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Electrically Tunable Collective Response in a
Coupled Micromechanical Array

Eyal Buks and Michael L. Roukes

Abstract—We employ optical diffraction to study the mechan-
ical properties of a grating array of suspended doubly clamped
beams made of Au. The device allows application of electrostatic
coupling between the beams that gives rise to formation of a band
of normal modes of vibration (phonons). We parametrically ex-
cite these collective modes and study the response by measuring
the diffraction signal. The results indicate that nonlinear effects
strongly affect the dynamics of the system. Further optimization
will allow employing similar systems for real-time mechanical spec-
trum analysis of electrical waveforms. [756]

Index Terms—Grating, MEMS, nonlinear, parametric reso-
nance.

I. INTRODUCTION

T
HE FIELD of microelectromechanical systems (MEMS)

is forcing a profound redefinition of the nature and at-

tributes of electronic devices. MEMS are created by leveraging

microelectronic fabrication techniques to realize microstruc-

tures with full, three-dimensional relief. This technology allows

motion to be incorporated into the function of microscale de-

vices. These additional mechanical degrees-of-freedom now

enable a wide variety of intriguing new applications (see for

example [1]). Such advances now make it feasible to envisage

new classes of signal processors, sensors, and even computa-

tional systems, with functionality derived primarily from their

mechanical, rather than their electrical degrees of freedom.

However, the design of such mechanical systems may be quite

challenging due to nonlinear effects that may strongly affect

the dynamics, as was demonstrated recently with individual

MEMS resonators (see, for example, [2]). Moreover, integrating

individual mechanical elements to realize large-scale systems

requires developing methods to couple individual mechanical

elements to facilitate new types of coordinated, collective and

engineered system response. To date, coupling of only several

micromechanical elements has been reported; nonetheless

this makes possible micromechanical filters with programmed

passband response at radio frequencies [3]. However, the

collective response of large arrays of coupled micromechanical

devices has not yet been achieved. In this work we report the

first realization of a large array of coupled micromechanical
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systems. This represents one of the first steps to large-scale

integration of micromechanical devices.

Our device consists of an array of doubly clamped beams

forming a diffraction grating. Similar devices were employed

before as optical switches where the efficiency of diffraction

is controlled by moving the grating with respect to the sub-

strate beneath it, allowing thus optical modulation [4]–[6]. In

the present work, however, we introduce coupling between the

beams and we study the resultant dynamics of the system.

The devices described in this work are composed of 67

doubly clamped beam resonators. With inter-device mechan-

ical coupling effectively absent, we first characterize each

resonator separately and completely through a novel technique

[7], [8]. Then, upon application of a controlled and tunable

electrostatic interaction between the individual mechanical

elements, mechanical coupling between them is induced and a

collective spectrum of vibrational modes emerges. These col-

lective modes of the coupled system are excited parametrically,

and we employ fiber-optic based optical diffraction to study

the induced response. A simple model describing our system

predicts the generalized overall features of this response, but

with only modest drive levels a rich and complex nonlinear

spectrum emerges. We conclude our discussion describing the

unique prospects these systems offer for spectral analysis of

complex mechanical stimuli, and for real-time spectral analysis

of electrical waveforms.

II. FABRICATION AND CHARACTERIZATION

The bulk micromachining process employed for sample

fabrication is described in Fig. 1. In this process the substrate

beneath the grating is completely etched away, thus allowing

optical access to the grating from both sides. In the first step

chemical vapor deposition is employed to deposit a 70-nm-thick

layer of low-stress silicon nitride on the front and back sides

of a Si wafer. A square window is opened in the silicon nitride

on the back side using photolithography and wet etching [see

Fig. 1(a)]. The structure shown in Fig. 1(b) is realized through

a highly selective, anisotropic KOH etch for the backside

of the Si wafer. This occurs within the patterned region and

yields a 270- m-square silicon nitride membrane on the front

side of the wafer. The grating beams and adjacent electrodes

are fabricated on top of this membrane using electron beam

lithography, followed by thermal evaporation of Au and liftoff

[see Fig. 1(c)]. Each resulting beam has length m,

width 1 m and thickness 0.25 m (measured using an atomic

force microscope) and the grating period is m. In the

final step the membrane is removed using electron cyclotron
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Fig. 1. The device is fabricated using bulk micromachining techniques. In
steps (a) and (b), a suspended membrane of silicon nitride is formed. (c) A gold
beam is fabricated on top of the membrane and (d) the membrane is etched,
leaving the beam suspended. A side view micrograph of the device is seen in (e).

