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Abstract

This paper examines the importance of the regular patterns in the behavior of

electricity prices, and its implications for the purposes of derivative pricing. We

analyze the Nordic Power Exchange’s spot, futures, and forward prices. We

conclude that the seasonal systematic pattern throughout the year, in particular,

is of crucial importance in explaining the shape of the futures/forward curve.

Moreover, in the context of the one and two factor models analyzed in this

paper, a simple sinusoidal function is adequate in order capture the seasonal

pattern of the futures and forward curve directly implied by the seasonal

behavior of spot electricity prices.
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1. Introduction

A growing number of countries worldwide, including the US, have recently undertaken restructuring

processes in their electric power sectors. Although the speed and scope of the reforms varies across

countries, such liberalization processes have been based on opening the electricity systems to competition

wherever it was considered to be feasible, notably generation and retailing activities. The deregulating

processes have been accompanied by the introduction of competitive wholesale electricity markets, and

power derivative contracts, both OTC and exchange-traded, providing a variety of contract provisions to

meet the needs of the electricity market participants. In the US, electricity futures and options contracts

have been listed in recent years by the Chicago Board of Trade, the New York Mercantile Exchange, and

the Minneapolis Grain Exchange.

Electricity may be considered as a flow commodity strongly characterized by its very limited

storability and transportability. Both limits to the possibilities of “carrying” electricity across time and

space turn out to be crucial in explaining the behavior of electricity spot and derivative prices as compared

to other commodities. In other words, arbitrage across time and space, which is based on storability and

transportation, is seriously limited, if not completely eliminated, in electricity markets. If the links across

time and space provided by arbitrage break down, we would expect spot prices to be highly dependent on

temporal and local supply and demand conditions. The limits of the arbitrage are also expected to affect

decisively the relationship between spot and derivative prices.

The non-storability of electricity makes electricity delivered at different times and on different

dates to be perceived by users as distinct commodities. In other words, prices are strongly dependent on

the electricity needs (demand) and their determinants in every precise moment (this is to say, business

activity, temporal weather conditions, and the like). Distinguishing between on-peak and off-peak

electricity prices, or among prices corresponding to different time periods, such as seasons, is indeed

important in power markets (such distinctions determine, for instance, derivative contractual terms). The

non-storability of electricity is also likely to affect derivative pricing significantly, notably influencing on

the shape of the forward curve and its behavior.

Transportation constrains for electricity come in the form of capacity limits in the transmission

lines and transportation losses, which can make impossible or uneconomical the transmission of electricity

among certain regions. These limitations make electricity contracts and prices highly local, i.e. strongly

dependent on the local determinants of supply and demand (such as characteristics of the local generation

plants, and local climate and weather conditions together with their derived uses of electricity).
1

                                          

1
 Additionally, regulatory issues such as market rules and market structure may also have an impact on the behavior of prices in

competitive electricity markets and, consequently, on their differences across countries.
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The number of papers addressing the specific valuation problems of electricity derivative

contracts is still scarce. Several papers have pointed out some general characteristics of the power price

behavior that should be considered, in their opinion, for the purposes of electricity derivative pricing. In

particular, some have argued that a model for electricity prices should incorporate a form of time-varying

volatility, and the possibility of jumps in prices (see Kaminski (1997), Eydeland and Geman (1998), and

Deng (2000)). Others, on the contrary, have stressed the importance of the periodic seasonal behavior of

electricity prices, and its reversion to mean (possibly non stationary) levels (Pilipovic (1998)).

Nevertheless, the much needed empirical work is on its early stages. Only very limited and tentative work

has been published to date (see Kaminski (1997), and particularly Pilipovic (1998)), and the bulk of the

research on modeling electricity spot and derivative prices remains to be done. Probably this is due to the

fact that competitive electricity markets and exchange-traded derivatives are relatively new and,

consequently, long histories of liquid spot and exchange-traded derivatives prices do not exist.

This paper is mainly concerned with the importance of the predictable component in the behavior

of electricity spot prices and its implications for derivative securities valuation. The value of a derivative

security is the risk-adjusted discounted expected value of its future electricity-contingent payoffs. To the

extent that these payoffs strongly depend on the future level of the electricity price and this has a clear

predictable component, this predictability should be taken into account when making the expectations and

consequently translated somehow to derivative prices. Of course, this would be the case only if such

predictable component is a genuine feature of the underlying price behavior, as it is expected to be the

case for electricity, and if it is sufficiently important. Indeed, genuine systematic behavior of electricity

prices through time can be explained, for instance, by changes in demand following business activity, and

the periodic behavior of consumption arising from the seasonal (average) evolution of temperatures.

We try to circumvent the indicated problems on the lack of historical time series for electricity

prices by using data from one of the oldest spot and futures electricity markets in the world, the Nordic

Power Exchange, Nord Pool ASA. The Nord Pool is a non-mandatory market for electric power

contracting that has its roots in the liberalization of the electricity sectors in the Nordic European countries

started in Norway with the Electricity Act of 1991. Thus, it has a history of spot and derivative

contracting, with accompanying increasing trading volume, which can be traced back to the early

nineties.
2

The balance of the paper is organized as follows. In Section 2 we review the basic features of

electricity contracting via the Nord Pool in both the physical and the financial markets. In particular, we

explain the so-called system price underlying the derivative contracts. In Section 3 we provide a thorough

                                          

2
 Other papers that have studied the behavior of the Nord Pool spot prices with different objectives include Wolak (1997) and

Johnsen et al. (1999).
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analysis of the behavior of the system price in the Nord Pool. We stress the importance of several

systematic patterns. We also provide evidence about a seasonal periodic pattern in the term structure of

futures prices. In Section 4 we propose several one and two factor models for electricity spot prices, in

light of the results of the previous section. We take into account the systematic effects by the inclusion of

a deterministic component in the assumed models for the underlying spot price. All the models considered

allow for closed form solutions for forward and futures prices. Section 5 presents and discusses the results

of the estimation of the one factor processes for the underlying spot price, using electricity system price

data from the Nord Pool. In Sections 6 and 7 we analyze actual futures and forward prices in the Nord

Pool by comparing them with model prices. Section 8 concludes the paper with some final remarks.

2. Nord Pool-the Nordic Power Exchange

During the nineties, the Nordic European countries started a gradual deregulating process in their

respective electricity sectors based on opening them as much as possible to competition. In the resulting

Nordic electricity system, the transmission network is owned and operated by a number of independent

transmission system operators, whose activity is subject to regulation and control by public authorities.

This guarantees a non-discriminatory access to the grid to all market participants in the new electricity

market.
3
 The new Nordic wholesale electricity market combines both over the counter bilateral contracting

and trading via the Nordic Power Exchange, Nord Pool ASA.

Established in January 1993, and first covering only the Norwegian market, the Nord Pool is

currently a non-mandatory common multinational market which also includes Sweden since January 1996,

Finland since June 15, 1998, and the western part of Denmark (Jutland and Funen) since July 1, 1999.
4

Basically, Nord Pool organizes two markets, a “physical market” (Elspot) and a “financial market”

(Eltermin and Eloption), and also provides with clearing services.
5

Elspot is a “spot” market where day-ahead electric power contracts are traded for physical

delivery for each one of the 24 hours during the following day. Every contract in Elspot refers to a load, in

                                          

3
 The grid operators are responsible for ensuring a well-functioning physical system, including the system balance, that is, the

equilibrium required in every instant between the energy produced/imported in any area and the sum of consumption/export and

network losses in the same area.
4
 Eastern Denmark joined the market on October 1, 2000 under the same conditions applied to western Denmark.

5
 According to the Press Release 1/2000 of Nord Pool ASA, in 1999 a total of 75 TWh (terawatt-hour, 1 TWh = 106 MWh) were

traded in the spot market (this implies a volume growth of 34% over 1998), and implies that more than 20% of the total

consumption of electric power in the Nordic countries was traded via Nord Pool. Also, a total of 216 TWh were traded in the

market for financial power contracts in 1999 (representing a volume increase of 143% compared with 1998). Finally, a total of

684 TWh of electric power traded in the OTC market was cleared by Nord Pool in 1999 (83% higher than in 1998). At the end of

1999, Nord Pool had got 264 market participants.
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megawatt-hours (MWh, 1 MWh equals 1,000 kWh), during a given hour, and a price per MWh. A price,

called the System Price, is fixed separately for each hour for the next day, based on the balance between

aggregate supply and demand for all participants in the whole market area (the so-called Nordic Power

Exchange Area), without considering capacity limits (“bottlenecks”) in the grid among countries. A

system price can thus be defined as the market clearing price at which market participants trade electricity

for the entire exchange area when no transmission constrains apply. It is also used as reference price in

settlements at the Nord Pool’s financial market.

The respective national system operators have established different methods for handling

bottlenecks situations (i.e. situations when the required electricity flow between any two given areas

exceeds the capacity limits of the transmission lines), depending on the specific involved areas.

Bottlenecks between any two countries as well as internal bottlenecks in Norway are all managed using

the pricing mechanism in the spot market, implying price adjustments for the involved areas. In essence,

when the required power flow between two or more areas exceeds the capacity limits two or more zonal

prices are calculated besides the system price.
6
 Internal bottlenecks in the other countries are managed

directly by the national grid operators, and the cost of the regulation is financed through tariffs for power

transmission.

An electric power system must be continuously balanced. In order to handle any unpredictable

differences between the planned and the real exchange during delivery, once the Elspot market is closed,

the national system operators have additionally set up regulating or balance markets from which the

required upward or downward regulation is obtained on short notice.
7
 

The Nord Pool’s financial market, also known as the Eltermin and Eloption, allows trading in

financial contracts such as forward and futures with delivery periods up to three years in advance. Since

September 1995, none of these contracts entails physical delivery, they are all settled in cash against the

system price in the spot market. They refer to a base load of 1 MW during every hour for a given delivery

period of one day, one week, one block (four weeks), one season, and one year that may be available for

trading depending on the type of contract. European and Asian style option contracts are also available for

trading since October 29, 1999.

