
1294 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 22, NO. 3, AUGUST 2007

Electricity Market Price Forecasting Based on
Weighted Nearest Neighbors Techniques

Alicia Troncoso Lora, Jesús M. Riquelme Santos, Antonio Gómez Expósito, Fellow, IEEE,
José Luis Martínez Ramos, Senior Member, IEEE, and José C. Riquelme Santos

Abstract—This paper presents a simple technique to forecast
next-day electricity market prices based on the weighted nearest
neighbors methodology. First, it is explained how the relevant
parameters defining the adopted model are obtained. Such param-
eters have to do with the window length of the time series and with
the number of neighbors chosen for the prediction. Then, results
corresponding to the Spanish electricity market during 2002 are
presented and discussed. Finally, the performance of the proposed
method is compared with that of recently published techniques.

Index Terms—Electricity market prices, forecasting, time series,
weighted nearest neighbors.

I. INTRODUCTION

I N competitive electricity markets, prediction tools have be-
come important for participating agents to be able to develop

their bidding strategies in order to maximize the profit obtained
by trading energy. Such techniques, traditionally applied to load
forecasting, have recently focused on the problem of predicting
the hourly energy prices of pool-based electricity markets.

Electricity price models can be broadly classified in two sets
[14], namely production cost models and statistical models. Pro-
duction cost models try to simulate the operation of the system
taking into account the strategic behavior of the involved agents.
The main drawback of simulation methods is the large amount
of information required, which is difficult to obtain in liberal-
ized markets.

On the other hand, statistical models predict price evolution
based on historically observed relationships, without explicitly
modeling underlying physical processes. This category com-
prises a diversity of methods ranging from the simplest “black
box” time-series methods, using only previous price as input
data, to more complex structural forecasting models that include
explanatory (causal) variables such as load demand, fuel prices,
and generation availability.

In turn, time-series methods can be grouped as follows: clas-
sical time-series methods [2]–[4], [14] and automated learning
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techniques [5]–[7], [1], [16] (the reader is referred to [14] for an
excellent taxonomy of electricity price models).

The main advantage of classical statistical methods, including
regression models, ARIMA, transfer function models, etc., is
their relative simplicity. However, owing to the nonlinear nature
of the price prediction problem, it is difficult to obtain accurate
and realistic models for such methods.

In the last few years, machine learning techniques, such as
artificial neural networks (ANN), have been applied to energy
price prediction owing to their relatively good performance in
load forecasting and load pattern recognition [1], [16]. ANNs
are trained to learn the nonlinear relationships between the
input variables (mainly past values of prices and other key
variables affecting the prices) and historical patterns of energy
prices. More complex arrangements, combining ANNs with
fuzzy logic, have been recently proposed [17].

Weighted nearest neighbors (WNN) algorithms [8], [9] are
techniques for pattern classification that are based on the simi-
larity of the individuals of a population. The members of a pop-
ulation are surrounded by individuals that have similar proper-
ties. This simple idea is the learning rule of the WNN classi-
fier. Thus, the nearest neighbors decision rule assigns to an un-
classified sample point the classification of the nearest of a set
of previously classified points. Unlike most statistical methods,
which elaborate a model from the information available in the
data base, the WNN method considers the training set as the
model itself.

Recently, classification techniques based on the WNN method
have been successfully applied in new environments outside
traditional pattern recognition such as medical diagnosis tools,
game theory, expert systems or time series forecasting. Several
papers have been published on the application of those tech-
niques to forecast the next-day hourly energy consumption [10],
[11], providing competitive results. In [16], the application of the
WNN methodology to next-day energy price forecasting is pre-
liminarily applied, promising results being reported. This paper
further elaborates on the same idea, providing an improved way
of tuning the WNN model and presenting an exhaustive set of
test cases corresponding to the working days of an entire year. A
comparison is also performed with recently published proposals,
based on ANN [1], [17], making use of a GARCH model [2] or
combining an ARIMA model with the Wavelet transform [13].

