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ABSTRACT

Stimulated scattering induced by the longitudinal electric

field of a pump wave is studied theoretically for the case of

dense, relativistic electron beams traveling in cylindrical metal

waveguides, Two processes are examined. In one, the pump wave

decays parametrically into a slow and a fast space charge wave.

In the other, it decays into a slow space charge wave and a TM

wave of the guide. The frequency characteristics and stimulated

growth rates are given for each process, as a function of beam

diameter, velocity, and density.
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I. INTRODUCTION

Stimulated Compton'r 1' or Raman 4 1 0 scattering in relativ-

istic electron beams has been induced by applying a static, spa-

tially periodic, transverse magnetic field, or by injecting a pro-

pagating electromagnetic wave. In either case, the electrons ac-

quire a velocity modulation in a direction transverse to the beam;

the longitudinal ponderomotive force (radiation pressure) that

develops causes the desired axial bunching of the electrons. The

possibility of pumping free electron lasers by means of electric

fields rather than by magnetic fields, as is prevalent today, has

recently evoked some interest.' 1 ,'1 2 ,1 3 1 4 There exist two rather

distinct situations. When the electric field of the pump wave is

polarized at right angles to the beam axis, the same physical

principles apply as when the system is pumped magnetically: the

beam electrons cannot distinguish between the two types of exci-

tation. Thus, in the computations1 5 -21 of stimulated growth rates,

etc., one merely replaces the amplitude IBI of the magnetic pump

by the amplitude IEI/c of the corresponding transverse electric

pump.

Conditions are different when the electric field of the pump

wave is oriented along the beam axis, which is the subject matter

of this paper. Here the oscillating electric field of the pump

wave excites axial electron oscillations and beam bunching direct-

ly without the need of an "intermediary" ponderomotive force.

Two interactions will be considered. In one, the axial electric

field of the pump wave decays parametrically into two space charge

waves of the beam-filled cylindrical waveguide. This three-wave

process is illustrated schematically in the dispersion diagrams of

I
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Fig. 1. The upper diagram represents the interaction as seen by

an observer moving axially with the electron velocity (the beam

frame), and the lower diagram represents the same interaction as

viewed by a stationary observer (the laboratory frame, henceforth

labelled L). The three waves are: the pump wave (1). The for-

ward scattered wave (2) propagating antiparallel to the beam elec-

trons. And the back scattered wave (3) which in the laboratory

frame is doubly Doppler upshifted in frequency and therefore of

interest in microwave and submillimeter wave generation. It is

seen that in the laboratory frame one can view the process as a

coupling of the slow (negative energy) and fast (positive energy)

space charge waves. This coupling has been studied in the

past, 11 ,13 but only in the limit of beams having infinite trans-

verse dimensions, traveling in free space. Indeed, one motivation

of this paper is to examine the effects of finite beam geometry

and the proximity of the waveguide walls.

In the other interaction studied here, the axial electric

pump wave (1) decays into a space charge wave (2) and a TM wave

(3) of the cylindrical metal waveguide filled with beam electrons.

This is illustrated by the dispersion diagrams shown in Fig. 2.

We note that these diagrams are the same as those applicable to

magnetically pumped free electron lasers, as they must be, since

similar types of waves are operative in both cases (a pump wave,

a space charge wave, and an electromagnetic wave). But, there is

one proviso. In a magnetically pumped system, the pump wave may

decay into either a TM or TE wave. But in the presence of an

axial electric pump, the interaction can proceed via a TM mode

only, because it alone possesses the axial electric field neces-

Mwwwwwd
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sary for electron bunching. Needless to say, the stimulated

growth rates in the two systems are very different, even though

they may have the same dispersion diagrams.

Figures 1 and 2 have been drawn such that in laboratory

frame of reference, the pump wave has a finite wave number but

zero frequency. These then represent special cases of static,

spatially periodic electric pumps. We stress that the results

of Section II below are not restricted to this case alone. They

are equally applicable to pumps having nonzero frequency, that is,

to traveling wave pumps. However, in Sections III and IV, where

numerical results are presented, we limit our discussion to static

pumps only,

II. DERIVATION OF THE NONLINEAR RATE EQUATIONS

In this section we derive the nonlinear rate equations gov-

erning the temporal growth (or decay) of the wave amplitudes pro-

pagating on the electron beam. To this purpose we first obtain

the Appropriate nonlinear wave equation. The geometry of the sys-

tem is illustrated in Fig. 3. A homogeneous electron beam of

velocity v0 traveling along the z axis fills uniformly a cylin-

drical waveguide of radius a. The beam is subjected to a uniform,

axial magnetic field Boz so strong that all electron motions

(steady and oscillatory) can be considered purely axial, such that

v=z v 
-

The electron thermal velocities are neglected (cold plasma

approximation), thus permitting use of fluid equations in describ-

ing the beam kinetics, In the beam frame of reference in which

the computations will, henceforth, be performed (all Lorentz
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transformationsto the laboratory (L) frame can be made later, as