Fig. 2. (a) Response peak of an individual beam with a resonance frequency
of 179.28 KHz. (b) Normalized resonance frequencies of all beams in the array
(! � h! i)=h! i where h! i is the average value.

resonance (ECR) plasma etching from the back side of the

sample. This process step employs an Ar/NF gas mixture,

and results in suspension of the Au beam array [see Fig. 1(d)].

Fig. 1(e) shows a side view micrograph of the device. The

Fig. 3. (a) A model ofN coupled pendulums. (b) The shape of the three lowest
modes. (c) The dispersion relation between the frequency ! of each mode and
the wave vector k .

electrodes form two interdigitated combs; with fingers alter-

nately connected to the two base electrodes. This design allows

application of electrostatic forces between the beams.

To characterize uniformity within the device we measure the

fundamental resonance frequency of each suspended beam in

the array. This is done in situ, using the output from a com-

mercial scanning electron microscope’s imaging system to de-

tect mechanical displacement. We have employed this technique

previously to study the mechanical properties of individual, sim-

ilarly fabricated Au beams [7], [8]. Fig. 2(a) shows a typical

response peak from an individual beam. By measuring all 67

suspended beams in the array we find that the distribution of

resonance frequencies has an average of 179.3 kHz and a stan-

dard deviation of 0.53 kHz [see Fig. 2(b)]. Individual mechan-

ical quality factors range from 2000 to 10 000. Note that no

correlation is found between the location of the beam within

the device and its specific resonance frequency or ; the small

beam-to-beam variations appear to be random.

III. MODELING

What is expected when a voltage is applied between the

two combs? We employ a simple one-dimensional model for

an -element array of coupled pendulums [9] to describe our

system [see Fig. 3(a)]. While the first and last pendulums in the

array are clamped and stationary, all others (
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) are free to oscillate about their equilibrium positions . Here

represents the equilibrium spacing between neighboring pen-

dulums. In the absence of any coupling, the angular frequency

for small oscillations of each (identical) pendulum is . The

displacement of the system is described by a set of coordinates

( ) [see Fig. 3(a)]. Applying a voltage

gives rise to an attractive interaction between each pendulum

and its nearest neighbors , where is the

distance between the interacting pendulums and is the ca-

pacitance. Neglecting coupling between nonneighboring pen-

dulums, and assuming small oscillations, we find the following

set of equations of motion:

(1)

where , and (here dots

represents time derivatives and primes represent spatial deriva-

tives). Note that due to the attractive nature of the in-

teraction between nearest neighbors. These equations can be

greatly simplified by employing a transformation to the eigen-

modes (phonons) of the system

(2)

where is the spatial

shape of mode number ( ),

is the wavevector, and is the length of

the system. Fig. 3(b) shows the shape of the three lowest modes

. Substituting (2) in (1) leads to a set of decoupled

equations of motion:

(3)

where . A

stationary voltage thus gives rise to the formation

of a band of collective modes between frequencies and

. The associated wavevectors,

, vary from to [see Fig. 3(c)].

Each mode can be selectively excited by adding an ac voltage

to the dc bias, namely, . Assuming

we find from (3):

(4)

where . Thus, an ac voltage

component gives rise to parametric excitation of each mode with

amplitude [10]–[12]. Parametric resonance occurs when the

frequency of the ac voltage is close to , where is an

integer. Near these values the system may exhibit unstable be-

havior in which the amplitude of oscillations grows as a function

of time. In the linear theory of parametric resonance this growth

is exponential, and occurs when the amplitude of parametric ex-

citation exceeds a critical value dependent upon the damping

in the system. Most systems, however, possess some degree

of nonlinearity which comes into play as soon as the ampli-

tude of the motion becomes appreciable. Thus, while the linear

theory is useful in determining the conditions for the occur-

rence of parametric resonance, it is inadequate for determining

the steady-state response of the system. Unfortunately, the non-

linear coefficients of our system are not known and therefore its

steady-state response cannot be predicted. However, we expect

that the response of modes with high index will be relatively

large because increases in magnitude with .

