
ARTICLE

Received 30 Jul 2014 | Accepted 31 Oct 2014 | Published 11 Dec 2014

Electrically tunable nonlinear plasmonics
in graphene nanoislands
Joel D. Cox1 & F. Javier Garcı́a de Abajo1,2

Nonlinear optical processes rely on the intrinsically weak interactions between photons

enabled by their coupling with matter. Unfortunately, many applications in nonlinear

optics are severely hindered by the small response of conventional materials. Metallic

nanostructures partially alleviate this situation, as the large light enhancement associated

with their localized plasmons amplifies their nonlinear response to record high levels.

Graphene hosts long-lived, electrically tunable plasmons that also interact strongly with light.

Here we show that the nonlinear polarizabilities of graphene nanoislands can be electrically

tuned to surpass by several orders of magnitude those of metal nanoparticles of similar size.

This extraordinary behaviour extends over the visible and near-infrared spectrum for islands

consisting of hundreds of carbon atoms doped with moderate carrier densities. Our quantum-

mechanical simulations of the plasmon-enhanced optical response of nanographene reveal

this material as an ideal platform for the development of electrically tunable nonlinear optical

nanodevices.
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T
he well established field of nonlinear photonics hosts a vast
number of applications, including spatial and spectral
control of laser light, all-optical signal processing, ultrafast

switching and sensing1,2. Because the efficiencies of nonlinear
optical processes are generally poor, considerable effort has been
devoted towards seeking materials that can display nonlinear
effects at low light intensities and ultrafast response times2–4. For
this purpose, plasmonic nanostructures have been particularly
attractive due to their ability to generate high local intensity
enhancements through strong confinement of electromagnetic
fields3,5,6, leading to second-harmonic polarizabilities as high as
B10� 27 esu (electrostatic units) per atom, as measured for
noble metal nanoparticles3, and even beating the best molecular
chromophores3,7,8. However, although localized plasmons can be
customized through the size, shape and surrounding environment
of the metal nanostructures5, they suffer from low lifetimes and
lack post-fabrication tunability9.

Doped graphene has recently attracted much attention as an
alternative plasmonic material capable of sustaining electrically
tunable optical excitations with long lifetimes9–18. The existence
of gate-tunable plasmons in graphene has been confirmed by
THz13,14 and mid-infrared15,16 spectroscopies, while optical near-
field microscopy has been used to image them in real space17,18.
Efforts to extend the plasmonic response of graphene to the
visible and near-infrared regimes are currently underway12. In
addition, graphene has been predicted to display intense
nonlinearity due to its anharmonic charge–carrier dispersion
relation19. Recent four-wave mixing20, Kerr effect21, and third-
harmonic generation (THG)22 experiments already confirm a
large third-order response in this material in the undoped,
plasmon-free state. Graphene plasmons could amplify this
response further23, and even enable strong few-photon
interactions in small islands24,25.

Here we show that the nonlinear optical polarizabilities of
small graphene nanoislands (o10 nm) exceed by several orders of
magnitude those of noble metal nanoparticles with similar lateral
size (but obviously of much greater volume), which are among
the best nonlinear materials. Nonlocal and finite-size effects
dominate the response of these structures26,27, which we model in
a quantum-mechanical fashion. Specifically, we perform density-
matrix simulations using a tight-binding description of the
electronic states and following complementary time-domain and
perturbative approaches (see details in Methods). Our results

reveal unprecedented levels of nonlinearity when the graphene
nanoislands are doped with only a few electrons.