The paper is organized as follows. Section II summarizes the
main characteristics of the day-ahead electric energy market
of mainland Spain. In Section III, the proposed method based
on WNN is presented. In Section IV, a methodology to de-
termine the two parameters characterizing the adopted model
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Fig. 1. Hourly average of the prices time series (March 2001).

for price forecasting is provided. Section V presents numer-
ical results corresponding to the electric energy market of Spain
for the entire year 2002. In Section VI, a comparison between
the proposed method and existing techniques is made. Finally,
Section VII provides some concluding remarks.

II. CHARACTERIZATION OF SPANISH ELECTRICITY

MARKET PRICES

The Spanish electricity market, started in 1998, relies ba-
sically on a pool where energy is traded through an auction
process [15] (bilateral transactions, although possible, are still
negligible). Generators, retailers and consumers submit hourly
bids the day before to the market operator, containing at least the
price assigned to each block of energy (more complex bids are
possible). Then the resulting marginal price is used every hour
to charge/remunerate all agents buying/selling energy, irrespec-
tive of their original bids. In an ideal market, submitted bids
should reflect actual variable costs, but the Spanish market is
still far from this perfect competitive environment, as over 70%
of energy is produced by units belonging to two major gener-
ating holdings. In this context, it is crucial for all agents to have
as accurate a prediction as possible of next-day energy prices in
order to develop their optimal bidding strategies.

The hourly Spanish spot market prices arising from January
2000 to August 2002 have been recorded to visually illustrate
the behavior and evolution of the energy prices. As weekends
and holidays constitute separate cases, only data corresponding
to working days have been retained and analyzed.

Fig. 1 shows the hourly averages and standard deviations of
prices for the working days of March 2001 in cents of Euro per
kWh (cE/kWh). It can be noted that, as expected, larger average
spot prices occur during the morning and evening peak hours
(10 A.M.–2 P.M. and 8–10 P.M., respectively). Except for a
few valley hours, the standard deviation of hourly prices exceeds
20% of the mean value, reaching 40% at 8 P.M. and 9 P.M..

The way prices have historically evolved is summarized in
the histograms of Fig. 2, corresponding to years 2000, 2001,
and 2002. Apart from a clear trend for prices to spread and in-
crease, it is evident that prices do not follow a normal distri-
bution. Whereas over 50% of prices were lower than 1 cE/kWh

Fig. 2. Histogram of prices during 2000 (top), 2001 (middle), and 2002
(bottom).

during 2000, a majority of prices lay between 2 and 3 cE/kWh in
2001, reflecting the fact that the Spanish electricity market was
still rather unstable and subject to significant price changes.

To end this section, Fig. 3 represents hourly prices during
2002 (vertical axis) versus the respective energy demand (hor-
izontal axis), along with the resulting regression line plus two
parallel lines delimiting the cE/kWh interval. When all data
are considered, the correlation between price and energy is quite
poor , particularly at peak hours. However, three
different patterns (lower, central and upper) bounded by the two
edge lines can be visually observed, the upper one being more
diffuse. Results corresponding to each cluster of data will be
separately analyzed in Section V. As the method proposed in
this paper is intended to be of general applicability, no effort
has been made to take advantage of such data clustering, that
might be somehow useful in a future work to further improve
the prediction accuracy.

III. WEIGHTED NEAREST NEIGHBORS METHODOLOGY

Given the hourly prices recorded in the past, up to day ,
the problem consists of predicting the 24 hourly prices corre-
sponding to day .

Let be a vector composed of the 24 hourly energy
prices corresponding to an arbitrary day

(1)
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Fig. 3. Hourly price versus load during 2002.

Then, the associated vector is defined by gathering
the prices contained in a window composed of consecutive
days, from day backward, as follows:

(2)

where is a parameter to be determined. For any couple of
days, and , a distance can be defined

(3)

where represents a suitable vector norm (the Euclidean norm
has been used in this work).

The WNN method first identifies the nearest neighbors of
day , where is a number to be determined and “neighbor-
hood” in this context is measured according to (3) above. This
leads to the neighbor set

(4)

in which and refer to the first and th neighbors, respec-
tively, in order of distance.

