
the two QDs and consider only QD2 filled with one electron. We
have developed a model that accounts for the mixing between
spin and valley states due to SOC. In our silicon nanowire
geometry, the confinement is strongest along the z direction
(normal to the SOI substrate), so that the low-energy levels belong

to the Δ±z valleys. Valley coupling at the Si/SiO2 interface lifts the
two-fold valley degeneracy,1,17–20 resulting in two spin-
degenerate valley eigenstates v1 and v2 with energies E1 and E2,
respectively, and a valley splitting Δ = E2 − E1. The expected energy
diagram of the one-electron spin-valley states is plotted as a
function of B in Fig. 3b (see Supplementary Note 2). The lowest
spin-valley states can be identified as v1; #j i, v1; "j i/ v2; #j i anti-
crossing at B = BV, and v2; "j i (the spin being quantized along B).
From this energy diagram we assign the resonant transitions
observed in Fig. 3a as follows: line A corresponds to EDSR between
states v1; #j i and v1; "j i (and between states v2; #j i and v2; "j i);
line B arises from EDSR between states v1; "j i and v2; #j i;37 line V is
associated with the anti-crossing between states v1; "j i and v2; #j i
when EZ = Δ. We can thus measure Δ = gμBBV = 36 μeV. Note that
the experimental EDSR spectrum does not capture all possible
transitions since some of them fall out of the scanned (B, ν) range.
Figure 3c shows the expected EDSR spectrum starting from ν = 0
and B = 0. The measured region is indicated in light blue (lower
values of ν and B could not be explored due to the onset of
photon-assisted charge pumping and to the lifting of spin
blockade, respectively).
The RF magnetic field associated with the microwave excitation

on gate 2 is too weak to drive conventional ESR.25 Since a pure
electric field cannot couple opposite spin states, SOC must be
involved in the observed EDSR. The atomistic spin–orbit
Hamiltonian primarily couples the different p orbitals of silicon;38

the Δ±z states are, however, linear combinations of s and pz
orbitals with little admixture of px and py, which explains why the
SOC matrix elements are weak in the conduction band of silicon.
Yet the mixing between v1; "j i and v2; #j i by “inter-valley” SOC can
be strongly enhanced when the splitting between these two
states is small enough. We can capture the main physics and
identify the relevant parameters using the simplest perturbation
theory in the limit B � BV . The states +j i≡ v1; #j i and *j i≡ v1; "j i
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indeed read to first order in the spin–orbit Hamiltonian HSOC:

+j i ¼ v1; #j i � Cv1v2
Δþ gμBB

v2; "j i þ ¼ (1a)

*j i ¼ v1; "j i þ
C�
v1v2

Δ� gμBB
v2; #j i þ ¼ ; (1b)

where:

Cv1v2 ¼ v2; "h jHSOC v1; #j i ¼ � v1; "h jHSOC v2; #j i: (2)

Therefore, v1; "j i admixes a significant fraction of v2; #j i when the
splitting Δ − gμBB between these two states decreases. As v2; #j i
can be coupled to v1; #j i by the RF electric field, this allows for
Rabi oscillations between *j i and +j i. Along line A, the Rabi
frequency at resonance (hν = gAμBB) reads:

hf ¼ eδVg2 *h jD +j ij j ’ 2egμBBδVg2
Dv1v2j j Cv1v2j j

Δ2 ; (3)

where δVg2 is the amplitude of the microwave modulation on gate

2, D(r) = ∂Vt(r)/∂Vg2 is the derivative of the total potential Vt(r) in
the device with respect to the gate potential Vg2, and:

Dv1v2 ¼ v1; "h jD v2; "j i ¼ v1; #h jD v2; #j i (5)

is the matrix element of D(r) between valleys v1 and v2. The gate-
induced electric field essentially drives motion in the (yz) plane.
Dv1v2 is small yet non negligible in SOI nanowire devices because
the v1 and v2 wavefunctions show out of phase oscillations along
z, and can hence be coupled by the vertical electric field. The field
along y does not result in a sizable Dv1v2 unless surface roughness
disorder couples the motions along z and in the (xy) plane.39,40

Although Cv1v2 is weak in silicon, SOC opens a path for an
electrically driven spin resonance +j i→ *j i through a virtual
transition from v1; #j i to v2; #j i, mediated by the microwave field,
and then from v2; #j i to v1; "j i, mediated by SOC. Note, however,
that the above equations are only valid at small magnetic fields
where perturbation theory can be applied. A non-perturbative
model valid at all fields is introduced in the Supplementary Note 2.
It explicitly accounts for the anti-crossing (and strong
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hybridization by SOC) of states v1; "j i and v2; #j i near B = BV,
12,22,24

but features the same matrix elements as above. This model
shows that the Rabi frequency is maximal near B = BV, and
confirms that there is a concurrent spin resonance v1; "j i↔ v2; #j i,
shifted by the valley splitting Δ = 36 μeV (lines B/B' on Fig. 3c), as
well as, in principle, a possible resonance v1; #j i↔ v2; "j i (line D).
We have validated the above interpretation against sp3d5s* TB

calculations. TB is well suited to that purpose as it accounts for
valley and SOC at the atomistic level. We consider a simplified
single-gate device model capturing the essential geometry (Fig.
4a). A realistic surface roughness disorder with rms amplitude ΔSR