Results
Harmonic generation by an ultrashort pulse. Figure 1 illustrates
the optical nonlinearity of one of the armchair-edged triangular
graphene nanoislands considered in this work, consisting of 330
carbon atoms, spanning a side length of 4.1 nm and doped with
two additional charge carriers (2.3� 1013 cm� 2 doping density,
equivalent to 0.56 eV Fermi energy in extended graphene). Upon
illumination with a light pulse of central energy ‘o0¼ 0.68 eV,
tuned to one of its plasmons, the island is capable of producing
significant nonlinear polarization at multiple harmonics (Fig. 1a),
including second-harmonic generation (SHG) and THG. The
temporal evolution of the induced polarization (Fig. 1b, blue) and
its spectral decomposition (Fourier transform, Fig. 1c) show the
excitation of high harmonics using a relatively moderate pulse
fluence 177mJm� 2 (see Supplementary Fig. 1 for additional
results obtained from various incident fluences). Although gra-
phene is a centrosymmetric two-dimensional crystal, which
ordinarily would prevent even-ordered nonlinear processes from
occuring1, this symmetry can be broken by the finite size of the
nanoisland. Notice that the mirror symmetry of the nanoisland
along x results in the vanishing of even-harmonic generation
when the incident light is polarized along that direction.
Conversely, both odd and even harmonics are observed with a
pulse polarized along the asymmetric y direction. Interestingly,
the intensity of odd harmonics is independent of polarization
direction because the nanoisland has threefold rotational
symmetry. For the pulse polarized along the y direction, we
also take special note of a static electric field formed in the
graphene nanoisland due to optical rectification, as indicated by
the polarization emerging at zero frequency in Fig. 1c.

Electrically tunable nonlinear response. For a quantitative
analysis of the linear and nonlinear optical response of nano-
graphene, we examine the incident-frequency dependence of the
nonlinear polarizability in Fig. 2. Both time-domain and pertur-
bative approaches produce nearly identical results when the
former is computed for low light intensities (see Methods). For
simplicity, we concentrate on the same nanotriangle as in Fig. 1,
under different doping conditions, ranging from Q¼ 0 to Q¼ 6
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Figure 1 | Nonlinear response of nanographene. (a) Illustration of a doped graphene nanotriangle (armchair edges, N¼ 330 carbon atoms, L¼4.1 nm side

length, doped with Q¼ 2 additional charge carriers) under irradiation by a short light pulse (166 fs full width at half maximum (FWHM) duration,

1012Wm� 2 peak intensity, o0¼0.68 eV central energy) tuned to one of the graphene plasmons. (b) Time variations of the incident electric field and the

induced graphene dipole. (c) Harmonic analysis of the graphene dipole for polarizations along the x and y directions (see axes in a).
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additional charge carriers. In undoped graphene (Q¼ 0), the
linear polarizability (Fig. 2a) is dominated by a single 41 eV
plasmon in the spectral region under consideration, which,
however, produces only negligible SHG (Fig. 2b) and THG
(Fig. 2c). In contrast, when the island is doped, o1 eV plasmon
features emerge (Fig. 2a), which move towards higher energies as
Q is increased. These highly tunable, low-energy dipole plasmon
modes are a result of the collective nature of the electronic
excitations of the nanoisland, and do not coincide with any
dominant electron–hole pair transitions12,28. Incidentally, zigzag
edges are detrimental for the emergence of these plasmons and
the resulting tunable nonlinear response (see Supplementary
Figs 4 and 5). Importantly, intense features appear in the
nonlinear spectra at incident photon energies tuned to the low-
energy plasmons (Fig. 2b,c). These features exhibit
multicomponent line profiles that indicate a complex interplay
between the responses at the incident frequency and at multiples
of that frequency. The nonlinear strengths follow a non-
monotonic evolution with Q that we also attribute to that
interplay (see below). For quantitative comparisons with bulk
materials, we approximate the nonlinear susceptibilities w(2) and
w(3) in doped nanographene by considering the polarizability per
atom (denoted here as ~aðsÞ for the harmonic s) and calculating
wðsÞ ¼ ~aðsÞnC=dgr, where nC¼ 3.8� 1015 cm� 2 is the areal density
of carbon atoms in graphene and dgrC3.3� 10� 8 cm is the
effective thickness of a graphene layer (see right vertical axes in
Fig. 2). For comparison, we note that the third-order
susceptibility of extended graphene without the involvement of
any plasmons has been measured via four-wave mixing
experiments as |w(3)|B10� 7 esu, exceeding the maximum value
obtained for a 4-nm-thick gold film measured under the same
experimental conditions20. In addition, THG measurements have
yielded values |w(3)|B10� 8 esu in graphene22.