According to the WNN methodology, the 24 hourly prices of
day are predicted by linearly combining the prices of the

days succeeding those in , that is

(5)

where the weighting factors are obtained from

(6)

Obviously, is null when (furthest neighbor) and is
equal to one when (nearest neighbor), which means that
only neighbors are actually used to determine the next-day
prices. Note also that, although the 24 m prices contained in
are used to determine if is a good neighbor of , only the 24
prices of are relevant in determining .

Fig. 4 illustrates the basic idea behind the WNN method-
ology. It considers that, if is close to , then , al-
ready known, should be also similar to .

In order to find candidate neighbors, a window of days is
simply slid along the entire list of hourly prices contained in the
data base [15].

IV. TUNING THE MODEL

Before applying the WNN method, a training phase is neces-
sary in order to find suitable values for and . Generally, after
using the resulting model for a certain period, prediction errors
tend to increase slightly, particularly when applied to a very dy-

Fig. 4. Illustration of the WNN approach.

Fig. 5. False nearest neighbors.

namiccontext, liketheSpanishone(seeFig.2),whichmaycall for
new training processes. As will be seen below, the training phase
may be relatively costly and, in any case, even if the model was
trained in a daily basis, the prediction accuracy would be always
limited by the intrinsic uncertainty of prices. Therefore, a com-
promiseshouldbefoundbetweencostandaccuracy. In thispaper,
unless otherwise indicated, monthly training periods will be con-
sidered, but yearly training provides almost as accurate results.

A. Optimal Window Length

The number of days contained in the window that will be
used to find candidate neighbors (parameter ) is determined
in advance by resorting to the so-called false nearest neighbors
(FNN) method [12]. This method compares the distance be-
tween a day and a candidate neighbor with that between
and . If the second distance is larger, as illustrated in Fig. 5,
it is said that and are false neighbors, because the trajectory
of the associated prices tend to diverge. Note that, according to
(3), such distances depend on in an implicit manner. By trying
all days contained in the training set, can be chosen so as to
minimize the number of false neighbors.

In practice, as increases, the cost of the training process
also increases and the number of candidate neighbors gets sig-
nificantly reduced (in the limit, if approached the size of the
training set, a single candidate would remain). Hence, the sub-
optimal but cheaper scheme adopted in this paper consists of
choosing the minimum value of leading to a percentage of
false neighbors not exceeding a given threshold (e.g., 10%). Fre-
quently, but not necessarily, leads to forecasting errors
that are close to that of the optimal value.

B. Optimal Number of Nearest Neighbors

The optimal number of nearest neighbors (parameter ) is
the one that minimizes the forecasting error when the WNN
methodology is applied to the training set.
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TABLE I
PARAMETERS OF MONTHLY TRAINED MODELS TO PREDICT PRICES IN 2002

Mathematically, this is equivalent to finding the value of
that minimizes the following quadratic function:

(7)

where are forecasted prices for day , according to the
WNN method, are actual recorded prices and TS refers to
the training set. Note that, according to (5), is an implicit
function of the discrete variable , which prevents application of
standard mathematical programming methods when searching
for . In practice, is assigned successive integer numbers

until a local minimum is found.

V. RESULTS

The methodology described above has been applied to the
working days of 2002 (four atypical days of the last week of
December, much closer to a holiday than to a working day, have
also been excluded from the analysis). Table I shows the pa-
rameters and that result when each monthly model corre-
sponding to 2002 is trained with the 12 preceding months. For
instance, the model corresponding to April 2002 is trained with
data corresponding to the period April 2001-March 2002. How-
ever, the data base in which neighbors are searched for com-
prises all working days from 2000 up to the day of 2002 right
before the day whose prices are to be forecasted.

Note that if is not equal to 1, then it is, or is very close to, a
multiple of 5, revealing the weekly repetitive pattern of energy
prices (not so regular anyway than that of the load). The fact
that sometimes equals 9 or 14, instead of the more intuitive
values 10 or 15, is explained either by some isolated holidays
being removed occasionally from the data base or by the slightly
different behavior of Monday valleys compared to the remaining
working days.

For comparison, the rightmost column collects the values of
that result when , instead of the value provided by

the FNN methodology, is adopted. Note the larger number of
neighbors involved when the sliding window comprises only the
current day .