During the trading period analyzed in this paper, futures contracts with delivery periods of one

season were available for trading up to three years in advance. There were three season contracts during a

                                          

6 As a matter of fact, market participants communicate their generation and demand bids for each hour independently for each

bidding area. Sweden, Finland, and western Denmark are always independent bidding areas. Additionally, if necessary, the

Norwegian system operator divide the country into two or more different bidding areas. These areas used to be fixed and

communicated to market participants on a weekly basis until the first week of 2000. They are fixed on a seasonally basis

thereafter.



6

given year: Season 1 (with delivery period including weeks 1 to 16 of any given year), Season 2 (weeks

17 to 40), and Season 3 (weeks 41 to 52/53). They were available for trading until the beginning of the

second previous season. Then, the season contracts were split into 3 to 6 block contracts.
8
 Each block

contract has a delivery period of 4 weeks (5 weeks for the case of the last block for a year with 53 weeks),

and each one is available for trading until the beginning of the delivery period of the previous block. Then,

they are split into weekly contracts with delivery period of one week each, which stop trading before the

beginning of their respective delivery periods. Additionally, futures contracts with a delivery period of one

day are also available for trading several days in advance until the day before they are due for delivery.

Annual and seasonal forward contracts are traded in the following way. Annual forward contracts

with delivery period corresponding to the entire calendar year are available for trading till two trading

days before the beginning of the delivery period. Seasonal contracts in turn are available for trading until

the beginning of their respective delivery periods. There are three seasonal forward contracts for each

annual period, namely: Winter 1 (with delivery period Jan. 1-Apr. 30), Summer (May 1-Sept. 30), and

Winter 2 (Oct. 1-Dec. 31).

Exercising a European option results in opening a position in the underlying forward contract.

Only options with underlying season and year forward contracts had been listed to date. Asian contracts,

on the contrary, are settled in cash at the end of each settlement period against the arithmetic average

system price in Elspot during the settlement period. There can be more than one settlement period for each

Asian option, depending on the reference underlying contract. Only Asian options on block futures

contract with settlement period corresponding to the delivery period of the reference futures contract have

been available for trading to date.

Through its clearing function, currently conducted by a separate business area called the Nordic

Electricity Clearing (NEC), Nord Pool guarantees settlement and delivery of all trades made at the market,

by entering into the contracts as a legal conterparty for both the buyer and the seller. NEC also offers

clearing services of standardized OTC bilateral financial contracts registered in the market for that

purpose.

                                                                                                                                        

7 Nord Pool is involved in Elbas, a physical market for short-term trade launched in March 1999 by the Finish electricity

exchange El-Ex, Electricity Exchange Ltd., that allows traders in Sweden and Finland to adjust imbalances after the day-ahead

spot market is closed (see El-Ex (1999)).
8 Season futures contracts are not longer traded since the end of 1999. At the beginning of year 2000, Nord Pool announced that

the Season 3-2000 contract, which had been split at the end of 1999, would be the last season futures contract listed for trading,

and that new block contracts would be listed in accordance with past practice on former block-splitting dates in weeks 1, 17 and

41 (Nord Pool participant information no. 1-00 and no. 17-00).
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3. System Price Description

The Elspot data set was obtained from the Nord Pool’s FTP server files, and consisted of twenty-four time

series, one for each hour during a day, of daily (seven days a week) system prices, in Norwegian kroner

(NOK) per MWh with two decimal points, for the seven year period starting January 1, 1993 and ending

December 31, 1999.
9
 The twenty-four price time series turn out to be highly correlated pair-wise. The

linear correlation coefficients between any two hourly series during the sample period lie all above 0.94

(with a mean value of 0.98), and are always above 0.98 for any two consecutive hours.

The Nord Pool uses the arithmetic average of all hourly prices for a given day as the reference

price in the cash-settlement calculations at expiration for the Eltermin derivative contracts. In accordance

to this practice, we generated a new time series for this underlying variable by calculating the arithmetic

average of the 24 available data for each day. We will refer to this average price as the system price or the

spot price from now onwards. Table 1 reports the descriptive statistics for the average price and other

related time series, as indicated therein, and Figure 1 plots them for the complete sample period.
10

A first casual look to the average price series in Figure 1A reveals a quite erratic behavior of the

system price. With a mean value of 142.57 NOK, it reached maximum and minimum values of 423.38 and

14.80, respectively, during the sample period. The highest price was reached during cold days around the

Olympic Winter Games held in Lillehammer at the end of February 1994, and the second highest one

during the very dry and cold year 1996. Nonstationarity tests have been conducted for both the price and

the log-price series using the augmented Dickey-Fuller t-test for a unit root (see Table 1). The presence of

a unit root is rejected in both cases at the 5% significance level.
11

                                          

9 Recorded dates in Elspot data correspond to delivery dates.

We discarded the initial period of available data, i.e. the last eight months of 1992, because those data corresponded to

the period when trading activities were conducted by the so-called “Coordinated Norwegian power works”, a membership

association based on mutual responsibility. In January 1993 its activities were transferred to the newly created power market, first

known as Statnett Marked and later as Nord Pool. Statnett Marked started acting as the counterpart for buyers and sellers in the

clearing of market trades, which included both spot market trades and trades in a new “futures market” for delivery on future

dates.

Additionally, the transition from standard time (GMT+1) to summer time (daylight savings time, GMT+2) and vice

versa imply either the reduction of one hour or the addition of an extra one, respectively, on transition dates. We standardized to

24 the number of hours per day in the following way. We set the price of any missing value hour equal to the mid point between

the two adjacent hours’ prices, and any extra hour was eliminated by dividing the price corresponding to the double value hour by

two. We work with the resulting standardized series in the sequel.
10

 Before we move on to the analysis of the system price time series, here follows some basic figures of interest on the generation

side of the Nordic electricity system. Power generating sources vary among the Nordic countries. According to 1998 data

published by the national grid operators and Nord Pool (see TSO and Nord Pool (1999)), almost all the Norwegian electricity

production is hydroelectric (99%); Sweden relies in equal portions on hydropower (48%) and nuclear power (46%) with a residual

production obtained from other thermal (gas and oil) units (6%); Finland has a mixture of hydro (22%), nuclear (31%), and

thermal plants using a variety of alternative fuels (47%); Denmark mainly produces thermal (natural gas/coal) power (93%) with

some wind production units (7%).
11

 A large number of lags, p = 21, is necessary in the relevant regression model, in order to account for the serial correlation

present in the changes of the relevant variables �yt � yt – yt�1. Phillips-Perron tests for a unit root (see, e.g. Hamilton, 1994: 17.6)

were also conducted and they provided virtually the same evidence as the ADF tests.
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Electricity prices are highly volatile, as measured by standard volatility measures. The standard

deviation of the daily changes in log-prices is 0.099, which translates into an annualized volatility of

189%.
12

 A significant difference exists, however, between cold and warm seasons.
13

 Standard deviations

of log-price changes show that warm seasons are twice as volatile as cold seasons (0.067 or 128%

annualized, and 0.132 or 252% annualized, respectively). This result should be interpreted with care since

the log transformation is expected to increase comparatively the volatility during periods with consistently

lower prices and, consequently, to contribute to the significative difference in the standard deviations of

changes in the log-price (which can be roughly interpreted as relative or percentage changes in prices)

between warm and cold seasons. Note that warm seasons had a daily mean price about 22% lower than the

mean for cold seasons during the sample period (see Table 1).
14

The standard deviation of the price itself is 54.2 for cold seasons and 75.8 for warm seasons,

indicating a significantly higher stability of the mean price for cold seasons, as compared to warm

seasons, during the sample period. Changes in prices, in turn, show very similar standard deviations for

both seasons.

Extreme electricity prices are relatively frequent in Elspot. This fact is reflected in the sample

kurtosis coefficients. The kurtosis estimate for the whole sample period is 3.5, which is significantly

different from three (the kurtosis for a normal distribution) under the null hypothesis of normality. This

means that extremely low and high prices have a higher probability of occurrence than that dictated by a

normal distribution with the same variance. The kurtosis estimates are similar for cold and warm seasons

(3.8 and 3.9, respectively). The positive sign of the skewness estimates for the price series reveals that

high extreme values for the price are in fact more probable than low extreme values. The log-price series

shows a higher leptokurtosis than the price series (the kurtosis estimate is 4.5).

An interesting related question is whether such extreme values are a result of jumps, i.e.

abnormally large variations, in prices. A look to the sample kurtosis coefficients for both changes in prices

and changes in log-prices (or percentage changes in prices) reveals that large daily variations are indeed

relatively frequent in electricity prices, this being particularly severe during cold seasons. Both complete

series show sample kurtosis, 16 and 14.4 respectively, far in excess of 3, indicating leptokurtic

distributions for both absolute and percentage changes in prices.

The excess kurtosis is extremely large during cold seasons, 25.15 and 23.65 respectively for the

                                          

12
 This is obtained by multiplying the standard deviation by the square root of 365.

13 This fact was previously detected by Johnsen et al. (1999: p. 34). A cold season is defined here as any period running from

October through April, and a warm season from May through September (the latter is the delivery period for summer forward

contracts listed in Eltermin). Care has been taken to avoid the calculation of changes in the price and log-price series using a

couple of observations one season apart.
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changes in prices and in the log-prices. The excess kurtosis is more than four and a half times higher in

cold seasons than in warm seasons for (absolute) changes in prices, and it is about two and a half times

higher for changes in log-prices (relative changes in prices). In addition, the highest daily price positive

and negative changes took place at winter time (around 95 NOK of both signs, or nine times the standard

deviation).
15

 All these facts probably have to do with the shape of the supply curve (also called the supply

stack), which exacerbates the jumps in prices as a result of jumps in demand during periods of higher

demand, when additional generation units brought on-line correspond to more inefficient ones.
16

 Many of

the larger jumps in prices are due to temporary shocks in demand (very frequently linked to sudden and

pronounced short term changes in temperatures) and prices rapidly return to previous levels, causing

spikes in the behavior of spot prices.
17

 The largest changes in log-prices, in turn, occurred during warm

seasons (around 0.71 with both signs).