The linear and nonlinear spectral lineshapes display a
dependence on light intensity that is clearly observable above
B1GWm� 2, as shown through time-domain simulations in
Fig. 2d–f, obtained from the Fourier transform of the induced
dipole over an optical cycle after reaching a steady-state regime

(see Methods). In particular, the third-order nonlinearity
contributes to the polarization oscillating at the incident
frequency o through the Kerr effect1, the spectral details of
which can be actually mimicked by a classical model, assuming
that each electron of mass me oscillates around its equilibrium
position x¼ 0 driven by the incident field and subjected to an
anharmonic potential U xð Þ ¼ � meo

2
0=2

� �

x2 � mea=4ð Þx4 of
resonance energy ‘o0¼ 0.68 eV and nonlinear coefficient a.
Using a fixed value a¼ � (4.7þ 0.3i)� 1047m� 2 s� 2, this model
reproduces the initial redshift with increasing intensity I0 found in
the calculated linear polarizability for I0¼ 1010� 1011Wm� 2 (see
Fig. 2d and Methods), while it predicts optical bistability at even
higher intensities (I0¼ 5� 1011Wm� 2).

The number of electrons involved in the observed resonances,
as estimated from the f-sum rule12,29, is roughly proportional to
the resonance frequency times the maximum polarizability, where
the latter is given by the area of the symbols in the top panel of
Fig. 3a. Although the largest islands studied here involve many
electrons in each resonance according to this criterium, and thus,
we can legitimately talk about plasmon resonances, it is interesting
to note that the mode examined in Fig. 2d for the 330-atom
triangle has an effective strength of only B0.3 electrons. However,
the energy of this mode is very different from those of individual
dipole-active electron–hole pair excitations28, which emphasizes
its many-body character. It is nonetheless surprising that
nonlinear effects are observed at relatively moderate intensities
(for example, 1011Wm� 2), for which the excited state still has a
low population npB0.08, as estimated by equating the energy
absorbed by the particle (that is, sabsI0, where sabsE(4po/
c)Im{a(1)} is the absorption cross-section) to the energy dissipated
through plasmon decay (that is, np‘op/t, where op and t are the
mode frequency and decay time, respectively).

Mapping the nonlinearity in doped graphene nanoislands. We
present in Fig. 3 an overview of the dependence of the maximum
first-, second-, and third-harmonic polarizabilities on island size
and doping (see also Supplementary Fig. 2 for the polarizabilities
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Figure 2 | Linear and nonlinear polarizability spectra. We study the nanotriangle of Fig. 1 for external polarization perpendicular to one of the graphene

sides, assuming different doping levels as indicated by the number of additional charge carriers Q. (a–c) Linear (a), second-harmonic (b) and third-

harmonic (c) polarizabilities for low-intensity continuous illumination. (d–f) Same as a–c calculated for various high intensities I0, and at frequencies

near the lowest-energy dipole plasmon under Q¼ 2 doping, as indicated by the vertical dashed blue lines spanning a–c. The filled curves in b and c have

been multiplied by the factors indicated with text of the corresponding colour, while the filled curves in d are obtained with a classical anharmonic oscillator

model (see main text).
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normalized to the number of atoms). The linear polarizabilities
increase monotonically with size and doping, while the plasmon
energies scale roughly as BQ1/4/N1/2, in a way that is consistent
with a local classical description of the optical response12. With
fixed doping densities, the maximum linear polarizability is found
among the higher-energy plasmon modes for smaller islands, as
illustrated in Fig. 2a for low doping. As the nanoisland size
increases, and with it the doping level, the lower-energy modes
eventually become dominant. In contrast, the nonlinear
polarizabilities exhibit a non-monotonic evolution with both Q
and N, which we again attribute to the presence of resonances
at both the fundamental and the harmonic frequencies.

When normalized per carbon atom, the THG susceptibilities
take extraordinarily large values |w(3)|B10� 6–10� 4 esu (see
Supplementary Fig. 2 and below).

A mechanism of double plasmonic enhancement is illustrated
in Fig. 4, showing anomalously large nonlinear polarizabilities
when a plasmon exists at a multiple of the fundamental
frequency, which is in turn tuned to another plasmon. This
phenomenon has been recently invoked to predict nonlinearities
in graphene islands at the single-photon level25. For SHG, Fig. 4a
shows this effect taking place for an island consisting of N¼ 168
atoms. Similarly, Fig. 4b shows large THG with N¼ 270. The
non-monotonic evolution of the nonlinear polarizabilities with
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size and doping noted in Figs 2 and 3 are also due to this type of
double-resonance effect. For a fixed geometry, the double-
enhancement phenomenon should be attainable by varying the
doping charge density: consider, for example, the highly tunable,
low-energy dipole plasmon mode of Fig. 2a, which evolves with
doping, eventually converging to the less-tunable, higher-energy
mode, so that at some point before converging the two modes
satisfy the required 1:2 energy ratio. This phenomenon should
also occur in imperfect nanoislands with a predominance of
armchair edges, although higher levels of doping could be
necessary (see Supplementary Fig. 6).