needed), the particle and momentum conservation equations take

the form

+ N - (nv(1)

_ za z

3 V z V z (2)

Here q and m0 are the electron charge and rest mass, respectively;

n is the perturbed rf electron beam density, and N is the steady

state average density; v is the perturbed rf velocity (vo=0 in

this frame), and E is the z component of the rf field. For con-

venience all nonlinear terms have been relegated to the right-hand

sides of Eqs. (1) and (2) .

The above equations are to be solved in conjunction with

MAxwell's equations,

V - n (3)
0

0X 1Ca + P(4)

VxA = - (5)

V4 = 0 (6)

with

i2q(NVZ +nvZ) (7)

as the rf current, composed of a linear and nonlinear part. In

the presence of the large axial magnetic field, the TM and TE

waveguide modes are uncoupled,2 2 but only the former will be of

interest here since they possess the requisite axial electric

field Ez (see Section I). With this in mind, we eliminate 9 from

Eqs. (4) and (5) and using Eq. (3) obtain for the z component of
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electric field,

32 E 3
V
2 E qjan CPZ + 1aZ (8)

z C 0 at 2  0 (t

(Once Ez is known, the remaining field components Er, Ee, Br, and

B are deduced from Eqs. (5) and (6).) On substituting Eq. (7) in

Eq. (8), differentiating twice with respect to time, and eliminat-

ing an/at 'and av/at with the aid of Eqs. (1) and (2), we arrive at

the sought-after nonlinear wave equation,

a 2  + [ + EPzMO Wv a nv ()- 1E + w+ JOE = ~U v t Nf()
at2 z p t z a

which, in conjunction with Eqs. (1) and (2), will be used as a

starting point in calculating the rate equations. In Eq. (9),

w p (Ne2/m £e )1/2 is the plasma frequency,

V2 L(r l (10)
A rar r)+ (10)

is the transverse Laplacian operator, and

=a~ 2 1 a2

- -- (11)
az2 c2 at 2

is a wave propagation operator which, in the quasi-static approxi-

mation (usually applicable to the slow space charge waves), reduces to

0 = a2/aZ2 . The nonlinear terms situated on the right-hand side

of Eq. (9) are easily recognized: vz z /az is the nonlinear term

appearing in momentum conservation Eq. (2); and nv is the non-

linear current density appearing in Eq. (1).

In the absence of nonlinear phenomena, the solution of Eq.

(9) is given by the familiar result
2 2 ,2 3

j(wt + m6 +kz)
Ez E. J. ( r/a)e (12)

where E0 is the constant field amplitude, Jm is the Besel function
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of order m and pmv is the vth zero of the mth order Bessel func-

tion. The frequency w and wavenumber k are related through a dis-

persion equation which has two branches. A high frequency branch,

k2a2 = fwa 2 
- 2 for w >, w (13)

P

which represents the TM electromagnetic waveguide modes perturbed

by the presence of the electron beam (one of these is shown in

the .upper part of Fig. 2a). This infinite set of modes exists

only at frequencies w exceeding certain cutoff frequencies w c

given by w>,wc [(pmvc/a) 2 +W2]l/2. And then there is the low fre-
my p

quency branch

kaa 2  )a_ 2 + p for w < w (14)
c my 2 2 p

p

which extends from w=0 to w=w , and represents the space charge

waves (one of this infinite set of waves is shown in Fig. 1 and

also as the lower branch of Fig. 2).