The degree of asymmetry of the distribution of daily changes in both prices and log-prices in not

as large as the leptokurtosis, although all the skewness estimates are statistically significative under the

null hypothesis of normality.

All these facts notwithstanding, the system price displays some signs of predictability. First, note

that the first-differences in the level of both the price and the log-price series are significatively positively

autocorrelated at several lags multiple of seven (see Table 1). This means that the increments of the price

(log-price) from one day to the next helps to predict significantly the increment of the price (log-price) for

the same couple of consecutive days up to several weeks into the future.
18

 This has to do with the fact that

demand for electricity varies following a somehow noticeable regular pattern within the week.

Demand for electricity power also varies regularly within the day influencing price levels. Intra-

day and intra-week regular patterns in the level of prices are mainly determined by business activity, and

they might change along the year following changes in the main uses of power across seasons. Figure 2A

displays the average hourly pattern within the day across days of the week. There is a clear difference in

both shape and mean level between weekdays on the one hand and weekends on the other.
19

 As it was

expected, a division of the weekdays into working days (i.e. non-holiday weekdays) on the one hand and

non-working days (holidays) on the other reveals that weekdays holidays show an hourly pattern shape

                                                                                                                                        

14
 One reason to expect a somehow lower volatility during cold seasons is that, as during these seasons hydroelectric production

depends on the amount of water available in the reservoirs, prices may be less subject to supply side shocks, as argued by Johnsen

et al. (1999: p. 17).
15

 These large daily variations occurred at the end of February 1994, and in the middle of December 1998.
16

 Kaminski (1997) further elaborates on this idea.
17 See Johnsen et al. (1999: p. 48-52) for an account of some important episodes of high system prices and their possible causes.
18

 For instance, an autocorrelation at lag seven of the daily change of the price (respectively, the log-price) of 31.5% (41%)

implies that the R2 of a regression of the first-differences of the prices (log-prices) on a constant and its seventh lag is 0.099

(0.168), i.e. the square of the autocorrelation coefficient. Therefore, 10% (17%) of the variation in the daily price (log-price)

increments is predictable using the daily increment seven days apart.
19 These facts were also previously pointed out by Johnsen et al. (1999: p.17).
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and mean level very similar to weekends (see Figure 2B).
20

With the exception of year 1996, it can be noticed a seasonal pattern in the level of prices along

the year, by a casual inspection of Figure 1 (see also the differences across seasons in Figure 2). Table 1,

Panels B and C, shows that the system price had mean, median, maximum and minimum values during

cold seasons all above the corresponding ones during warm seasons, being the mean price for cold seasons

about 35 NOK (a 28%) higher than the one for warm seasons. This regular pattern has mainly to do with

seasonal changes in climate along the year which strongly determine heating needs, and also with day-

light length which influences lighting needs.
21

 Weather conditions, however, are responsible for

significant departures from the usual patterns described above, as it happened to be the case in 1996.

One question that arises immediately is how market participants in Eltermin perceive that seasonal

pattern and its importance, and whether they eventually incorporate it in their derivatives valuation

process. Figure 3 plots the evolution of the term structure of futures prices for almost two complete years

of fortnightly observations, from January 1998 through November 1999. Each observation consists of the

complete term structure of futures prices, i.e. the complete set of futures (closing) prices, corresponding to

every listed futures contract on that date. Figure 3A displays the curves altogether on a single two-

dimensional graph, without explicitly indicating the observation date (shorter curves correspond to later

observation dates). Figure 3B shows the evolution across time of the term structure of futures prices.
22

An immediate conclusion arises from a casual inspection of the figure: the seasonal component in

the evolution of the system price is incorporated by market participants in their valuation processes and, as

a matter of fact, it constitutes a prominent explanation for the shape of the futures curve for electricity

contracts in the Nord Pool. The futures curve’s shape displays one peak and one valley per year, in total

accordance with the behavior of the system price.

                                          

20 We took as holidays the official public holidays in Norway excluding Saturdays and Sundays made public by the Norwegian

Ministry of Foreign Affairs through ODIN. Note though that the majority of these dates were common holidays in the whole

Nordic area. Besides, Norway represents more than 60 per cent of the spot market, based on traded volume (see the Nord Pool

Annual Report 1998).
21 Seasonal climatic variations also influence hydroelectric generation through their impact on the level of water stored in the

reservoirs. In the Nordic countries a large part of the inflows comes from snow melting during the warm season, so it is

predictable to some extent. (This fact somehow facilitates hydro plants to solve their intertemporal profit maximization problem;

see Jonhsen at al. (1999: p. 20) and the references therein). Publicly available weekly mean data from Nord Pool for the period

1981-1992 show that the minimum level of reservoirs electric production capacity is reached around the seventh week (29.7%)

and the maximum around the forty-second week (90%).
22

 Figure 3 is based on the closing prices for every listed futures contracts on a given date regardless of whether they were traded

on that date or not. This does not represent a problem for our present purposes of motivating the discussion to follow in the next

sections. Later, in the empirical examination of the valuation models, only traded contracts will be considered. We also postpone

the detailed description of the futures contract sample until that moment.
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4. Models

In this section we discuss the models for the dynamics of the spot system price and their implications for

the valuation of derivative securities. We describe the behavior of the spot price in terms of two types of

components. The first one is a totally predictable deterministic component that accounts for regularities in

the evolution of prices, such as a deterministic trend and any genuine periodic behavior. The second

component is stochastic and will be assumed to follow a particular continuous time diffusion process. The

final models considered differ with respect to the stochastic process assumed for the spot price, the

number of stochastic factors considered, and the way the deterministic component is incorporated into the

model.
23

For simplicity, in what follows we assume that interest rates are constant.  In this setting forward

and futures prices are equal.  This assumption is less accurate for the longest maturity contracts. The

extension of the models considered, in order to allow for stochastic interest rates (which implies the

inclusion of one or two additional factors), would considerably complicate the discussion and obscure the

main points of the analysis.

A. One factor model based on the spot price

We start by expressing the stochastic process followed by the spot price, represent by Pt with t�[0,�), as

the sum of two components. The first one is considered to be totally predictable, and is represented by a

known deterministic function of time, F = f(t). The second one is a diffusion stochastic process Xt. That is,

tt XtfP �� )( (1)

In particular, we assume that Xt follows a stochastic process of the form:

dZdtXdX tt �� ��� (2)

where � > 0, X(0) = x0, and dZ represents an increment to a standard Brownian motion Zt. Therefore, Xt

follows a stationary mean-reverting process, or Ornstein-Uhlenbeck process, with a zero long-run mean

and a speed of adjustment �. Recalling that Xt = Pt – f(t), and assuming that the function F = f(t) satisfies

the appropriate regularity conditions, we can write (1) and (2) as:

dZdtPtftfPd tt �� ���� ))(())(( (3)

which shows that when Pt deviates from the deterministic term f(t) it is pulled back to it at a rate

                                          

23
 Jaillet et al. (1998) and Manoliu et al. (1999) use similar models in explaining natural gas futures prices.
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proportional to its deviation. In this model, the only source of uncertainty comes from the stochastic

behavior of Xt as described by (2), so we can call Xt the state variable.

The process followed by Pt can be expressed as the solution to the following stochastic differential

equation (provided again that the function F = f(t) satisfies appropriate regularity conditions):

� � dZdtPtadP tt �� ��� )( (4)

where a(t) is the deterministic function of t defined by:

)()(
1

)( tft
dt

df
ta ��

�

(5)

This can be seen as a particular version of the extended-Vasicek model by Hull and White (1990).
24

The assumed simple one-factor model is analytically very tractable. An explicit solution for (2)

can be obtained, which together with (1) gives:

�
��

���

t
tst

t sdZeeXtfP
0

)(

0 )()( ��

� (6)

Hence we have that the conditional distribution of Pt is normal with conditional mean and variance given

by (using X0 = P0 – f(0)):

� � � �

� � � � .0,1
2

)(

)0()()(

2
2

00

000

����

����

�

�

�

�

�
�

�

t

tt

t

tt

eXPVarPVar

efPtfXPEPE

(7)

These results are helpful in developing some intuition for the price process. Pt tends to a mean

value of f(t) in the long run, given its value at a previous moment P0. The higher the value of � (assuming

� > 0), the faster the convergence. The variance in turn decreases with the time horizon and has a finite

limit as this horizon tends to infinity.

For the purposes of derivative securities valuation, and following Cox and Ross (1976) and

Harrison and Kreps (1979), we need the risk-neutral or risk-adjusted process for the state variable Xt,

instead of the real one given by (2). Taking into account the non-tradable nature of Xt, standard arbitrage

arguments with two derivative assets allow us to obtain the risk-neutral process for Xt. This is given by the

equation:

� � ** dZdtXdX tt ��� ��� (8)

with

���� ��
*

(9)

where dZ
*
 stands for an increment to Zt

*
, a standard Brownian motion under the risk-neutral probability

                                          

24
 See also Hull and White (1993). For convenience, we work directly with the variable Xt, i.e. the price detached from the

deterministic component, and the function f(t), instead of the price process (4) in terms of a given function a(t).



13

measure, and � denotes the market price per unit risk linked to the state variable Xt. We assume that � is

constant. In general, it could be a function of the state variable Xt and t.