Comparison to noble metal nanoparticles. Figure 5a shows that
the SHG polarizabilities predicted for nanographene exceed by
three orders of magnitude the optimal values measured for noble
metal nanoparticles of similar lateral size. For a comprehensive
comparison of SHG with noble metals, we present data from
experiments performed on various nanoparticle morphologies,
including highly asymmetric structures, as well as for different
excitation frequencies8,30–32. The comparison per unit volume is
even more favourable to graphene, as it is an atomically thin
structure, in contrast to the three-dimensional nanoparticles. The
third-order polarizability in graphene is also above that measured
for copper and silver33,34 (Fig. 5b), and more so when considering
that these measurements refer to fully degenerate four-wave
mixing experiments, which tend to yield significantly higher
values than those obtained when looking at THG or non-
degenerate four-wave mixing35. Although larger graphene islands
present a computational challenge beyond our current
computational capabilities, the pace at which their nonlinear
polarizabilities increase with size should be faster than that of
noble metals, as expected from the extrapolation of the dashed
lines in Fig. 5. It should be noted that this occurs at plasmon
energies that eventually evolve towards the mid-infrared (see
Fig. 3a), whereas the size range here explored yields tunable
visible and mid-infrared excitations.

Discussion
The magnitudes of the second- and third-order nonlinear
polarizabilities of doped graphene nanoislands predicted by our

simulations are several orders of magnitude higher than those
reported for noble metal nanoparticles with comparable lateral
sizes. We note that the polarizabilities of noble metals measured
experimentally may be less than those that could be obtained
from rigorous theoretical calculations, and thus it would be
prudent to compare the latter for noble metal nanoparticles,
particularly for geometries that optimize signals at both the
fundamental and harmonic frequencies (that is, via double
plasmon resonance at both frequencies). Nevertheless, the
extraordinary SHG and THG reported above warrants further
exploration of nonlinear optical phenomena in doped nanogra-
phene. Other morphologies apart from nanotriangles should yield
similar high levels of nonlinear response, particularly when their
edges are predominantly armchair. Graphene nanoislands with
sizes comparable to those considered here have already been
fabricated using various methods36–38, although they lack precise
control over size and shape, which limits their applicability to
nonlinear photonic technologies. Alternatively, a bottom-up
approach based upon chemical self-asembly of molecular
precursors provides better degree of control over the sizes and
edge configurations39–41.

In practical devices, electrical doping can be introduced in the
nanoislands through a transparent substrate42, or by placing them
close to a contact, from which electrons can be tunnelled. Arrayed
nanoislands can transform a substantial fraction of the incident
light energy into nonlinear harmonics (see Supplementary Fig. 7).
Our results indicate that a relatively small amount of charge
transferred to a graphene nanoisland can facilitate a marked
increase in the magnitude of the nonlinear polarizability. This
suggests the use of graphene nanoislands for the development of
nanometre-sized optoelectronic switches and modulators, as well
as for the detection of minute amounts of analytes through their
charge transfer to the graphene.

Methods
Introduction. We investigate the linear and nonlinear optical response of doped
graphene nanoislands, with emphasis on enhanced nonlinearities arising when the
involved optical frequencies are tuned to the graphene plasmons. The latter cor-
respond to light wavelengths that are much larger than the size of the islands10, and
therefore, we characterize their optical response in the electrostatic limit, so they
contribute to the far field with their induced dipole moment p. In our numerical
simulations, we consider light incident along the direction normal to the carbon
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plane, which we take as ẑ. As we are interested in the enhanced optical response
due to plasmons, armchair-edged nanoislands are preferred because they support
intense and highly tunable modes, whereas zigzag-edged islands host near-zero-
energy electronic states that are detrimental to the strength and tunability of optical
excitations28, particularly when the plasmon energy is above the Fermi level12 (see
Supplementary Fig. 4). We concentrate on armchair nanotriangles lying on the x–y
plane and oriented as illustrated in Fig. 1a of the main paper. However, the
methods that we introduce below can be directly applied to arbitrarily shaped
nanographene.