We detect the collective mechanical vibrations of the array by

diffraction measurements. With spatially uniform light incident

upon the array, the intensity of diffraction is proportional to the

form factor where

(5)

Here, is the component of the change in wavevector be-

tween incoming and outgoing waves (the direction lies in the

plane of the sample and is perpendicular to the long axis of the

beams) [13]. Consider the case where the system is tuned to

a diffraction peak, namely with an integer. As

shown below, for this particular case the interpretation of the

experimental results becomes greatly simplified. We calculate

the form factor for the case where mode oscillates with am-

plitude and all other modes are stationary. Assuming small

oscillations, namely, , we find

(6)

Thus, the collective mechanical oscillations give rise to an oscil-

latory component in the diffraction signal at angular frequency

. Note that the term proportional to is negli-

gibly small unless is small.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The optical setup utilized for the diffraction measurements

is schematically depicted in Fig. 4. A polarization maintaining

single mode fiber (numerical aperture NA 0.15 and core

diameter m) delivers infrared light from a laser to the

sample. We use a tunable wavelength diode laser operating

in the range from 1535 to 1635 nm. A spherical lens (focal

length mm) collimates the beam, which illuminates the

back side of the grating at normal incidence with respect to

the array plane. At the array plane, located a distance

cm from the collimator, we estimate the diameter of the beam

to be NA m. For the results presented, the

polarization of the incident light is TE, i.e., the electric field

is parallel to the grating lines. We note, however, that similar

results (not presented here) were obtained with perpendicular

polarization. For the present case there are four diffraction

peaks with angles ( ) with

respect to the normal incidence. Here is the wavelength of

incident light. Transmitted light is collected by a cylindrical

lens and focused into a second, single-mode fiber. The lens

enables the intensity of collected light to be maximized

without degrading the spectral resolution. The fiber delivers

light collected from the first-order ( ) diffraction peak

to a photodiode detector. The distance between the sample

and the lens, cm, was chosen as a compromise be-

tween two conflicting considerations, namely, simultaneously
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Fig. 4. The optical setup for measurements of the 1st order diffraction peak of the grating. Optical fibers are employed to deliver light to and from the vacuum
chamber where the sample is mounted. The dc voltage V introduces coupling between the beams and the ac voltage V is used to parametrically excite the
modes of vibration. A lock-in amplifier is employed to measure the response. The inset shows the dc signal of the photodetector as a function of wavelength (for
V = V = 0).

maximizing spectral resolution and light intensity. While the

former consideration favors a large distance, the later favors a

small one. For the distance chosen, the spectral resolution is

nm. All measure-

ments are done at room temperature in vacuum of 10 torr.

We first study diffraction from the array in the absence of

any interelectrode bias voltage. The inset of Fig. 4 shows the

intensity detected by the photo diode as a function of . The

full-width at half-maximum (FWHM) of the diffraction peak is

estimated using the Fraunhofer diffraction formula [13] to be

nm. We find good agreement between this

estimate and the measured value. No effect is resolved from

the thermally driven mechanical vibrations of the beams. Their

effect upon diffraction can be characterized by multiplying the

diffracted intensity by a Debye–Waller factor, [14],

[9]. In the present case we estimate that , hence

thermal fluctuations are not expected to affect the diffraction

from our micromechanical array significantly. This is confirmed

by the experimental data.

In order to excite the modes of vibrations of the system exter-

nally, we apply a voltage between ei-

ther side of the interdigitated electrode arrays. We tune the laser

wavelength to the diffraction peak ( nm) and measure

the photodetector response using a lock-in amplifier operating

in 2 mode. This allows us to detect the Fourier component of

the array response at angular frequency 2 . Fig. 5 is a color map

plot showing this second harmonic response, , as a function

of both and . The amplitude of the ac voltage is

mV for these measurements.