Following the same steps as before we can derive some important results for the risk-neutral

process. The explicit solution for the stochastic differential equation (8) allows us to obtain:

� � �
���

�����

t
tstt

t sdZeeeXtfP
0

*)(*

0 )(1)( ���

�� (10)

with �
*
 as defined in (9). From this we have that Pt is conditionally normal under the risk-neutral measure,

with the following conditional mean:

� �tt

t eeXtfPE ��

�
��

���� 1)()( *

0

*

0 (11)

Now, the value of any derivative security must be the expected value, under the risk-neutral

measure, of its payoffs discounted to the valuation date at the risk-free rate, which we assume to be

constant. The value at time zero of a forward contract on the spot price maturing at time T must be:

� �),(),( 00

*

00 TPFPEeTXv T

rT

T ��
�

(12)

where F0(P0, T) stands for the forward price set at time zero for a contract maturing at time T, and r is the

riskless continuously compounded interest rate. Since the value of a forward contract must be zero when it

is first entered into, we finally have the following closed form solution for the forward (futures) price,

using (11) and (1) for t = 0:
 25

� � � �TT

T eefPTfPETPF ��

�
��

������ 1)0()()(),( *

0

*

000 (13)

with ���� ��
*

.

B. One factor model based on the log spot price

The second group of models comes from working directly with the natural logarithm of the spot price

instead of the spot price itself. To be precise, we assume that the log-price process lnPt can be written as:

tt YtfP �� )(ln (14)

for t�[0,�), where F = f(t) is as before a known deterministic function of time, and Yt is a stochastic

process whose dynamics are given by:

dZdtYdY tt �� ��� (15)

                                          

25
 Under the assumption of a constant interest rate, forward and futures prices are equal.
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with � > 0 and Y(0) = y0 .
26

 In this type of model, the log-price detached from the deterministic component

f(t) follows a zero-mean reverting process. This implies the following process for the price, under suitable

conditions for f(t):

� � dZPdtPPtbdP tttt �� ��� ln)( (16)

with

)()(
2

1
)(

2

tft
dt

df
tb ���

�

�
��
�

�
��

�

�

From the process for Yt (15) we have that in this class of models it is assumed that the log of the

price, lnPt, has a conditional normal distribution with conditional mean and variance:

� �

� � .0,1
2

)(ln

)0(ln)()ln(

2
2

0

00

���

���

�

�

�

�

�
�

�

t

t

t

t

ePVar

efPtfPE

(17)

Therefore, the log-price have the same properties as the price in the previous subsection. Hence, the spot

price Pt has a conditional lognormal distribution, and from the properties of the lognormal distribution, we

have:

� �

� � � ���
�

�
��
�

�
����	

�	

�� tt

ttt

eefPtf

PVarPEPE

��

�

� 2
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02
1

00

1
4

)0(ln)(exp

)(ln)(lnexp)(

(18)

and

� � � �� �

� � �
�

�
�
�

�
���
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tttt

ePE
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�

�

�

From which we have that the conditional mean of the price converges to f(�) + �
2
/4� in the long run, and

the conditional variance also converges to a function of the value of the deterministic component at

infinity.

We also have that, under the risk-neutral measure:

� � ** dZdtYdY tt ��� ��� (19)

with

���� ��
*

where we assume � to be constant.

                                          

26
 Note that although we use the same symbols for the parameters in (2) and (5) to simplify the notation, the
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From the explicit solution to (19) together with (14) we can write the following explicit solution

for lnPt under the risk neutral measure:

� � �
���

�����

t
tstt

t sdZeeeYtfP
0

*)(*

0 )(1)(ln ���

�� (20)

from which we have that lnPt has a conditional normal distribution under the risk neutral measure, with

conditional mean and variance given by:

� �

� � .0,1
2

)(ln

1)()ln(
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���
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tt

t

ePVar

eeYtfPE

(21)

Hence, the price Pt has a lognormal distribution with mean given by:

� �)(ln)(lnexp)( *

02
1*

0

*

0 ttt PVarPEPE �� (22)

And applying the same argument as before, the forward/futures price must be:

� � � � � ��
�

�
�
�

�
������		 ��� TTT

T eeefPTfPETPF ���

�

�

�
2

2
*

0

*

000 1
4

1)0(ln)(exp)(),(         (23)

with ���� ��
*

.

Note that in the models derived in this section, the deterministic component of the behavior of the

spot price (log-price) appears directly in the price of the forward and futures contracts (see (13) and (23)),

that term being an important determinant of the shape of the forward/futures curve. Also, in both types of

single-factor models all forward/futures prices are perfectly correlated.

C. Two factor model based on the spot price

We extend the one-factor models developed in the previous subsections by adding a second stochastic

factor in the spirit of Schwartz and Smith (2000). They model the stochastic behavior of oil prices as

having a short-term mean reverting component and a long-term equilibrium price level. An important

implication of adding a second factor in the model is that changes in prices of futures contracts with

different maturities are not perfectly correlated, as is the case for all one-factor models. We now briefly

describe the two factor models.

The model based on the price described by equations (1) and (2) now becomes:

ttt XtfP ���� )( (24)

                                                                                                                                        

parameters values are not the same.
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XXtt dZdtXdX �� ��� (25)

���
��� dZdtd t �� (26)

dtdZdZ X �
�
� (27)

In this model the second state variable, �t, follows an arithmetic Brownian motion, and the two

Wiener processes dZX and dZ�  are correlated through equation (27).

The risk-adjusted processes for these state variables are:

** )( XXtt dZdtXdX ��� ��� (28)

**

���
��� dZdtd t �� (29)

where

���� XX��
*

����
���� ��

*

and �X and �� are the market prices of risk for each state variable which are assumed to be constant.

dtdZdZ X �
�
�

**
.

Following the same steps as before, it can be proven that the futures prices are given by

� � TeXeTfPETPF TT

T

**

00

*

000 1)()(),(
�

��

��� �������
�� (30)

with: ���� XX��
*

 and 
����

���� ��
*

.

D. Two factor model based on the log spot price

Proceeding similarly for the log spot price we define:

ttt XtfP ���� )(ln

where the stochastic factors follow the same processes as in the previous subsection.
27

The futures price is given by the expression (see Schwartz and Smith(2000)):

� � � � � � ��
�
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����������	
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  (31)

                                          

27
 To simplify, we use the same notation as in the previous subsection. Of course, the values of the parameters need

not be equal.
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with ���� XX��
*

 and 
����

���� ��
*

.

Note that in this case the futures price depends on the volatilities and the correlation between the

two factors.

E. The deterministic component of the models

In order to implement the general models described above, we need to specify the deterministic time

function F = f(t). Here there are several choices available. Recall that this function tries to capture any

relevant predictable component of the electricity prices behavior arising from genuine regularities along

time. This implies that the final selection should be based on the nature and basic characteristics of the

time-series properties of the price variable under scrutiny, as well as modeling considerations such as

parsimony.

The simplest deterministic function is a constant function for all time t. In this case, we would

have a constant-mean reverting process for the price (or the log-price). In our context, this possibility

implies to accept that, although prices tend to be higher during the coldest seasons and lower during the

warmest ones, departures from the “usual” behavior are so frequent and significant that neither the

duration of the seasons nor the differences in prices between them can be meaningfully predicted. As

such, the seasonal behavior would be better described by a process fluctuating randomly around a constant

long-run mean. This case also discards other possible regularities of prices.

We may also consider to include a deterministic general trend. The simplest one would be a linear

time trend. This, applied to the log-price, which implies an exponential trend for the price itself, gives the

“trending Ornstein-Uhlenbeck process” by Lo and Wang (1995).

We may also be interested in incorporating some kind of periodic behavior, such as seasonality,

into the function. For instance, as suggested by Pilipovic (1998), a sinusoidal function like the cosine

function could be used to reflect the general seasonal pattern of the price time series.

The use of a constant piece-wise or step function in order to approximate the periodic components

and to incorporate them in the implementation stage of the models may also be worth being considered.
28

This can be accomplished by means of using dummy variables in the implementation process. Dummy

variables are intuitive and easy to interpret. Also, compared with fixing any a priori well behaved

functional form to capture periodic components into the model, the use of dummy variables can

potentially provide some necessary flexibility. On the other hand, as a result of such flexibility, the use of

                                          

28
 This is the approach followed by Jaillet et al. (1998) and Manoliu et al. (1999).
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dummy variables in order to capture genuine regularities in the behavior of the underlying variable suffers

from the potentially serious drawback that they are especially sensitive to anomalies in the sample, such as

outliers. Additionally, the use of seasonal dummy variables with high frequency data can always be seen

as an approximation since the number of steps and the placing of every step point are both arbitrarily

fixed, and some precision is lost in order to keep the model parsimonious enough to be of practical use.
29

 

According to the results in Section 3, we decided to include two terms into the deterministic

function F = f(t), in addition to a constant. The additional terms try to capture, respectively, the variation

in the level of prices between working and non-working days, and the seasonal evolution of prices

throughout the year.
30

 We finally propose two versions of the deterministic function. In the first one, the

function takes the following form:

�
�

���

12

2

1 )(
i

itit MDtf ��� (32)

where
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�
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�
otherwise0

or weekendholiday  is  date if1 t
tD

2,...,12for ,
otherwise0

monthcalendar  th-  the tobelongs  date if1
�

�
�
�

� i
it

itM

and �, �, and �i for i = 2,...,12 are all constant parameters.

In this case, the beta parameters try to capture the changes on the level of the variable for holidays

and weekends, and for the different months of the year, respectively, with respect to the general long-run

level (assumed constant) for the working days during January.