We use a simple tight-binding representation for the low-energy electronic
states of graphene, with one perpendicularly oriented p orbital per carbon
atom43,44 (see below). This model implicitly assumes that, for low excitation
energies (o3 eV), the localized electrons in the s band and the remaining in-plane
p orbitals do not contribute significantly to the optical response other than by
introducing a rather homogenous charge screening through their polarization,
which slightly redshifts plasmon energies. These effects are not qualitatively
changing the optical response, as compared with time-dependent density
functional theory27, so we neglect them for simplicity. It should also be noted that
excitonic effects can play a relevant role at the highest energies under
consideration45, particularly for relatively small nanoislands in the absence of any
doping46, although we do not attempt to describe these effects accurately.

Density-matrix approach to the nonlinear optical response. We model the
optical response using a single-particle density-matrix approach, assuming that
only p-band valence electrons are contributing and expanding them in a basis set
formed by the 2p carbon orbitals oriented perpendicular to the graphene plane,
with one spin-degenerate state |li per atomic site Rl¼ (xl, yl). We adopt a tight-
binding description43,44 in which the unperturbed system is characterized by a
Hamiltonian HTB of matrix elements hl|HTB|l

0i¼ � hdhl,l0i, where h¼ 2.8 eV is the
hopping energy, while dhl,l0i is 1 if l and l0 are nearest-neighbour carbon sites and 0
otherwise. Upon diagonalization of HTB, we obtain single-electron states of energies
‘ ej that can be expressed as

jjji ¼
X

l

ajl j li; ð1Þ

where the expansion coefficients ajl are real and give the amplitude of orbitals |li in
states j. These states are orthonormal (

P

l ajlaj0 l¼ djj0) and form a complete set (
P

j

ajlajl0 ¼ dll0). In what follows, we use indices l to label carbon sites and j for single-
electron states.

We describe the electronic state of a graphene nanostructure through its single-
particle density matrix r

r ¼
X

ll0

rll0 j lihl0 j ¼
X

jj0

~rjj0 jjjihjj0 j ;

where rll0 ð~rjj0 Þ are time-dependent matrix elements in the site (state)
representation. We can move between these two representations using the relations
~rjj0 ¼

P

ll0 ajlaj0 l0rll0 and rll0 ¼
P

jj0 ajlaj0 l0 ~rjj0 , involving the ajl coefficients defined
in equation (1). Plasmon dynamics are then studied by solving the equation of
motion47

@r

@t
¼ �

i

‘
H; r½ � �

1

2t
ðr�r0Þ; ð2Þ

where

H ¼ HTB � ef ð3Þ

is the system Hamiltonian, f is the total potential acting on the graphene island
and r0 is the equilibrium density matrix at time t¼ �N (that is, before any
interaction with external fields), to which the system relaxes at a rate t� 1. The
factor of 1/2 in the dissipation term of equation (2) accounts for the fact that we are
relaxing to the ground state instead of the local thermal equilibrium state48. We
construct ~r0jj0 ¼ fjdjj0 from the incoherent filling of electron states according to the
Fermi–Dirac-distribution occupation numbers fj

47. Although this relaxation
approximation is unable to conserve local electron density48, it should provide an
accurate description for optical field components oscillating at frequencies
oct� 1. This is the case of plasmons in high-quality doped graphene, for which
we assume a realistic phenomenological inelastic relaxation rate ‘ t� 1¼ 10meV
throughout this work, unless otherwise stated (see Supplementary Fig. 3).

It should be noted that the nonlinearity arises from the induced part of the
potential, which produces a quadratic dependence on r on the right-hand side of
equation (2). We obtain linear and nonlinear nanographene polarizabilities by
numerically solving equation (2) using either time-domain or perturbative
methods, as outlined in the following sections. In particular, results presented in
Figs 1 and 2d–f and in Supplementary Figs 1 and 5 are obtained from time-domain
simulations, while the results of Figs 2a–c and 3–5 and Supplementary Figs 2–4, 6
and 7 are calculated using the perturbative approach.