= 0.4 nm41 is included in order to reduce the valley splitting down
to the experimental value.20 A detailed description of the TB
calculations is given in the Supplementary Note 3. The top panel
of Fig. 4b shows the B dependence of the energy of the first four
TB states 1j i… 4j i. An anti-crossing is visible between states 2j i
and 3j i at BV = 0.3 T. We calculate Cv1v2j j = 1.8 μeV and Dv1v2j j = 70
μV/V. The B dependence of the TB Rabi frequency f on line A is
shown in the bottom panel of Fig. 4b. There is a prominent peak
near B = BV where 2j i and 3j i have a mixed v1; "j i/ v2; #j i character.
The maximum Rabi frequency fmax ’ eδVg2 Dv1v2j j=

ffiffiffi

2
p

h
� �

is limited
by Dv1v2 while the full width at half maximum of the peak,
ΔBFWHM ’ 12 Cv1v2j j=

ffiffiffi

7
p

gμB
� �

= 0.07 T is controlled by the SOC
matrix element Cv1v2 (see Supplementary Note 3). The Rabi
frequency remains however sizable over a few ΔBFWHM. We point
out that Cv1v2 and Dv1v2 may depend on the actual roughness at
the Si/SiO2 interface.
The calculated Rabi frequencies compare well against those

reported for alternative silicon based systems. For example, the
expected Rabi frequency is around 4.2 MHz for B = 0.35 T, close to
anticrossing field BV, and for a microwave excitation amplitude
δVg2 = 0.7 mV, close to the experimental value (see Fig. 4b). This
frequency is comparable with those achieved with coplanar
antennas3,42 and in some experiments with micromagnets.7,9

One of the most salient fingerprint of the above EDSR
mechanism is the dependence of f on the magnetic field
orientation. Indeed, it must be realized that Cv1v2 may vary with
the orientation of the magnetic field (as the spin is quantized
along B in Eq. (2)). Actually, symmetry considerations supported
by TB calculations show that Cv1v2 and hence f are almost zero
when B is aligned with the nanowire axis, due to the existence of a
(yz) mirror plane perpendicular to that axis (see Supplementary
Note 4). As a simple hint of this result, we may consider a generic
Rashba SOC Hamiltonian of the form HSOC / ðE ´pÞ � σ, where E is
the electric field, p the momentum, and σ the Pauli matrices.
Symmetric atoms on each side of the (yz) plane contribute to Cv1v2
with opposite Ex and px components. Therefore, only the ∝ (Eypz −
Ezpy)σx component of HSOC makes a non-zero contribution to Cv1v2 ,
but does not couple opposite spins when B || x. The current on
line A is, to a first approximation, proportional to f2.43,44 The TB f2 is
plotted in Fig. 4c as a function of the angle θ between an in-plane
magnetic field B ⊥ z and the nanowire axis x. It shows the ∝ sin2 θ
dependence expected from the above considerations. The
experimental Ids, also plotted in Fig. 4c, shows the same behavior,
supporting our interpretation. The fact that Ids remains finite for B
|| x may be explained by the fact that the (yz) symmetry plane is
mildly broken by disorder and voltage biasing.
In a recent work, Huang et al.45 proposed a mechanism for EDSR

based on electrically induced oscillations of an electron across an
atomic step at a Si/SiO2 or a Si/SiGe hetero-interface. The step
enhances the SOC between the ground and the excited state of
the same valley. The Rabi frequency is, however, limited by the
maximal height of the step that the electron can overcome
(typically 1 nm). The EDSR reported here has a different origin. It
results from the finite SOC and dipole matrix elements between
the ground-states of valleys v1 and v2. These couplings are sizable
only in a low-symmetry dot structure such as a corner QD,29 where
there is only one mirror plane (see Supplementary Note 4). Indeed,
we have verified that more symmetric device structures with at

Fig. 4 TB calculations results. a Electrostatic model of the device. The silicon wire appears in yellow, SiO2 in blue, HfO2 in orange and the gate
in green. We did not include the lateral gate in the simulations. b TB energy levels as a function of the magnetic field B || y, and TB Rabi
frequency along line A (identified by the green arrows) as a function of the magnetic field for a reference microwave amplitude δVg2= 1mV.
The points are the TB data and the solid lines are the analytical model developed in Supplementary Note 3. The TB valley splitting energy Δ ~
36 μeV is in good agreement with the experimental value. The Rabi frequency shows a prominent peak near the anti-crossing field BV. c,
Experimental measurement of EDSR current as a function of the angle θ between an in-plane magnetic field B ⊥ z and the nanowire axis x (θ
= 0°), and TB Rabi frequency f2 as a function of θ
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least two symmetry planes show a dramatic suppression of the
SOC matrix element (since, as hinted above, each mirror rules out
two out of three components in HSOC, leaving no possible
coupling). This is the case of a typical nanowire field-effect
transistor with the gate covering three sides of the nanowire
channel, for which TB calculations give no EDSR since Cv1v2 ¼ 0
whatever the spin or magnetic field orientation. Conversely, the
design of QDs without any symmetry left should maximize the
opportunities for EDSR.