The following prediction errors have been computed to assess
the adequacy of the WNN methodology:

• mean relative error (MRE)

(8)

TABLE II
MONTHLY PREDICTION ERRORS OBTAINED WITH THE

WNN METHODOLOGY IN 2002

• mean absolute error (MAE)

(9)

• mean error relative to (MMRE)

(10)

where

(11)

and are the predicted and actual hourly prices, respec-
tively, and is the number of hours for the period of interest
(usually a month).

Table II presents the resulting errors, along with , for
each month of 2002. When the parameter is determined by the
FNN , the MRE ranges from 5.10% in March to 13.34%
in November, yielding an average value of 8.67% in 2002. In a
majority of cases, the MMRE is smaller than the MRE, which
is logical considering that, unlike is sometimes rela-
tively close to zero. Note that the MRE corresponding to ,
also included for comparison in the second column, is larger
than the one provided by the value of determined through the
FNN method.

Apart from December, which is quite an atypical month in
Spain, unusually large prediction errors can be observed in Jan-
uary, June and November. Unlike demand, whose behavior is
rather predictable, there are no definite clues about prices be-
having so irregularly in those months. Nevertheless, the market
and system operators monthly reports reveal the following.

• In January, extremely low temperatures gave rise to sus-
tained demand peaks. In addition, important blackouts that
had recently affected Madrid and other large cities, along
with reduced levels of hydraulic production, led to expen-
sive fuel units to be resorted to for security of supply rea-
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sons. This probably explains the fact that the average price
in January was 197% higher than that of the same month
in 2001, and also significantly higher than those of the re-
maining months.

• After several dry years, hydraulic generation beat min-
imum historic records in June. Furthermore, a general
strike on June 20 (Thursday) significantly affected the
demand and prices for several consecutive days, as many
people took advantage of the resulting long weekend for a
break. The average price on June 20 was 30% lower than
that of the day before, yielding an average prediction error
of about 31.2% for that day and 23% for the next (the
peak error on Thursday exceeded 80% and took place at 8
A.M.). In spite of that, the monthly average price was 15%
larger than that of June 2001, clearly showing that June
was also a rather special month.

• Somewhat the opposite happened late in 2002. Owing to
unusually mild temperatures and, for the first time in the
year, hydraulic productions well over the average, prices in
November were abnormally lower than expected (20.1%
lower in average than those of the same month in 2001).
For unknown reasons, the demand forecasted by the system
operator on Wednesday 6 was about 10% lower than the
actual demand, yielding an exceptionally low daily average
price of 1.4 cE/kWh (in fact, the price was 0.0 cE/kWh for
four consecutive hours). Note, however, that the absolute
prediction error in November is not far from the average
corresponding to 2002.

• In December mild temperatures and rain continued,
leading to low demand levels and twice as much hydraulic
production as that of November.

In summary, extreme weather factors (very cold and dry season
early in 2002, rather mild and rainy fall) along with the pecu-
liarities of the generation mix in Spain, where the hydraulic
production in 2002 ranged from virtually null to nearly 27% in
December, may partly explain the irregular price behavior and
associated prediction errors. Furthermore, market agents are
very sensitive to energy-related government policies, among
which the so-called “transition-to-competition costs” were quite
relevant those years. Such costs, intended to compensate existing
Gencos for potential profit losses originated by the regulatory
change, were somewhat conditioned to the “reasonable” evo-
lution of the energy pool prices, constituting in this way an
economic signal whose real influence on prices is very difficult to
analyze.

Table III shows the standard deviation of MRE and MAE cor-
responding to the variable case, which is useful to assess the
variability of prediction errors.

Table IV collects, for each month, the maximum and
minimum average daily prediction errors, in absolute value,
corresponding to the variable case. Interestingly enough,
the largest prediction errors corresponding to July, August and
September took place respectively on Monday 15, Monday 5,
and Monday 16, typical days in which a majority of Spaniards
start their summer holiday season.

Figs. 6 and 7 show the evolution of actual and forecasted
prices corresponding respectively to the best and worst day of
the third week of May (Monday 20 to Friday 24), in terms of

TABLE III
STANDARD DEVIATION OF MRE AND MAE

TABLE IV
MAXIMUM AND MINIMUM MEAN DAILY ABSOLUTE ERRORS

prediction accuracy. The resulting MMRE error for those days
is 1.54% (May 23) and 5.60% (May 24), respectively.