Time-domain approach. Direct numerical integration of the equation of motion
(2) constitutes an intuitive method of solution, for which it is convenient to express

it in the basis set of carbon site orbitals |li as

@rll0

@t
¼ �

i

‘

X

l00

Hll00rl00 l0 � rll00Hl00 l0ð Þ�
1

2t
rll0 � r0ll0
� �

: ð4Þ

The elements of the Hamiltonian (see equation (3)) are

Hll0 ¼ � hdhll0i � edll0fl :

Here, the total potential f is diagonal in the site representation and results from
the sum of the external potential

fext
l ¼ �Rl � EðtÞ;

where E(t) is the incident electric field, assumed to be uniform along the island, and
the self-consistent induced potential, which we model in the Hartree
approximation as47

find
l ¼ � 2e

X

l0

ull0 rl0 l0 �r0l0 l0
� �

ð5Þ

after correcting for homogeneous doping in the graphene nanoisland49. Here,
� 2eðrl0 l0 � r0l0 l0 Þ is the induced charge at site l0 , ull0 gives the spatial dependence of
the Coulomb interaction between electrons in orbitals |li and |l0i26, and the factor
of 2 accounts for electron spin.

The time-dependent elements rll0 are calculated by numerically integrating
equation (4) to yield the induced dipole moment

pðtÞ ¼ � 2e
X

l

rll � r0ll
� �

Rl :

We use this approach to study the response to high-fluence Gaussian light
pulses (see Fig. 1 in the main text and Supplementary Fig. 1).

In addition, we are interested in computing SHG and THG upon continuous-
wave (CW) illumination. Accordingly, we write the incident field as

EðtÞ ¼ E0e
� iot êþ c:c:; ð6Þ

where ê is the polarization vector, which we take for simplicity along a high-
symmetry direction of the system, so that the induced dipole is also along ê (this is
the case for polarization either parallel or perpendicular to one of the sides of an
equilateral triangular island). For moderate light intensities, the leading
contribution to the dipole oscillating at the sth harmonic is defined as

pðsÞðtÞ ¼ aðsÞEs
0e

� isot þ c:c:;

where a(s) is the s order polarizability. We calculate the latter by separating it from
all other constituent terms in the induced dipole p(t) upon Fourier transformation
of a single optical cycle. More precisely, from the above definition of p(s)(t) it
follows that

aðsÞðoÞ ¼
o

2pðE0Þ
s

Z

t1

t1 � 2p=o

pðtÞeisotdt;

where we assume the system to have evolved to a steady state at a time t1ct after
starting the simulation. We use this procedure to compute the frequency-
dependent linear and nonlinear polarizabilities represented in Fig. 2d–f of the main
paper and in Supplementary Fig. 5.

Perturbative approach. An iterative solution of equation (2) is possible under CW
illumination. This is facilitated by writing it in the state representation as

@~rjj0

@t
¼ � i ej � ej0

� �

~rjj0 þ
ie

‘

X

l;l0

fl �fl0ð Þajlaj0 l0rll0 �
1

2t
~rjj0 � ~r0jj0

� �

; ð7Þ

where we have used HTB|ji¼‘ ej|ji, and the interaction potential term has been
transformed using the coefficients ajl of equation (1). We then expand the density
matrix as

r ¼
X

n;s

rnse� isot ; ð8Þ

where n¼ 1, 2, 3, ... labels the perturbation order (that is, terms proportional to
(E0)

n, see equation (6)), while s indicates the harmonic. We use the property
~rnsjj0 ¼ ð~rn;� s

j0 j Þ� to reduce the computation time and storage demand roughly by a

factor of 2. To 0th order in E0, equation (7) is trivially satisfied with rns¼ ds,0r
0.