The second version of the deterministic function takes the following form:

� �
365
2

2 )(cos)( ���	� ���� tDtf t (33)

where

�
�
�

�
otherwise0

holidayor   weekendis  date if1 t
tD

cos stands for the cosine function measured in radians, and �, �, � and � are all constant parameters. Here,

the coefficient � tries to capture the changes in the level of the variable for weekends and holidays. The

                                          

29
 Of course, we can add two or more of the above mentioned possibilities when appropriate. Pilipovic (1998), for instance, has

claimed that some electricity prices may require two sinusoidal functions in order to capture the two peaks, one in winter and the

other one in summer, arising respectively from the use of heating and air conditioning. The relative importance of both peaks

depend greatly on the geographical location.
30

 We also added a linear time trend to the models, but eventually empirical evidence based on the behavior of the spot price led

us to discard it.
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cosine function is expected to reflect the seasonal pattern in the evolution of the relevant variable

throughout the year, hence it has annual periodicity.

5. Estimation of the stochastic process for the one factor models

In this section we estimate the stochastic process for the one factor models from the spot price data. In

order to estimate the models using discrete observations, we need to express them fully in discrete form.

We choose the empirical estimation to be based on the following simple discretization of equation (2):

ttt XX �� ���
�1)1( (34)

for t = 0,1,2,...,N, and where the innovations �t are i.i.d. normal random variables with mean zero and

variance �
2
. The same discretization is used for the process Yt defined in equation (15).

31

To summarize, we have four one factor models to estimate that differ in the time series chosen to

be directly modeled (price and log-price, respectively), and in the way the deterministic component is

approximated. Namely,

Model 1
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Model 2
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Model 3
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Model 4

� �
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with the dummy variables as defined in (24) and (25), and � � 1 � �.
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 For daily observations, this is a very reasonable approximation to the available exact discretization.
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For each one of these models, we estimate all the parameters simultaneously by nonlinear least

squares methods. To be precise, let’s write any of the four previous models in the following general form:

ttt

ttt

u

xfy

��

���

�1

),(

���

�
(39)

The first equation expresses the dependent variable yt, i.e. the price or the log-price variable, as a function

of a vector of parameters, �, and the vector of explanatory variables, xt. The second equation is the first-

order autoregressive structure of the disturbance term �t in the first equation. By substituting for � in the

second equation, and rearranging terms, we get:

ttttt uxfxfyy ����
��

),(),( 11 �
�
 (40)

whose parameters � and � are estimated simultaneously using a numerical nonlinear least squares

procedure. Finally, we take �� ˆ1ˆ ��  as the estimate of the parameter �, and the standard error of the

regression as the estimate of �. The estimation results for the whole spot sample period described in

Section 3 are reported in Table 2.

In the four models the independent coefficient � is significatively different from zero. The sign of

every dummy variable is negative in all models, as expected from the results of Section 3. Nevertheless,

their level of significance differs. The coefficient � corresponding to the dummy variable Dt is

significatively different from zero in the four models, but not all the coefficients of the monthly dummy

variables are significative.

The estimates of the coefficients �, �, and �  are virtually indistinguishable between models 1 and

2, and between models 3 and 4. The null hypothesis of � = 1 is rejected by the usual t-test for every model.

This means that the estimate for the reversion coefficient �, though very small, turns out to be significative

in all cases.
32

Figure 4 plots the residuals corresponding to the equation (40), also called the one-period-ahead

prediction errors, for the four models (see also the bottom part of Table 2). The results are virtually

indistinguishable between models 1 and 2, as well as between models 3 and 4. The models for the price

have mean absolute percentage error of 5%, while in the case of the models for the log-price the mean

absolute percentage error is 1%, for the whole sample period.
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6. Futures and forward valuation using one factor models

In this section we analyze the empirical performance of the valuation one factor models discussed

previously by comparing a sample of futures and forward market prices from the Nord Pool with the

theoretical values provided by the pricing models.

The derivatives sample was obtained from the Nord Pool’s FTP server files. The sample consists

of the observation of the complete term structure of futures and forward prices every four weeks, from

December 1998 to November 1999. The observation dates were selected to be the first trading day of the

second week of each block delivery period. This left us with thirteen observation dates. The sample

includes the closing prices for all traded futures contracts (week, block, and season) excluding daily

contracts (which started trading in September 1999), and all forward contracts (season and year). Note that

we only consider the closing prices for those listed contracts actually traded on any observation date.

Prices are given in NOK (per each contracted megawatt and each hour during the delivery period). Other

relevant information extracted from the data files is the first day and the last day of the delivery period for

each contract.

Table 3 summarizes the basic available characteristics of the derivatives sample. The number of

different contracts with different delivery periods traded each day ranged from 8 to 29, with a trading

volume per day and delivery period that ranges from 1 to 795 MW. They span a variety of expiration and

delivery periods (the former ranging from 6 days to almost 3 years). Note that the period of three years

until expiration correspond to forward contracts. The maximum period for the futures contracts in the

sample is 525 days.

The Nord Pool settles futures and forward contracts on a daily basis during their delivery period.

This means that a liquidation in cash is realized every day based on the difference between the reference

price in Elspot for that day and the appropriate futures or forward price. We calculate the price of a futures

or forward contract as the arithmetic average of the daily contract prices obtained from the formulas

derived in Section 4. To be precise, let’s denote F0(P0; T1, T2) the futures/forward price, where T1 and T2

represent, respectively, the number of days till the beginning and the end of the delivery period. Then,
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32
 The inference results should be carefully interpreted since, although the model accounts for the serial correlation of

first order through the inclusion of first-order autorregresive disturbances, there is still significative autocorrelation present in the

residuals at lags multiple of seven. This fact is related to the regular pattern within the week, which the models have not

accounted for. The inclusion of dummy variables for each day of the week, that was originally discarded based on their

significativity, may be reconsidered based on this result.
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with F0(P0, T) given by the formula (13) or (23), as appropriate.
33

The required parameters in the formulas were estimated from the historical system price series as

shown in section 5. The last system price included in the estimation is the system price with delivery date

on the valuation date. That price was fixed the previous day. This provides us with an out of sample test of

the pricing models since the required parameters were estimated for each day using only the historical

series of system prices up to the valuation date.

Table 4 summarizes the valuation results for the four models based on equations (35)-(38),

assuming that the market price of risk equals zero. The Root Mean Squared Errors (RMSE) and the Mean

Errors (ME) are provided as measures of the performance of the models, separately for each day and each

group of contracts, in both NOK and percentage terms. Finally, we average the results across the days.

The results vary a lot across days in the sample. In general, every model does a better job in

explaining the longest and shortest delivery period contracts. The year forward contracts have a mean

RMSE in percentage that ranges from 6.73%, for model 1, to 9.71%, for model 4, and mean ME in

percentage ranging from 5.09% to 8.68%, respectively, for the same models. The lowest mean RMSE for

the week futures contracts is 9.24% (model 2) and the highest is 15.78% (model 3). Overall, models 3 and

4 for the log-price do a worse job in explaining the futures and forward prices, as compared to the results

for models 1 and 2 for the system price. The global results for models 1 and 2 are quite similar. Although

model 1 performs better for block, season and year contracts, it does a worse job in explaining the week

contracts. Model 2 shows the lowest mean RMSE in percentage for all contracts (14.45%), under the

restrictive assumption of a market price of risk equal to zero.

Finally, we computed an implicit (constant) market price per unit risk independently for each day

by minimizing the RMSE in NOK for all contracts. We also calculated an implicit market price of risk for

the whole sample in the same way. The implicit market price of risk together with its associated RMSE (in

both monetary units and percentage) for each model is reported in Table 5. The implicit lambda is positive

for most of the days and models. For the whole sample, it takes value of 0.011 for model 1, 0.018 for

model 2, 0.019 for model 3, and 0.033 for model 4. Models 2 and 4 (models with the sinusoidal seasonal

function) experience the larger percentage reduction in the mean RMSE in percentage (23% and 37%,

respectively, against 7% and 17% for models 1 and 3). In addition, the percentage reduction in the RMSE
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 This is an approximation. The correct formula, which requires an estimate for the riskless interest rate, is given by:
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rT TPFeeTTPF  with F0(P0,T) given by the formulas (13) and (23). In order to asses the

validity of the approximation, we simulated the theoretical values given by the correct formula for several sets of realistic values

of the models parameters and a range of interest rates, and compared them with the theoretical values provided by the

approximated formula. The results turned out to be very close.

Additionally, we work with standardized days of 24 hours each. The Nord Pool’s liquidation procedure, however,

accounts for the exact number of hours during the delivery period (see Nord Pool (1999c) for the details).
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is larger for the models for the log-price as compared to the models for the system price. The resulting

mean RMSE in percentage are lower for models based on the price than models for the log-price, and

lower for models with the sinusoidal seasonal function. Overall, with a constant market price of risk equal

to the implicit market price of risk, model 2 has the lowest mean RMSE (11.1%), followed by model 4

(12.5%), and finally models 1 and 3 (14.4% and 15.9%, respectively).

In summary, with respect to the type of one-factor models studied in this paper, these results show

that those models based on the price do a better job in explaining actual futures and forward prices than

those models based on the log-price. Moreover, the simple sinusoidal function is better in incorporating

the seasonal pattern observed in spot prices into the futures and forward prices. Additionally, a market

price of risk different from zero is required in this market.

In order to gain some insight into the causes for the discrepancies between actual derivatives

prices and the theoretical prices, Figure 5 allows for a graphical comparison of the theoretical prices

provided by Model 2 with the actual futures and forward prices. This is done for two specific dates:

January 11, 1999 (Figure 5A), and May 3, 1999 (Figure 5B). They belong to a cold and a warm season,

respectively, and they were selected based on the large number of different traded contracts. Each

horizontal line indicates a different futures or forward price. The length of the line represents the delivery

period of the contract. As in Tables 4 and 5, only those contracts actually traded on the selected dates have

been considered. In order to make a clear figure, the daily Model 2 theoretical prices have been substituted

by a seven days centered moving average. The remaining discontinuities in the lines are due to the

concentration of holidays for some periods during the year. The market price of risk is assumed to be,

alternatively, zero or the implicit market price of risk for the given day.