To solve the nonlinear wave Eq. (9), in conjunction with

Eqs. (1) and (2), we write EZ, z , and n as a sum of three terms

representing the three interacting waves, namely

Ez E (t)J m r/a)e 1 C.C.
=1,2,3 m=1,2,3

. = V,(t)e 2 C.C. (15)
z =1,"2,3 2 =1,2,3

n N (t)e + C.C.
=1,2,3 I=1,2,3

Here E (t), V (t) and N (t) are complex amplitudes that vary

slowly with time, and T are the phases given by
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2. =Wm t + m 0 + k, z (L = 1, 2, 3). (16)

To proceed with the problem, we substitute Eqs. (15) in Eq. (9)

and equate terms on the left-hand side of Eq. (9) that have phase

$ to terms on the right-hand side that have the same phase *j =

*2 + ,; and similarly for *2 and $,. In this way24 we are, in

fact, invoking exact phase matching which is synonymous to the

requirement that the "selection rules"

=1 W2 + WA)3

. =k.+ik (17)

mI= m2 + m

be obeyed. The remaining terms that do not obey Eqs. (17) are

nonresonant and they do not contribute to the three-way processes

considered. Under the assumption of a constant amplitude pump

wave (wave 1), the aforementioned manipulations result in two

coupled equations for the amplitude growth rates of the forward

And backward scattered waves 2 and. 3 respectively. We also as-

sume, for the sake of simplicity, that the waves are excited in

the same waveguide mode (m,v) and thus obtain the following

rate equations,

3E 0 2  w2 k k k W2 12. W 2

E* + + - - 2 k2a f4 ri 0 3- W 2 ]-)(9i W0 312 W3L 2~J[ [ 2 C pi

2 2

aE k 2  wk k[

4m E 02 + + [ kic
0

(18)

We see from Eqs. (18) that both the backward and forward

scattered waves grow exponentially with time. Setting E0 2 and

E,3 proportional to expa( t) and solving Eqs. (18) simultaneously
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we obtain for the temporal grow rate r the result,

E
r = a_ Elz G (19)m0  V0

Here E., is the amplitude of the pump wave, v0 is the beam veloc-

ity and G, a dimensionless quantity, is a function of the beam

parameters and the dispersion characteristics of all three inter-

acting waves. It is given by

G = + +

-w./.(-1 1/2

y27 V2 V2 W2' V 2 W2

x 1 L 1 - 3 - -2 _3 _3

C 2 C2 c2 W2 c 2 W2

(20)

with v =W1 /k, v2 = 0 2/k2 , and v =W /k,, as the wave velocities.

The above equations refer to either of the two processes il-

lustrated in Figs. 1 and 2. The frequency w is related to the

wave number k of each wave through the linear dispersion equation

applicable to that wave. Moreover, all w's and k's must satisfy

the selection rules of Eqs. (17). Inserting these requirements in

Eqs. (19) and (20) yields the stimulated growth rate for the in-

teraction in question. In Section III we do this for the case of

the two interacting space charge waves. (Fig. 1); and in Section IV

we do the same for the interaction of the space charge wave with

the TM electromagnetic wave (Fig. 2).
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III. ELECTRIC FIELD PUMPING OF THE SLOW AND

FAST SPACE CHARGE WAVES

Here we consider the pumping of two space charge waves (Fig.

1) by a static electric pump having a spatial periodicity in the

laboratory frame equal to XL= 2 7r/klL. From the Lorentz transforma-

tions

W = y(W L + ackL)

(21)
k = y(kL + SOWL/c)

and the fact that w L=0, it follows that the pump wave obeys the

dispersion equation in the beam frame

= W /ac = W1/v 0  (22)

with kl=ykIL= 2ny/'L' O=v/c, and y= {l-(v0 /c)
21

The two space charge waves must satisfy relation (14). If,

as is very often the case, (w p a/cp )2<<l, which states that the

square of the phase velocity be much less than c2 , the first term

on the right-hand side of Eq. (14) can be neglected. We shall do

so here and obtain for waves (2) and (3) the simpler dispersion

law,

2'
23

(k ,a) 2  2 W24 - (23)203 P;V Wi Z-W

p 2,3

The selection rules given by Eqs.- (17) together with Eqs.

(22) and (23), fully determine the frequencies w2 and w3 in terms

of the pump frequency wo , (and they likewise determine k2 and

k3 in terms of k ). The results of the calculations are illus-

trated in Fig. 4. It shows plots of w2 /w1 and w3/w1 , as a func-

tion of beam parameters, specified by the quantity b=(awp/v pmv'

(b equals the ratio of the maximum phase velocity of the space
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charge wave to the beam velocity, v ). Each curve is for a dif-
0

ferent value of the normalized pump frequency wg/ P.