The external potential contributes to first order (n¼ 1) with s¼±1 components
only. We obtain the solution at higher orders by inserting equation (8) into
equation (7) and identifying terms with the same e� isot dependence on both sides
of the equation. Clearly, we have |s|rn by construction. At order nZ1, we find

~rnsjj0 ¼ �
e

‘

X

l;l0

fns
l �fns

l0

� �

ajlaj0 l0

soþ i=2t� ej � ej0
� � r0ll0 þ Znsjj0 ; ð9Þ

where

Znsjj0 ¼ �
e

‘

X

n� 1

n0¼1

X

n0

s0¼� n0

X

l;l0

fn0s0

l �fn0s0

l0

� �

ajlaj0 l0

soþ i=2t� ej � ej0
� � r

n� n0 ;s� s0

ll0 ; ð10Þ
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while

fns
l ¼ fext

l dn;1ðds;� 1 þ ds;1Þ� 2e
X

l0

ull0r
ns
l0 l0 ð11Þ

is the contribution to the harmonic s of the total potential at order n. In
equation (9), the first term on the right-hand side has a linear dependence on rns

through the induced part of fns (that is, the sum in equation (11)), whereas we
have separated the dependence on lower perturbation orders in Znsjj0 . At each order n

we are thus dealing with a self-consistent system in fns, which we handle in a way
similar to the random-phase approximation formalism in the linear response
theory47. We proceed by first using the identity r0ll0 ¼

P

jj0 ajlaj0 l0 ~r
0
jj0 ¼

P

j ajlajl0 fj in

the sum of equation (9), and then moving from state to site representation to
obtain the diagonal density-matrix elements as

rnsll ¼
� 1

2e

X

l0

w
0;ðsÞ
ll0 fns

l0 þ
X

jj0

ajlaj0 lZ
ns
jj0 ; ð12Þ

where

w
0;ðsÞ
ll0 ¼

2e2

‘

X

jj0

fj0 � fj
� � ajlaj0 lajl0aj0 l0

soþ i=2t� ej � ej0
� � ð13Þ

is the noninteracting random-phase approximation susceptibility at frequency so.
In summary, each new iteration order n is computed from the results of

previous orders as follows:
(1) We first calculate Znsjj0 using equation (10).
(2) We then combine equations (11) and (12) to find a self-consistent equation

for fns
l , which reduces in matrix form to

fns ¼ ð1� u � w0;ðsÞÞ� 1 � bns;

using site labels l as matrix indices and having defined

bnsl ¼ fext
l dn;1ðds;� 1 þ ds;1Þ� 2e

X

l0 jj0

ull0ajl0aj0 l0Z
ns
jj0 :

(3) We use the calculated values of Znsjj0 and fns
l to obtain rnsll using

equation (12), and from here the induced charge at site l at order n associated with
harmonic s as rindl ¼ � 2ernsll . Incidentally, we can also calculate the full density-
matrix ~rjj0 using equation (9).

(4) Finally, the polarizability of order s is calculated from

aðsÞ ¼ �
2e

Es
0

X

l

rssll Rl � ê ð14Þ

upon iteration of this procedure up to order n¼ s.

Nonlinear polarizability units. In the literature, the nonlinear polarizabilities a(2)

and a(3) are commonly reported in Gaussian electrostatic units (esu)1,50, with
length in cm and charge in statcoulomb (1 statC¼ 4pc0 C, where
c0¼ 2,997,924,580 is the speed of light expressed in m s� 1), whereas many
theoretical studies use atomic units (a.u., with e¼ ‘ ¼me¼ 1). The conversion
factors between esu, SI and a.u. are given in Table 1.

Throughout this work we adopt the common convention of referring to the
esu units of a(1) (cm3), a(2) (cm5 statC� 1) and a(3) (cm7 statC� 2) simply as ‘esu’50.
For completeness, in Fig. 5 we compare our simulated nonlinear polarizabilities a(2)

and a(3) with previously reported measurements for noble metal nanoparticles, and
offer both esu and SI values, as obtained by using the noted table. In particular, we
show the reported experimental values of |a(2)| acquired through hyper-Rayleigh
scattering of various types of gold and silver nanoparticles in aqueous
suspensions7,8,30–32. In addition, we show values of the reported third-order
susceptibility |w(3)| obtained from degenerate four-wave mixing measurements of
glasses doped with silver and copper nanoparticles33 and from THG measurements
of dispersed silver colloids on quartz34, converted into |a(3)| upon multiplication by
the particle volume.