It can be seen that the seasonal pattern implicit in the actual derivative prices does not exactly

matches the one extracted from historical spot prices (incorporated into the theoretical prices by the

model), though it is reasonably close for week and block futures contracts. Another difference is that the

actual term structure is increasing while the theoretical one fluctuates around a constant long-run level.

Even though there is no trend in the spot sample data, forward and future market prices seem to imply

expectations of a future trend. Alternatively, the market price of risk could be time dependant. In the next

section we explore two two-factor models that incorporate a stochastic trend by adding a second state

variable.

7. Futures and forward valuation using two factor models

To estimate the stochastic process for the one factor model we only needed a time series of spot prices,
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which was available from 1993 to 1999.  On the other hand, to implement the two factor models we need

time series data of both spot and futures/forward prices with several maturities in order to estimate the two

unobservable state variables. Schwartz (1997) shows how to estimate unobservable state variables from

spot and futures prices by using a Kalman filter procedure. However, the procedure requires liquid futures

contracts with homogeneous maturities. Unfortunately, Nord Pool is not liquid enough to provide with a

long time series of diverse futures and forward prices with homogenous maturities.

To overcome those difficulties, we implemented the two factor models by first estimating the

deterministic components of the models using spot price data prior to the valuation period. By using a

long enough time series we are able to obtain reliable estimates for the seasonal components (from

January 1993 throughout December 1998). Then, we estimated the remaining parameters together with the

state variables implicitly from the spot, futures and forward prices during the valuation period, from

December 1998 to November 1999 (see section 6 for the specific dates).

In order to calculate the implicit parameters, we used an iterative procedure that consists of the

following steps. First, for a given set of parameters, for every observation date in the sample we

individually find the state variable that minimizes the sum of square errors between model and market

prices of spot, futures and forward prices for that day. Second, we estimate the volatilities and correlation

parameters from the time series of the estimated state variables. Third, given those implied state variables

and parameters, we implicitly estimate the remaining parameters by minimizing the sum of square errors

for the whole spot and derivative contracts sample. With this new set of parameters we repeat the process

until convergence is achieved.
34

Given the characteristics of our sample, and in order to avoid the estimation problems pointed out

by Schwartz and Smith (2000, section 6.1), we concentrate on the risk neutral parameters (see Table 6,

and section 4). In addition, based on the results of the previous section we concentrate on the cosine

representation (33) of the deterministic seasonal component.

To be able to assess the improvements of the two factor models relative to the corresponding one-

factor models, we also estimated the latter using exactly the same iterative procedure described above.

Table 6 reports the results of these estimations.  The implicit procedure we used does not give us the

standard errors of the parameter estimates. The root mean square errors, however, clearly indicate that the

two factor models are superior to the one-factor models. For the models using spot prices the RMSE

improves from 8.11 to 6.99 (a 14% improvement), and for the models using the log spot prices these

figures are 10.85 and 8.94 (a 18% improvement).  Once again models based on the spot price perform

better than models based on the log spot price.

                                          

34 We start the procedure with an initial guess for the parameters to be estimated based on the results from previous

sections.
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Comparing the RMSE for the one factor model in Table 6 with those obtained for the same

models in Table 5, we note that these are substantially lower when using the iterative procedure.  The

RMSE improves by 37% for the model based on the price and by 30% for the model based on the log

price.  This is to be expected since in the iterative procedure more parameters are implicitly estimated

from the data, whereas in the previous estimation procedure only the market price of risk is estimated

from the futures and forward prices.  

This preliminary analysis suggests that there is a substantial improvement to be made in modeling

electricity prices using two factor models.  The implementation of these more complex models will

become feasible when additional futures and forward price data becomes available.

 

8. Concluding remarks

In this paper we have studied one and two factor models for the valuation of power derivatives. All of

them include a deterministic component that accounts for genuine regularities in the behavior of electricity

prices. The inclusion of this term has been motivated by a thorough analysis of the behavior of the

underlying electricity price at the Nord Pool, and an inspection of the term structure of futures prices in

this market.

The analysis clearly reveals that at least some of those regularities, especially the seasonal pattern,

play a central role in explaining the shape of the term structure of futures prices at the Nord Pool. The

valuation results are promising. There are, however, inherent difficulties in the estimation of a genuine

regular pattern, such as the seasonal component, in the time behavior of a given variable. An accurate

estimation the annual seasonal pattern requires a large time series, i.e. a large number of years. To

minimize this problem, we have conducted our empirical analysis on spot price data from one of the oldest

wholesale electricity markets in the world.

We have estimated the deterministic component of the models from data of the underlying

variable, i.e. the relevant electricity spot price. The estimates can then be used to value any electricity

derivative contract. Another procedure not explored here consists of extracting that component from the

actual term structure of futures or forward prices. This then, can be used to value other derivatives such as

option contracts written on them.

Given the limitations of the data available, we conducted a preliminary test of models that

consider two stochastic factors. The results of the empirical analysis are encouraging. Other possible

specifications of the second stochastic factor are possible. Our analysis of the system price in the Nord

Pool has revealed, for instance, that the volatility is consistently different between cold and warm seasons.
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A mean reverting diffusion process for the volatility could be considered. Another possible specification

would include jumps in spot prices.

As the necessary data becomes available, this type of analysis should be extended to other

electricity markets. As has been noticed in the introduction, there are important reasons to expect several

substantial differences in the behavior of electricity prices corresponding to different geographic locations,

hours of the day, or time periods during the year. These differences may require adjustments to the

specific structure of the deterministic component of the models.

An important topic for further research is the issue of liquidity in the electricity markets.  Of

special interest would be the relation between volume of trade and volatility in these markets. Finally,

several issues regarding the electricity market microstructure deserves further study. 
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Table 1

Descriptive Statistics for the Daily System Price and Other Related Time Series (1993-1999)
This table displays descriptive statistics for the daily spot system price (denoted Pt) and other related series as indicated in the first column. The sample period is from January 1,

1993 to December 31, 1999. Panel A displays the results for the whole set of data, panel B for cold seasons, and panel C for warm seasons. Warm seasons includes observations for

any date t from May 1 to September 30, both inclusive. Under the heading ADF, the last column shows the value of the augmented Dickey-Fuller test t-statistic for the null

hypothesis of a unit root, using twenty one lags in the relevant model, i.e. the statistic is the usual t-ratio for the � coefficient in the model (see, e.g., Greene (1993: 19.5)):

t

p

j jtjtt uyyy ���� �
�

�
��

1

11 ∆∆ ���  with p = 21, and 1∆
�

�� ttt yyy , where yt stands for Pt and lnPt, alternatively. MacKinnon critical values are: –3.4360 at the 1% level, –

2.8632 at the 5%, and –2.5677 at the 10%.

Autocorrelation Coefficient of Lag

Series N. Obs. Mean Median Min. Max. Std.Dev Skew. Kurt. 1 2 3 4 5 7 14 21 28 35 ADF

Panel A: All Seasons

Pt 2,556 142.569 132.070 14.800 423.380 66.370 0.755 3.540 0.987 0.974 0.965 0.956 0.950 0.944 0.905 0.865 0.830 0.795 -2.901

Pt – Pt–1 2,555 0.006 -0.490 -96.430 95.350 10.603 0.668 16.034 0.007 -0.137 -0.033 -0.102 -0.117 0.315 0.323 0.288 0.268 0.264

lnPt 2,556 4.838 4.883 2.694 6.048 0.529 -0.909 4.487 0.982 0.962 0.949 0.939 0.933 0.931 0.874 0.830 0.791 0.740 -3.052

lnPt – lnP t–1 2,555 0.000 -0.004 -0.718 0.701 0.099 0.461 14.397 0.060 -0.184 -0.090 -0.112 -0.176 0.410 0.376 0.339 0.305 0.310

Panel B: Cold Seasons

Pt 1,485 157.138 144.080 33.440 423.380 54.215 0.857 3.841

Pt – P t–1 1,484 -0.189 -0.640 -96.430 95.350 10.205 0.643 25.155

lnPt 1,485 4.999 4.970 3.510 6.048 0.345 -0.252 3.812

lnPt – lnP t–1 1,484 -0.001 -0.005 -0.672 0.545 0.067 -0.293 23.651

Panel C: Warm Seasons

Pt 1,071 122.367 105.940 14.800 370.030 75.756 1.177 3.913

Pt – P t–1 1,071 0.276 -0.290 -44.870 64.510 11.130 0.681 6.867

lnPt 1,071 4.615 4.663 2.694 5.914 0.646 -0.381 3.039

lnPt – lnP t–1 1,071 0.002 -0.002 -0.718 0.701 0.132 0.489 8.903
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A) Daily Prices and Changes (1993-1999)
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B) Daily Log-prices and Changes (1993-1999)
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Figure 1. Daily System Price Time Series (1993-1999)
The figure plots in A) the daily system price series (above) as well as its daily changes (below), and in B) the natural log of the

daily system price series (above) together with its daily changes (below).
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A) Hourly Average Prices Across Day of the Week and Seasons (1993-1999)
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B) Hourly Average Prices Across Type of Day and Seasons (1993-1999)
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Figure 2. Hourly Average Patterns within the Day (1993-1999)
The figure displays: A) the hourly mean prices throughout the week across seasons, and B) the hourly mean prices

separately for working days, weekends, and holidays (only official holidays in Norway have been considered) across

seasons. A warm season includes the months from May through September.
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A) Futures Curves (Jan. 98-Nov. 99)
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B) Futures Curves along Time (Jan. 98-Nov. 99)

Figure 3. Term Structure of Futures Prices in the Nord Pool (1998-1999)
This figure plots the evolution of the term structure of futures (closing) prices from January 1998 to November 1999,

using fortnightly observations. (Observation dates are the first trading day of every two weeks, starting on Monday,

January 5, 1998.) Only listed futures contracts have been considered (regardless of whether they were traded or not on the

observation dates). For any curve, every turning point indicates approximately a different price corresponding to a

subsequent maturity, and the length of the associated flat section represents the length of the delivery period as measured

in weeks.
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Table 2

Estimation Results for Alternative Models for the System Price (1993-1999)
The estimation is based on daily system price observations from January 1, 1993 to December 31, 1999 (2,556

observations). The parameters are estimated by transforming the following general specification of the models (refer to

the main body of the text for the specific details):

ttt

ttt

u

xfy

��

��

�1

),(

���

��

into the following alternative specification:

ttttt uxfxfyy ����
��

),(),( 11 ����

and then estimating the coefficients � and � simultaneously by nonlinear least squares methods (first derivative iterative

optimization algorithms have been used). The following estimator for � is used: �� ˆ1ˆ �� . The log likelihood function is

evaluated (assuming normally distributed errors) at the estimated values of the coefficients. The errors refer to the

residuals tû  corresponding to the innovations ut in the above equations (the one-period-ahead forecast errors). M.A.E.

and M.A.P.E. stand for the mean absolute error and the mean absolute percentage error, respectively.