Suppose b, and thus the beam parameters, are .fixed. Then, as

the pump frequency w, is increased from zero to its maximum allow-

able value w,=2wp, the two scattered waves approach (2=W 3 =Wp

and w,=2w,. This is reminiscent' S, 25' 2 6 of parametric amplifiers

in which the pump drives the system at twice the "signal" fre-

quency. We shall show momentarily that under these conditions,

the maximum growth rate is achieved. We note that in our system

however, pumping at twice the signal frequency can occur only for

one value of wo, namely io,=2w . This restriction on the pump fre-

quency comes about because we excite the beam with a static pump

wave. When one pumps with traveling waves2 s,26 selection rules

(17) allow w, to take on a large variety of other values.

To compute the growth rate of the two participating space

charge waves we note that generally their phase velocities are

much less than the speed of light c. Consequently, the term in

the curly {} brackets of Eq. (20) approaches unity. In this

"quasi-static approximation" used here

Gv (24)

Figure 5 shows a plot of G as a function of the beam parameter

b=(awp/v pmv) , for different values of the normalized pump fre-

quency w,/ . It is noteworthy that when 1<w /A <2 the gain

factor is almost independent of b, and is thus almost independent

of the beam cross section a. This is a most satisfying result.

In the limit of "thin" and "thick" beams one then finds that
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for thin beams:

G(b+0) = 1 [2 + a 2 ] (0,<a,<2) (25)16

for thick beams:

- G (b co) = [(a 2 -1) (a+1) ] 1/2/4a (1<a,2)
(26)

=0 (0<ct$1)

where a B w1 /WP.

The maximum value of the growth rate parameter is G=3/8 and

occurs when a=2 (N,=2w ). This gives a temporal growth rate (Eq.
p

(19)) equal to

r(max) = E ( z (27)
(0 0

a result obtained previously1 " in the thick beam limit (E z is

the amplitude of the longitudinal electric field of the pump wave).

It is instructive to compare 1 with the growth ratel" r. of the

free electron Raman laser pumped with a static, spatially periodic

transverse electric field E,, (or a transverse magnetic field of

equivalent strength, B1. = E /c):

1 ((131/2q i
r Lk (28)

Since in these lasers w >>p, the associated growth rate is smaller

than the expected growth rate obtained for the two interacting

space charge waves, in which the pump frequency w, is close to or

below 2w P, as discussed earlier in this section. However, since

Ez and E. have different relativistic transformations, comparisons

of F's are best done in the laboratory frame of reference (see

subsection below).

Thermal motion of the beam electrons which causes Landau
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damping of the space charge waves, has been neglected throughout

the above discussion. Thermal effects impose an upper limit on

allowable wave numbers given by k3, X D=k3vth /P<l where X D=v th/P

is the Debye length, and vth is thermal velocity. This inequality

restricts the range of beam parameters b=(awp/vOpmv) available to

experimentation. In Fig. 6 the "Landau damping limit" D is

plotted; it is defined as follows. Let vth/vo equal the ratio of

beam thermal velocity to the beam axial.velocity. Then, the in-

equality

D > v th/Vo (29)

implies that k3 LD<l. We see that Landau damping does not impose

very stringent limitations on b except when wg p approaches too

closely the value of 2 (when w /wp=2,- kL -+ ). We note that for

tenuous relativistic electron beams v th/v is typically 0.01,

whereas for dense relativistic beams it is >0.1.

Transformation to the Laboratory (L) Frame of Reference

In the laboratory frame of reference the gain rL is related

to the gain r in the beam frame through1 7

rL = ry-1[1 + (v v0)/c 2] (30)

where v /w /k is the group velocity of the back scattered

wave in the beam frame. Equation (23) gives

oa r 2 3/2

v = v L -. 3 1Pmg p

from which it follows that v /c<<l if, either. (w a/cp )<<l
ga p my

(which is a statement of the quasi-static approximation), or if

(w /w )+l. Under these circumstances r of Eq. (27) transforms to

MOMMO06=01i,
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rL (max) 3 (32)

to be compared with r IL of the transversely pumped laser (Eq. (28)):

r YI/ U1 1 1/2 (

iL L 32c I [0(33)
Here w 9 (NLe2/mOO)1/2. In obtaining the above equations we

made use of the following transformations:

Ez = EzL ; E = YElL + y(vx'B)

W = OcykiL 
(34)

= 21T~cy/k L

Wp = pL

1/2 2i1/2
with w = (Ne2/M0/) and wpL = (NL e 2/yy 0 0 ; 1=2 WpL is

a fictitious plasma frequency without the y1/2 factor. However,

with this definition of o , the Y dependence of the growth rate

is exhibited more vividly.