To end this section, prediction errors corresponding to 2002
will be separately analyzed for the three clusters visually identi-
fied in Fig. 3. Table V presents, along with the number of hours
comprising each cluster, the absolute and relative mean predic-
tion errors. Figures in the rightmost column, referring to the
hourly averages for the entire period considered, slightly differ
from those in the last row of Table II, because in that case the
average is computed by months. Note that the performance of
the WNN method is better for the central cluster, where cor-
relation between price and demand is larger. As expected, the
largest absolute prediction errors arise in the upper cluster. It
is also interesting to split the data in Table V by months, as in
Table VI. A careful examination of this table shows that a ma-
jority of hours corresponding to November and December lie in
the lower cluster, where prices are statistically small for the as-
sociated demand, while somewhat the opposite happens in Jan-
uary. Such findings support the explanations provided above re-
garding the anomalous behavior of prices for certain months in
2002.

For simplicity, holidays and weekends have been removed
from the records to obtain the above results, but they could be
gathered in a separate data base to be processed in the same way
as labor days.
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Fig. 6. Best daily prediction in a week of May 2002.

Fig. 7. Worst daily prediction in a week of May 2002.

TABLE V
ABSOLUTE AND RELATIVE PREDICTION ERRORS BY CLUSTERS OF DATA

VI. COMPARISON WITH OTHER TECHNIQUES

In this section the performance of the WNN method is
compared, whenever possible, with that of other approaches
recently published, namely the ANN approach described in
[1], the Neuro-Fuzzy system described in [17], the GARCH
model described in [2] and the proposal of [13] combining the
Wavelet transform with an ARIMA model.

A. Comparison With a Plain ANN

The ANN described in [1] has been used for comparison pur-
poses, as both the ANN and the proposed WNN approach resort
to nonlinear models.

For this application, the ANN is fed with a shifting window
of prices comprising 24 hours, which means that the input layer
is composed of 24 perceptrons. As far as the number of output
perceptrons is concerned, 24 outputs corresponding to the prices
of a whole day are used, whose values are thus determined by
those of the previous day. This implies that the window is shifted
24 hours each time. Finally, the intermediate layer is also com-
posed of 24 perceptrons, this number being determined in an
optimal way after several tests. The period used in [1] to train
and tune the ANN is January–February 2001, while the period
March-August is devoted to check the forecasting errors.

Table VII presents the resulting errors when market clearing
prices of working days are forecasted using both the ANN tested

in [1] and the proposed WNN approach, along with ,
for each tested month. As can be observed, the WNN method
clearly outperforms this particular ANN implementation.

B. Comparison With A Neuro-Fuzzy System

In order to compare the proposed method with a more so-
phisticated Neural Network arrangement, the work reported in
[17] has been considered, for which Ontario market data has
been downloaded from [18]. For this comparison, four WNN
monthly models corresponding to the period June-September
2002 have been developed and tested, additional data corre-
sponding to May being included in the data base (otherwise,
there would be no price patterns to compare with during the first
days of June). Like in [17], the MRE has been obtained and tab-
ulated (note, however, that this error is termed MAPE in [17]).
Table VIII shows the prediction errors provided by the WNN
method when all days are considered (case A) and when sev-
eral extreme days (June 11, July 2, August 13, and September
3, according to [17]) are omitted (case B). The WNN average er-
rors for the considered period are 24.58% and 22.34% for cases
A and B, respectively. Such results could be significantly im-
proved if some other critical days, like September 15 for which
the prediction error reaches 115%, were omitted in addition to
those already ignored in case B.

Several prediction results provided by an ANN are presented
in [17], according to different variables used as inputs by the
model (demand, capacity shortfall and both), number of neu-
rons at the intermediate layer and learning techniques (LM and
momentum algorithms). Table IX summarizes the best results
given in [17] for cases A and B. Note that, in spite of its sim-
plicity and reduced size of the data base, the average results pro-
vided by the WNN method are better than those of Table IX.