Models based on the Price Models based on the Log-price

Model 1 Model 2 Model 3 Model 4

Parameter Estimate t-statistic Estimate t-statistic Estimate t-statistic Estimate t-statistic

� 153.051 8.146 145.732 8.670 4.938 38.711 4.867 46.192

� -9.514 -28.085 -9.542 -28.277 -0.090 -28.339 -0.090 -28.523

� 29.735 2.336 0.306 2.986

� 6.691 0.269 0.836 0.043

�2 -2.527 -0.754 -0.027 -0.878

�3 -4.511 -0.998 -0.041 -0.977

�4 -3.484 -0.664 -0.041 -0.849

�5 -13.248 -2.317 -0.185 -3.480

�6 -12.656 -2.114 -0.097 -1.744

�7 -7.038 -1.157 -0.062 -1.093

�8 -8.109 -1.347 -0.101 -1.807

�9 -10.061 -1.740 -0.094 -1.749

�10 -9.597 -1.795 -0.067 -1.352

�11 -7.304 -1.566 -0.052 -1.190

�12 -6.019 -1.674 -0.057 -1.703

� 0.990 355.4 0.989 340.4 0.986 299.0 0.984 277.5

� 0.010 0.011 0.014 0.016

S.E. of Regression 9.001 9.222 0.086 0.086

Adjusted R2 0.981 0.981 0.974 0.973

Log likelihood -9294.2 -9299.0 2652.9 2640.2

Errors:

M.A.E. 5.847 5.855 0.053 0.053

M.A.P.E. 4.980 5.000 1.176 1.179
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A) Model 1
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B) Model 2
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Figure 4. System Price vs. Model Prices (1993-1999)
The figure plots the actual daily system price (Actual) against the model estimates (Fitted), as well as the associated errors

(Residual), independently for each one of the four models.
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C) Model 3
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D) Model 4
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Figure 4 (cont.). System Price vs. Model Prices (1993-1999)
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Table 3

Overview of the Futures and Forward Contracts Sample
This table summarizes the basic characteristics of the derivative contracts sample. The whole sample consists of every

futures and forward contract traded on the first trading day of the second week of each block delivery period throughout

December 1998-November 1999 (13 days), excluding contracts with delivery period of one day. The Delivery Period

refers to the period of time underlying each contract and used in the cash-settlement procedure. The Expiration date is

considered to be the first day of the delivery period.

Number of Delivery Periods

Traded per Day

Daily Trading Volume per

Delivery Period (in MW)

Period until Expiration

(in days)

Delivery Period

(in days)

Type of contract Mean Min. Max. Mean Min. Max. Mean Min. Max. Mean Min. Max.

Futures

    Week 4.9 3.0 6.0 143.7 2.0 795.0 23.7 6.0 42.0 7.0 7.0 7.0

    Block 5.4 2.0 11.0 30.4 4.0 271.0 151.2 48.0 350.0 28.0 28.0 28.0

    Season 0.2 0.0 2.0 5.0 5.0 5.0 413.0 357.0 525.0 121.3 84.0 168.0

    All 10.5 6.0 19.0 82.8 2.0 795.0 97.4 6.0 525.0 20.3 7.0 168.0

Forward

    Season 3.5 1.0 8.0 30.0 2.0 180.0 332.9 11.0 994.0 120.6 92.0 153.0

    Year 1.6 0.0 3.0 26.5 1.0 122.0 442.7 47.0 974.0 365.5 365.0 366.0

    All 5.1 2.0 10.0 28.9 1.0 180.0 367.8 11.0 994.0 198.5 92.0 366.0

All contracts 15.6 8.0 29.0 65.3 1.0 795.0 185.3 6.0 994.0 78.2 7.0 366.0
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Table 4 (I)

Valuation Results: Model 1
This table summarizes the valuation errors for each observation date (see Table 3) assuming a zero market price of risk.

Two measures of the valuation errors are provided: the Root Mean Squared Error, and the Mean Error. Both measures

have been calculated, alternatively, on the valuation errors in monetary units (NOK), in Panel A, and on the percentage

valuation errors, in Panel B. The error in monetary units is defined as the theoretical model price minus the actual market

price (closing price). The percentage error is defined as the error in monetary units times 100 divided by the market

closing price.

Root Mean Squared Error Mean Error

Futures Forward All Futures Forward All

Observation Date Week Block Season Season Year Week Block Season Season Year

Panel A: In Monetary Units (NOK)

12/14/98 5.87 10.94 14.89 9.58 -1.78 5.34 12.52 2.76

1/11/99 7.16 26.78 5.05 15.42 7.99 17.54 7.09 23.74 5.05 8.84 7.05 12.44

2/8/99 9.43 22.45 21.21 9.68 19.14 8.78 19.07 14.70 9.68 14.63

3/8/99 6.94 35.66 26.35 16.60 26.26 5.82 33.44 24.92 16.60 21.77

4/6/99 8.11 31.32 23.72 14.34 22.71 7.88 28.28 22.26 13.68 18.83

5/3/99 15.69 19.71 16.61 14.09 6.81 16.43 14.60 12.52 10.84 3.05 1.87 9.45

5/31/99 26.16 27.04 4.56 9.24 22.09 25.80 25.80 4.56 8.17 19.52

6/28/99 27.15 14.08 13.31 8.42 17.67 26.61 8.67 5.60 5.07 11.69

7/26/99 4.58 15.82 11.94 5.86 11.01 -4.39 -14.24 -10.55 5.86 -8.06

8/23/99 4.52 5.36 2.77 4.51 1.85 1.64 2.73 1.99

9/20/99 7.49 2.74 4.98 10.10 6.13 7.42 1.20 4.97 10.10 5.04

10/18/99 9.66 19.70 11.47 4.66 14.02 -9.55 8.01 8.26 -2.22 0.89

11/15/99 18.99 17.86 11.75 5.27 16.80 -18.91 6.27 4.03 -2.83 -2.88

Mean 11.67 19.19 10.83 13.57 9.00 15.68 5.48 12.29 7.95 8.14 6.64 8.31

Panel B: In Percentage

12/14/98 3.76 7.76 11.85 7.05 -0.95 4.05 9.73 2.36

1/11/99 5.02 24.11 3.37 13.03 5.75 15.35 4.97 20.59 3.37 7.51 5.04 10.31

2/8/99 7.36 20.34 20.00 6.99 17.48 6.82 16.73 13.33 6.99 12.70

3/8/99 6.95 39.66 27.07 12.87 28.40 5.77 36.12 24.50 12.87 22.37

4/6/99 8.48 37.53 25.40 11.17 26.12 8.18 32.05 22.68 10.55 19.96

5/3/99 17.15 21.36 14.06 11.08 4.90 16.73 15.90 13.16 9.33 3.35 1.54 9.89

5/31/99 30.96 30.67 3.49 7.03 25.44 30.53 28.41 3.49 6.16 21.64

6/28/99 41.21 16.10 11.38 6.58 23.58 40.35 10.36 5.22 4.02 15.36

7/26/99 5.97 11.17 9.47 4.54 8.61 -5.75 -10.43 -8.26 4.54 -7.04

8/23/99 3.68 4.14 1.99 3.54 1.53 1.45 1.97 1.61

9/20/99 5.76 1.93 3.57 7.56 4.63 5.70 0.88 3.57 7.56 3.81

10/18/99 6.31 16.76 9.03 3.11 11.42 -6.25 8.07 6.64 -1.44 1.82

11/15/99 12.50 15.40 9.24 3.51 13.11 -12.46 6.46 3.74 -1.83 -0.67

Mean 11.93 18.99 8.72 12.05 6.73 15.50 7.26 12.92 6.35 7.50 5.09 8.78
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Table 4 (II)

Valuation Results: Model 2

Root Mean Squared Error Mean Error

Futures Forward All Futures Forward All

Observation Date Week Block Season Season Year Week Block Season Season Year

Panel A: In Monetary Units (NOK)