In typical, transversely pumped Raman lasers employing dense

relativistic electron beams, 410 the term [ ]1/2 of Eq. (33) has

values in the range from -0.05 to -0.5. It has, therefore, a some-

what lower growth rate than the anticipated growth rate of the

longitudinally pumped system (Eq. (32)) excited with a field of

the same (EzL=E ±) or equivalent (E zL=cBIL) strength.

The axial velocity v0 of the beam electrons causes the back-

scattered wave to be doubly Doppler upshifted, thus making various

types of stimulated scattering schemes of potential interest in

the generation of millimeter and submillimeter radiation. We have

that w, and wz2w , so that w 3 w/2. Transforming this to the

laboratory frame of reference with the help of Eqs. (21) and (34),
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yields 3L kILy2ac/2. Thus, the dimensionless quantity F defined

by

W 3L = Fki Ly2 8 c (35)

is useful in making predictions of the expected radiation frequen-

cy in terms of y and the pump periodicity kL=27r/kIL. We call F

the "frequency enhancement factor". Since w3 and k, are known in

the beam frame, their values are readily transformed into the

laboratory frame, and F computed. The results are shown in Fig.

7. We see that F is large for thin beams and small for thick

beams so that, for a given y .and w , thin beams give higher fre-

pquency waves than thick beams. When 1<w p/w 1<2, F tends asymptot-

ically to a constant value, as the beam thickness is increased.

In the limit b + c, F=(l-(w p/W)). When w,/WP=2, F=0.5, which is

a result derived in an earlier publication.1 3 For comparison, we

note that a beam excited with a transverse, spatially periodic

magnetic pump, or a transverse electric pump, has F =(l+8)~2 as

will be shown in the following section.

IV. PUMPING OF THE SLOW SPACE CHARGE WAVE AND A TM WAVEGUIDE MODE

Here we examine the growth of a slow space charge wave and a

TM mode of a cylindrical waveguide pumped by a static electric

pump. The three participating waves are (see Fig. 2): The pump

wave (1) whose dispersion characteristics are given by Eq. (22).

The slow space charge wave (2) whose dispersion characteristics

are given by Eq. (23), and the fast back-scattered TM wave (3)

whose dispersion characteristics are given by Eq. (13). We assume

that w, is well above the cutoff frequency w for the mode in ques-
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tion, so that w,/k,3 c.

Both the pump wave and the back-scattered wave are fast com-

pared with the slow space charge wave. From the first selection

rule of Eqs. (17), w,=w2,+w, it therefore follows that to good

approximation,

W 3 =W . (36)

Using this' result in the second selection rule, k,=k 2 -k 3 we find

the needed relationship for the ratio v0/v2 of beam velocity to the

phase velocity of the forward scattered wave (2):

(v/v 2 ) = (1 + ) (I /W2 (37)

Similar ratios for the remaining two waves are:

(v 0/v) = 1 
(38)

(v 0/v) = -

Inserting Eqs. (36) through (38) in Eq. (20) for the gain factor

G, and noting that w2 =AP we obtain

G (W -/2 s) + (l+0) (W1/W ) { /}

(39)

(1+0)(W /W )1/2{....}1/2
4 1 p

where the second form of the equation is valid in most cases of

interest for which 6+l or w /W p>l.

The complicated terms within the curly bracket {-.--} ex-

hibited in Eq. (20) simplify considerably under the assumptions

made above. First, for the slow space charge wave (2) we can

safely set (v2/c)
2=0. Secondly, using dispersion Eq. (13) for the

fast backward scattered wave (3) subject to the condition, w,/wc'

/p>>l, we obtain {.--}1 (w w /W 2 )2 where wco mVc/a) is theW3Wpco p 3.whr c UL
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cutoff frequency of the (m,v) mode of the empty cylindrical wave-

guide. Inserting this result in Eq. (39), it follows that

1 1/2
G = (1+o) (40)

giving the temporal growth rate

r (1+) 1 (41)
4 [MO 0g)