Anharmonic oscillator model. The intensity dependence of the first-harmonic
polarizability can be qualitatively described by a classical model for damped and
optically driven particles of mass me subjected to an effective anharmonic

potential51,52. The equation of motion for such an oscillator can be written as

me€xþmet
� 1

_x ¼ � feEðtÞþ @xUðxÞ; ð15Þ

where f quantifies the coupling strength to the driving electric field
E(t)¼E0e

� iotþ c.c., while U xð Þ ¼ � meo
2
0=2

� �

x2 � mea=4ð Þx4 is the
anharmonic potential, characterized by a resonance frequency o0 and a nonlinear
coefficient a. The solution for the particle position x(t) can be expressed in
harmonics of the driving field as

xðtÞ ¼
X

1

s¼1

xðsÞðoÞe� isot þ c:c:

If we neglect terms of order s41 in the above expansion, equation (15) leads to

�3a jxð1Þ j 2 xð1Þ þ o oþ it� 1
� �

�o2
0

� �

xð1Þ ¼ feE0=me ð16Þ

for the first-harmonic amplitude x(1). The cubic equation (16) can be used to
explain the results obtained from our time-domain simulations for the linear
polarizability of nanographene under intense CW illumination. In Fig. 2d of the
main paper, we successfully fit a(1)¼ � ex(1)/E0 to this model for one of the islands
by taking ‘o0¼ 0.68 eV, f¼ 1.77 and a¼ � (4.7þ 0.3i)� 1047m� 2 s� 2. It should
be noted that the anharmonic oscillator model described here must be considered
as a phenomenological tool, used simply to qualitatively illustrate the magnitude
of the nonlinear shift observed in the linear spectra for illumination by intense,
CW fields.

Effect of the relaxation rate. The large linear and nonlinear polarizabilities found
in the graphene nanoislands depend strongly on the choice of the plasmon
relaxation rate t� 1. Throughout this work, unless otherwise specified, we take
‘ t� 1¼ 10meV, which is comparable to the values estimated from d.c. impurity-
limited mobilities in high-quality graphene53–55 and similar to values reported for
graphene used in actual plasmonic studies42. This is a conservative choice, because
chemical synthesis of finite-sized nanoislands should enable fabrication of
nanographene with fewer defects and less disorder. Arguably, graphene phonons
may also contribute to losses via phonon–plasmon coupling decay channels, in
particular for optical phonons near B0.2 eV (ref. 55). These modes are essentially
connected with the stretching oscillations of C–C bonds, so they are very localized
and give rise to relatively dispersionless bands. Therefore, their contribution to
inelastic attenuation acts locally and we expect them to behave in a similar way as
in extended graphene even in small nanoislands.

Nanoisland arrays. The experimental realization of SHG and THG from graphene
nanoislands could benefit from using samples containing large numbers of
nanoislands. We estimate here the nonlinear signal intensity resulting from an
array of nanotriangles illuminated by a light plane wave. For simplicity, we con-
sider a square array under normal incidence conditions. From the response of a
dipole array, the linear reflected electric field is given by the expression56

Eref ¼
iSðoÞ

1=að1ÞðoÞ�GðoÞ
E0; ð17Þ

where G(o)E4.52/a3þ i[S(o)� 2o3/3c3] is a lattice sum that accounts for the
dipole–dipole interactions between nanoislands, a is the period of the array and
S(o)¼ 2po/ca2, assuming oa/coo1. Now, we extend this approach to describe
higher harmonics in terms of the nonlinear polarizabilities. A straightforward
generalization of the methods in ref. 56 permits writing the intensity of the s
harmonic normalized to the incident intensity I0 as

IðsÞ

ðI0Þ
s ¼

so

a2

� �2 2p

c

� 	sþ 1
aðsÞðoÞ

½1� að1ÞðsoÞGðsoÞ�½1� að1ÞðoÞGðoÞ�s

























2

: ð18Þ

We show in Supplementary Fig. 7 the power emitted towards one side of an
array at frequencies so for a period a¼ 10 nm and islands like those of Fig. 2 of the
main paper, using the nonlinear polarizabilities reported in that figure. For
example, a peak intensity of 1GWm� 2 (100GWm� 2) will produce 1.3Wm� 2

(13 kWm� 2) and 0.29Wm� 2 (0.29MWm� 2) via SHG and THG, respectively,
when the nanoislands are doped with Q¼ 2 (see Supplementary Fig. 7b).
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