With we find a peak in at kHz, asso-

ciated with the fundamental frequency of the decoupled beams.

The FWHM of the peak is 0.6 kHz, close to the standard de-

viation found in the distribution of the measured fundamental

frequencies. This leads us to the conclusion that the width of

the response peak at is dominated by inhomogeneous

broadening caused by the nonuniformity of the array.

As we increase we observe a gradual increase in the fre-

quency range where relatively large response is observed; we

associate this with the formation of a band of collective modes.

The lower frequency bound of this range (the

bottom of the band) for relatively small is given theoretically

by . A least squares fit to the

measured data (see dashed line in Fig. 5) yields

V . For comparison we derive below a rough order

of magnitude estimate of this factor. We substitute , which

should represent an effective mass of each beam, by the ac-

tual mass and we use the approximation (as-

suming the case of parallel thin wires), where is permittivity

of free space and is the gap between neighboring beams. These

crude approximations yield a value of 1.6 10 V which is

quite close to the value deduced from the experimental data. The

upper frequency bound of the band, on the other hand, shows

some discrepancy with theory. While the measured value de-

pends on , our simple model predicts a upper value that is
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Fig. 5. A color map showing relative signal intensities measured at the lock-in amplifier operating in a 2f mode. The dependence upon both the voltage V
and the frequency of the ac voltage f are shown. The wavelength is tuned to the diffraction peak, namely � = 1582 nm. The dashed white line shows a fit to the
measured lower bound frequency f of the band.

fixed. We obtained similar behavior of this upper frequency with

orthogonal polarization, and with another sample of similar de-

sign.

The rich and detailed structure of the frequency-dependent

response observed in our experiments is not at present fully

understood. Experimentally, Fig. 5 shows that is an oscilla-

tory function of frequency, and has a relatively large magni-

tude close to the lower limit of the band. Theoretically the fre-

quency dependence can be found from (6) and the density of

states (which is determined by the dispersion relation). As dis-

cussed above, however, the simple linear theory is not adequate

for predicting the steady-state response . The experimentally

observed oscillatory behavior indicates that nonlinear effects in-

deed dominate the dynamics of our system. To account for these

observations, Lifshitz and Cross [15] have developed recently a

theoretical model of the system presented in this work. Their

analyses include the effects of nonlinear elasticity as well as

nonlinear dissipation. By numerically integrating the nonlinear

equations of motion, they obtain the response of the system to

parametric drive. The calculated response successfully repro-

duces some of the features observed in the experiment, showing

thus good qualitative agreement, however, further work is re-

quired to achieve also quantitative agreement.

V. CONCLUSION

Electrically tunable arrays offer unique prospects for opto-

mechanical signal processing devices such as tunable filters and

optical modulators. A particularly intriguing example is opto-

mechanical spectral analysis of electrical waveforms. Consider

an arbitrary electrical signal applied between the two comb elec-

trodes of our device. Its Fourier components falling within the

vibrational band (formed by the DC electrostatic coupling as

described above) will parametrically drive the collective modes

of the array. Each of these excited modes will result in a dif-

fracted order with strength directly proportional to the respec-

tive Fourier component present within the applied waveform.

Since each order is diffracted at a characteristic angle, contin-

uous, real-time spectral analysis of the applied signal can be

realized by using a photodetector array to collect the optical

output at all angles. In principle, scaling the size of the reso-

nant mechanical elements downward into the realm of NEMS

(nano electromechanical systems) will permit extension of the

operating frequency of such a analyzer to very high frequencies.

In conclusion, we have demonstrated the ability to induce and

control collective modes of mechanical vibration within an array

of micromechanical elements that, in effect, constitutes an arti-

ficial mesoscopic lattice. Further experimental and theoretical

work will elucidate the rich dynamics of such systems, and will

permit their optimization for novel micro opto-mechanical de-

vice applications.
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