Except for the term ( 1 ) , this growth rate is identical with

that associated with traversely pumped free electron lasers (see

Eq. (28)). The reason for the term (wco /WI ) becomes clear when

we realize that it originates from the dependence of Ez on fre-

quency. As w. increases relative to the cutoff frequency wc, the

axial electric field E responsible for the interaction decreases

proportionately, and vanishes altogether when w3 /W c. Trans-

versely pumped lasers do not require an Ez electric field to

achieve bunching (it occurs via E1 or B. and the ponderomotive

force) and therefore the term wco /W is absent from Eq. (28) for

r.. Usually (wco )<<l, and consequently r for this type of

laser is much smaller than r. for the transversely pumped laser.

This fact will come out even more forceably when we compare the

two systems in the laboratory frame of reference later in this

section.

Matters are much more favorable for lower frequency opera-

tion, near cutoff, wc A =1, in which case E has its largest pos-

sible value. Now, with c /W3+, k 3-+0, v0/v3 0' 2=W 1 A 2/ , and

v0/v,=1. The term in curly brackets in the equation for G becomes

(W P/W )2. Inserting these values in Eqs. (19) and (20) yields
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G(w3 = wC) (42)

and

1/2qE)

r(, =, ) (43)

which, within a factor of 2, is of the same form as the growth rate

r of the transversely pumped laser (Eq. (28).

Transformation to the Laboratory (L) Frame of Reference

In accordance with Eq. (36), the frequency w3 of the back-

scattered TM mode is to good approximation equal to the pump fre-

quency w,. Transforming this statement to the laboratory refer-

ence frame with the aid of Eqs. (21) and (34) yields,

WaL = kiL 2(+), (k = 2n/L (44)

which exhibits the typical y2 frequency multiplication of the

pump frequency. A transformation of the growth rate r of Eq. (41)

gives

2 W 12 EL (+) po co L g_ EzL (45)
L 5l273y 7/2 (OC)3M 0 TO yC)

where wo =(NL e2/m )1/2 and wco mv c/a).

It is instructive to compare the growth rates of the longi-

tudinally pumped TM mode laser (Eq. (45) with the transversely

pumped laser (Eq. (33)). In the former the growth rate decreases

as y -11/ whereas in the latter it decreases as y-3/. This makes

the longitudinal pumped TM laser very unattractive for producing

ultrashort wavelengths radiation with high y electron beam gener-

ators, a fact already mentioned earlier in this section.

Now, let us consider the longitudinally pumped TM system
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operating near cutoff of one of the (mw) modes of the cylindrical

waveguide, as discussed earlier. Transforming r(w=wc) of Eq. (43)

into the laboratory frame of reference gives

o 11/2 Epo L EqzL

LW c )= L32TcOW' (46)

Observe the y~7/' dependence of r . To excite the instability, one

must adjust the pump frequency so that W3 =Wc This requires,

in the laboratory frame of reference, that

W3L c d 2 scy/L* (47)

Although the growth rate can be reasonably large (for not too

large values of y), we stress that the frequency of the generated

electromagnetic wave (=w c) is relatively low (there is no y2 fre-

quency multiplication). For example, in a waveguide of 0.5cm

radius operating in the (0,1) mode, w3 L/2ff=2
3GHz; in the (3,3) mode

WsL/27r=ll3GHz. Nonetheless, the system could find application in

the generation of large fluxes in the millimeter wavelength range.

V. DISCUSSION

On previous pages we dealt with Raman-like scattering from

dense, relativistic electron beams driven parametrically by means

of electric field pumps. When the pump electric field is oriented

perpendicular to the direction of beam propagation, the physical

situation is much the same as for "magnetic wigglers" treated ex-

haustively in earlier works: 1 7 20 in both systems, axial electron

bunching necessary for wave amplification comes about via the ra-

diation pressure force (i.e. the ponderomotive force); the elec-

trical pump field E in the electrically excited system plays the

same role as the magnetic pump field B =E1 /c in the magnetic wig-
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gler system.

When the relevant electric field component of the pump wave

is oriented along the direction of beam propagation, axial elec-

tron bunching is induced directly by the axial electric field, and

there is no need for the intervention of the ponderomotive force.