A more complex model, based on a Neuro-Fuzzy system,
is also reported in [17]. In addition to those cited above, fore-
casted energy imports and expected generator outages are used
as inputs to the model, several membership functions being
tested. The best results obtained by this approach are collected
in Table X. Comparing with Table VIII, it can be concluded
that this sophisticated model, that needs to be periodically
trained, outperforms the proposed WNN method only when the
predicted demand is considered.

C. Comparison With Garch Model

Following [2], the data set comprises in this case the period
ranging from January 1999 to November 2000 (both included),
and the resulting monthly models are only used to predict the
last week of every month in 2000 (except for December, whose
last week refers to 1999).

For each of the twelve weeks under study the MRE error is
computed. Table XI compares the results provided by the WNN
methodology with those taken from [2]. Both the plain GARCH
model and the GARCH model using as additional input the fore-
casted load are included.

Note that, in average, the WNN method outperforms both
GARCH models. The average MRE is 8.57% for the WNN
method and 9.55% for the plain GARCH model, neither of them
using information about the expected load (better indices are ob-
tained when December is excluded).
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TABLE VI
MONTHLY RELATIVE PREDICTION ERRORS BY CLUSTERS OF DATA

TABLE VII
MONTHLY PREDICTION ERRORS PROVIDED BY THE ANN AND WNN METHODOLOGIES IN 2001

TABLE VIII
MRE PROVIDED BY THE WNN METHODOLOGY ON THE

ONTARIO CASE STUDIES

TABLE IX
MRE PROVIDED BY THE ANN ON THE ONTARIO CASE STUDIES

TABLE X
MRE PROVIDED BY THE NEURO-FUZZY SYSTEM ON THE

ONTARIO CASE STUDIES

D. Comparison With a Hybrid Wavelet-Arima Model

According to [13], the data set in this case comprises the
working days of years 2001 and 2002, and the following four
weeks of 2002 are selected to perform the experiments: Feb-
ruary 18 to 22, May 20 to 24, August 19 to 23 and November
18 to 22. For the sake of comparison, in this case the WNN
approach has been tuned specifically for each week, separate
models being developed for working days and weekends.

Table XII compares, for each week, the error provided by the
WNN method with those corresponding to the plain ARIMA

TABLE XI
COMPARISON OF MEAN WEEKLY PREDICTION ERRORS, MRE (%),

PROVIDED BY WNN AND GARCH METHODS

and the Wavelet-ARIMA models, both taken from [13]. Results
provided by the “naive” approach, by which prices of the present
week are directly taken as estimates for the next week, are also
included.

In spite of its simplicity, the proposed method outperforms
in all cases the plain ARIMA model and, in average, also the
enhanced Wavelet-ARIMA model. The average MMRE for the
whole test period is 8.05% when the WNN method is applied,
whereas the Wavelet-ARIMA model yields an average of 8.11%
for the same period.

VII. CONCLUSION

In this paper a simple methodology based on the WNN tech-
nique is proposed to forecast hourly prices in deregulated elec-
tricity markets. Prediction results corresponding to the market of
mainland Spain for the entire year 2002 are reported, yielding an
average monthly error which is close to 8%. The performance
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TABLE XII
COMPARISON OF THE MMRE PROVIDED BY WNN AND ARIMA METHODS FOR THE FOUR WEEKS ANALYZED

of the proposed method is also compared with that of other
techniques such as ANN, Neuro-Fuzzy systems, GARCH, and
ARIMA (with and without wavelet transform). In view of the
results previously reported in the literature, it can be stated that
the proposed method performs satisfactorily, particularly when
the uncertainty of prices associated with the Spanish system are
taken into account.

The following comments, taken from [19], related with the
load forecasting problem, are fully applicable to the price fore-
casting case: “ because of particular and often heuristic na-
ture of short-term load forecasting (STLF), it is not always pos-
sible to assume portability of an STLF system from one utility
to another. General models and algorithms have wider applica-
bility, but must be used cautiously and should be experimen-
tally tested with sufficiently lengthy data records”. Therefore,
general models, like the one proposed in this paper, should be
preferably chosen if they prove to be competitive enough with
specific methods, developed and tuned for a very particular case.
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