DISCUSSION

In conclusion, we have reported an experimental demonstration
of electric-dipole, spin-valley resonance mediated by intrinsic SOC
in a silicon electron double QD. Although SOC is weak in silicon, its
effect can be enhanced in the corner QDs of an etched SOI device,
owing to their reduced symmetry. SOC enables EDSR on the
spin–split doublet of the first, lowest energy valley by mixing the
up-spin state of that valley with the down-spin state of the second
valley. The EDSR Rabi frequency is strongly enhanced near the
corresponding anti-crossing, namely when the valley and Zeeman
splittings are close enough. This enhancement comes with a price
though, since we expect the spin relaxation time T1 (and
presumably also the spin coherence time T2) to be simultaneously
reduced.22,24 Therefore, we anticipate that the efficiency of the
reported EDSR mechanism for spin qubit manipulation will be
conditioned by the possibility to tune the valley splitting Δ, in
order to bring the qubit near the anti-crossing point for
manipulation, then away from the anti-crossing point to mitigate
decoherence. Given the strong dependence of the valley splitting
on gate voltages in silicon-based devices,21,46 this possibility
appears within reach and will be addressed in future experiments.

METHODS

The silicon nanowire transistors are manufactured on a 300mm SOI
processing line.10 First, silicon nanowires are etched from a SOI wafer with
a 12-nm thick undoped silicon layer and a 145-nm thick buried oxide. The
nanowire channels are oriented along the [110] direction. The width W of
the nanowires, initially defined by deep ultra-violet lithography, is trimmed
down to about 30 nm by a well-controlled etching process. Two parallel
top-gates, ≃35 nm wide and spaced by ≃30 nm are patterned with e-beam
lithography in order to control the double QD. An additional side gate is
also placed parallel to the nanowire at a distance of 50 nm in order to
strengthen confinement in the corner dots of the Si nanowire. The gate
stack consists in a 2.5-nm thick layer of SiO2, a 1.9-nm thick layer of HfO2, a
thin (≃5 nm) layer of TiN metal and a much thicker (≃50 nm) layer of
polysilicon. Then, insulating SiN spacers are deposited all around the gates
and are etched. Their width is deliberately large (≃25 nm) in order to cover
completely the nanowire channel between the two gates and protect it
from subsequent ion implantation. Arsenic and phosphorous are indeed
implanted in order to achieve low resistance source/drain contacts. The
wide spacers also limit dopant diffusion from the heavily implanted
contact regions into the channel. The dopants are activated by spike
annealing followed by silicidation. The devices are finalized with a
standard microelectronics back-end of line process.
The devices are first screened at room temperature. Those showing the

best performances (symmetrical characteristics for both top gates with no
gate leakage current, low subthreshold swing) are cleaved from the
original 300-mm wafer in order to be mounted on a printed-circuit-board
chip carrier with high-frequency lines. The sample is measured in a wet
dilution fridge with a base temperature T = 15mK. The magnetic field is
applied by means of a 2D superconducting vector magnet in the (xy) plane
parallel to the SOI wafer.
All terminals are connected with bonding wires to DC lines; gate 2 is also

connected with a bias-tee to a microwave line. The DC block is a low rise-
time Tektronik PSPL5501A, while the RF filter is made with a 10 kΩ SMD
resistance mounted on the chip carrier plus a wire acting as inductor. The
DC voltages are generated at room temperature by custom battery-
powered opto-isolated voltage sources. The microwave signal is generated
by a commercial analog microwave generator (Anritsu MG3693C). The RF

line is equipped with a series of attenuators at room temperature and in
the cryostat for signal thermalization (1 K), with a total attenuation of ≃38
dB at 10 GHz. The current in the nanowire is measured by a custom
transimpedance amplifier with a gain of 109 V/A and then digitized by a
commercial multimeter (Agilent 34410A).
The TB calculations are performed with the sp3d5s* model of ref. 47. The

potential in the device is calculated with a finite-volume Poisson solver,
then the eigenstates of the dot are computed with an iterative
Jacobi–Davidson solver. The Rabi frequencies are obtained from Eq. (3).

Data availability
The data that support the findings of this study are available from the
corresponding authors upon reasonable request.
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