Two types of parametric interactions are distinguished. The one

involves coupling of the slow and fast space charge waves propa-

gating on the beam, and is treated in Section III. The other in-

volves the coupling of the slow space charge wave and a TM elec-

tromagnetic wave supported by the waveguide structure. This prob-

lem is discussed in Section IV. In these sections the discussion

is restricted to static pumps (w 'L=O) only; the general analysis,

however, given in Section II is valid for pumps of any frequency.

The results of the computations are summarized in Table I in

which we list the growth rates and frequencies of the backscattered

waves for each interaction. Let us compare the three. The trans-

versely driven system (top of Table I) and the longitudinally

driven TM mode interaction (third from the top of Table I) can be

excited with an almost limitless choice of pump periodicities, the

only limitation being imposed by the selection rules 17 and wave-

guide cutoff, which require that, in the notation of previous sec-

tions, the pump wavenumber kiL satisfy the inequality,

kiLc > cuC(y2-l)-1/2 + 0p /a] . (48)

As a result, the maximum achievable backscattered frequencies WsL

(see Table I) can be very large. On the other hand, in the two-

space charge wave process (second from the top of Table I) the

pump periodicity is limited by the fact.that in the beam frame
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W1,g2 p. This imposes the condition that, in the laboratory frame,

kiL 2opL/yac (49)

Consequently, the maximum frequency of the backscattered wave W 3L

(see Table I) that can be achieved is determined by beam density.

Let us now turn to the growth rates. The two-space charge

wave process can have a considerably larger growth rate than the

transversely pumped free electron laser system. This advantage

is, however, offset somewhat by the following consideration. The

transeversely pumped system generates a fast backscattered elec-

tromagnetic wave whose phase velocity within the waveguide struc-

ture is greater than, or equal to c. Thus, the wave can be

coupled out of the interaction region efficiently by standard

optical methods. The two-space charge wave interaction, on the

other hand, gives rise to a wave whose velocity is typically the

beam velocity v and is therefore a little slower than c. To ex-

tract the electromagnetic energy efficiently may require a suit-

able slow wave circuit, as for example a dielectric loaded wave-

guide provided with holes, or a continuous axial slot, which

couples the beam loaded guide to the extraction circuit.

The longitudinally driven TM mode system (third from the top

of Table I) exhibits a growth rate which is smaller than the

growth rate of the transversely pumped laser in the ratio

~(L/2.c) Cy 2 )-1 . Here kL=2 kIL is the periodicity of the pump

and C=2rc/oc is the cutoff wavelength for the waveguide mode in

question. Since 2. c and y is typically 1 to 10, the growth rate

of the longitudinally driven wave generator is considerably less

than that of the transversely pumped laser. The exception is to
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operate near the cutoff frequency (bottom line of Table I) where

the growth rate is once again sizable.

In conclusion, then, we see that the most promising systems

are the two listed at the top of Table I: the transversely driven

laser, and one employing two interacting space charge waves. We

have not addressed the question of how to generate static, peri-

odic, transverse or longitudinal electric field pumps of suffici-

ent strength. This problem is discussed elsewhere.) 3
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FIGURE CAPTIONS

Fig. 1. Schematic dispersion diagrams illustrating the coupling

between a static pump wave (1), a slow space charge

wave (2), and a fast space charge wave (3), as observed

in the beam frame (top) and the laboratory frame (bottom).

For clarity, the two figures are drawn to different

scales.

Fig. 2. Schematic dispersion diagrams illustrating the coupling

between a static pump wave (1), a slow space charge wave

(2), and a TM mode (3) of the waveguide, as observed in

the beam frame (top), and the laboratory frame (bottom).

For clarity, the two figures are drawn to different

scales.

Fig. 3. Geometry of the electron beam traveling through a cylin-

drical waveguide and confined by a strong, axial magnetic

field.

Fig. 4. Frequency relationships between the three waves of Fig.

1 required by the selection rules 17, as a function of

the beam parameter b. The dashed lines refer to wave 2,

the solid lines to wave 3.

Fig. 5. The temporal growth rate parameter G of Eqs. (19) and

(20) (in the beam frame) for the backscattered space

charge wave, as a function of the beam parameter b, for

different values of the pump frequency w, .

Fig. 6. The Landau damping limit D of Eq. (29) for the backscattered

space charge wave, as a function of the beam parameter b,
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for different values of the pump frequency w,.

Fig. 7. The dimensionless quantity F=wsL/kjLy 2ac (in the labora-

tory frame) as a function of the beam parahieter bL for

different values of the pump frequency wi.
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