12/14/98 6.16 3.70 1.23 4.97 0.93 -2.72 -1.08 -0.43

1/11/99 6.81 19.88 11.87 14.31 7.76 14.35 6.70 17.62 11.87 10.81 6.81 11.48

2/8/99 5.81 28.62 18.51 9.45 20.70 5.29 26.87 16.28 9.45 17.22

3/8/99 2.02 26.65 29.49 17.09 22.10 -1.63 22.34 27.38 17.09 15.64

4/6/99 0.96 30.68 30.62 15.64 23.33 -0.13 27.20 29.08 14.96 17.20

5/3/99 4.14 23.36 17.33 14.75 7.58 17.02 3.67 20.54 15.74 10.91 3.32 12.61

5/31/99 14.70 21.49 33.33 11.61 18.77 14.56 21.28 33.33 10.56 17.25

6/28/99 23.63 32.94 18.96 11.05 22.96 22.53 32.75 16.03 8.11 20.01

7/26/99 5.06 17.53 16.46 11.83 13.02 3.58 16.91 15.90 11.83 10.69

8/23/99 16.91 34.49 25.99 26.88 12.98 34.46 24.18 23.84

9/20/99 22.28 23.61 21.74 11.77 22.12 21.58 22.10 20.53 11.77 20.92

10/18/99 4.81 6.01 3.69 3.87 5.01 2.83 2.49 -2.64 -1.86 1.10

11/15/99 8.92 6.87 6.48 4.94 7.38 -8.25 -3.68 -6.16 -4.10 -5.43

Mean 9.40 21.22 14.60 18.12 10.24 16.82 6.51 18.32 13.80 14.97 7.99 12.47

Panel B: In Percentage

12/14/98 4.15 2.34 0.83 3.32 0.80 -1.76 -0.75 -0.18

1/11/99 4.77 15.36 7.92 10.23 5.59 10.71 4.70 13.95 7.92 7.73 4.87 8.55

2/8/99 4.54 22.44 14.62 6.83 16.24 4.12 21.10 12.75 6.83 13.46

3/8/99 1.93 28.08 24.91 13.25 21.41 -1.55 23.66 24.08 13.25 15.14

4/6/99 1.01 29.82 26.74 12.18 21.80 -0.11 27.05 26.36 11.53 16.20

5/3/99 4.54 20.09 12.17 10.68 5.53 14.08 4.00 17.43 11.41 7.92 2.56 10.40

5/31/99 17.40 23.69 25.52 8.82 18.68 17.23 23.01 25.52 7.93 17.37

6/28/99 35.83 31.02 14.62 8.66 25.12 34.17 30.60 12.18 6.28 20.91

7/26/99 6.19 15.09 12.88 9.17 11.29 4.32 14.02 12.29 9.17 9.27

8/23/99 13.76 25.73 19.25 20.30 10.48 25.61 17.76 17.98

9/20/99 17.03 16.47 15.84 8.81 16.20 16.53 15.34 14.87 8.81 15.32

10/18/99 3.12 4.37 2.88 2.58 3.53 1.82 1.67 -2.10 -1.21 0.67

11/15/99 5.92 5.19 4.55 3.29 5.21 -5.46 -2.42 -4.43 -2.76 -3.63

Mean 9.24 18.44 10.05 14.12 7.70 14.45 7.00 16.10 9.67 11.86 6.12 10.88
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Table 4 (III)

Valuation Results: Model 3

Root Mean Squared Error Mean Error

Futures Forward All Futures Forward All

Observation Date Week Block Season Season Year Week Block Season Season Year

Panel A: In Monetary Units (NOK)

12/14/98 5.76 15.68 17.00 11.73 15.18 8.89 1.76 11.02

1/11/99 12.52 31.10 10.15 16.00 10.05 20.48 12.37 28.62 10.15 11.61 9.31 16.51

2/8/99 14.14 27.04 22.99 12.18 22.43 13.28 24.32 18.17 12.18 18.89

3/8/99 11.32 41.00 33.13 19.77 31.13 10.30 38.54 32.20 19.77 26.92

4/6/99 11.24 40.51 31.49 17.34 29.48 11.07 38.20 30.59 16.67 25.37

5/3/99 26.37 27.53 17.64 14.59 8.56 22.62 23.50 21.54 13.98 7.59 4.95 16.34

5/31/99 39.66 37.37 15.85 12.64 32.75 39.46 36.30 15.85 11.62 29.95

6/28/99 28.98 19.57 14.83 11.06 20.05 28.28 17.08 10.28 8.01 16.09

7/26/99 2.72 7.60 4.98 11.34 6.04 -2.31 -4.35 -0.61 11.34 -1.82

8/23/99 12.01 14.19 11.76 12.82 9.32 12.50 11.64 11.10

9/20/99 15.23 9.23 12.17 13.08 12.78 15.01 8.77 12.15 13.08 12.24

10/18/99 5.06 19.82 11.02 4.50 13.24 -4.76 11.73 9.67 -0.25 4.31

11/15/99 15.29 18.47 11.41 5.47 15.88 -15.09 10.74 8.07 -0.02 1.17

Mean 15.41 23.78 13.89 16.71 11.45 19.34 11.97 19.45 12.06 13.00 9.70 14.47

Panel B: In Percentage

12/14/98 3.89 11.18 13.05 8.56 3.23 9.25 12.37 6.53

1/11/99 8.78 27.54 6.78 13.44 7.22 17.52 8.67 24.52 6.78 9.35 6.63 13.27

2/8/99 11.04 24.17 21.45 8.80 20.12 10.31 20.98 15.87 8.80 16.00

3/8/99 11.26 45.42 33.36 15.33 33.31 10.15 41.56 31.20 15.33 27.44

4/6/99 11.63 47.53 32.86 13.48 33.23 11.45 42.52 30.55 12.84 26.55

5/3/99 28.87 29.27 14.90 11.68 6.29 23.45 25.64 21.03 11.57 6.48 3.71 16.03

5/31/99 46.94 41.95 12.14 9.59 37.51 46.69 39.68 12.14 8.72 32.86

6/28/99 44.02 21.71 12.60 8.67 26.07 42.91 17.97 8.69 6.22 19.26

7/26/99 3.92 5.41 3.85 8.79 4.97 -3.20 -2.61 -0.65 8.79 -1.77

8/23/99 9.77 11.06 8.61 10.01 7.53 9.58 8.49 8.54

9/20/99 11.68 6.48 8.77 9.80 9.56 11.52 6.12 8.74 9.80 9.07

10/18/99 3.33 17.29 8.69 3.08 11.27 -3.12 10.60 7.52 -0.08 4.09

11/15/99 10.08 16.46 9.23 3.78 13.07 -9.95 9.67 6.53 0.14 2.14

Mean 15.78 23.50 10.84 14.59 8.62 19.13 12.45 19.30 9.18 12.10 7.35 13.85
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Table 4 (IV)

Valuation Results: Model 4

Root Mean Squared Error Mean Error

Futures Forward

F

All Futures Forward All

Observation Date Week Block Season Season Year Week Block Season Season Year

Panel A: In Monetary Units (NOK)

12/14/98 15.44 10.24 9.16 13.18 15.18 8.89 1.76 11.02

1/11/99 16.85 26.55 25.01 22.80 10.49 22.03 16.78 20.82 25.01 15.16 9.77 17.18

2/8/99 11.31 38.19 25.69 12.53 28.20 10.70 34.42 20.79 12.53 22.91

3/8/99 4.20 25.30 39.06 20.74 24.69 3.53 22.49 34.77 20.74 19.08

4/6/99 3.83 37.02 39.80 18.77 28.80 3.58 32.15 36.20 18.12 21.83

5/3/99 6.11 33.15 24.90 23.21 9.41 24.63 5.84 28.98 17.97 16.88 6.20 18.16

5/31/99 15.42 19.97 47.79 14.52 22.25 15.34 19.69 47.79 13.57 19.52

6/28/99 24.60 46.04 28.68 13.90 30.64 23.63 44.36 22.62 11.32 25.68

7/26/99 4.59 34.31 31.11 16.66 24.24 3.30 33.17 30.83 16.66 18.86

8/23/99 22.12 55.54 42.17 42.25 17.12 55.35 40.11 37.20

9/20/99 33.12 45.62 38.14 15.87 37.94 31.55 43.26 36.74 15.87 35.35

10/18/99 19.24 20.96 12.98 4.38 17.56 16.69 9.69 -3.13 1.50 8.58

11/15/99 10.78 9.72 8.18 4.28 9.51 6.36 0.22 -1.26 0.07 1.99

Mean 14.43 30.97 24.96 28.37 12.87 25.07 13.05 27.19 21.49 23.02 11.49 19.80

Panel B: In Percentage

12/14/98 9.99 6.63 6.50 8.61 9.75 5.79 0.67 7.02

1/11/99 11.80 19.22 16.69 15.74 7.53 15.54 11.75 15.68 16.69 10.17 6.95 12.18

2/8/99 8.83 28.47 18.80 9.05 20.93 8.31 26.20 15.32 9.05 17.26

3/8/99 4.21 26.49 32.25 16.08 22.80 3.50 23.69 30.03 16.08 18.14

4/6/99 4.04 33.88 33.61 14.58 25.55 3.73 31.04 32.07 13.95 20.17

5/3/99 6.67 25.68 16.94 16.43 6.93 18.69 6.36 23.09 12.29 11.56 4.59 14.19

5/31/99 18.25 22.14 36.59 11.00 20.80 18.15 21.35 36.59 10.16 19.14

6/28/99 37.31 39.84 21.69 10.85 29.87 35.83 39.64 16.64 8.66 25.27

7/26/99 5.59 25.87 24.07 12.92 18.63 4.00 25.53 23.67 12.92 15.14

8/23/99 17.99 40.88 31.16 31.48 13.83 40.85 29.40 27.86

9/20/99 25.27 31.65 27.72 11.89 27.41 24.14 29.94 26.57 11.89 25.68

10/18/99 12.46 13.54 9.54 3.06 11.51 10.84 5.36 -3.05 1.11 5.09

11/15/99 7.07 6.92 6.25 2.97 6.59 4.13 -0.46 -1.49 0.17 0.95

Mean 13.04 24.71 16.82 21.57 9.71 19.88 11.87 22.13 14.49 17.55 8.68 16.01
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Table 5

Implicit Market Price of Risk for the One Factor Models
This table reports the implicit market price per unit risk for the one factor models. It has been calculated independently for each observation date (the arithmetic average and

standard deviation values are also provided), and for the whole sample (the sample is the same as in Table 4). The market price of risk has been obtained by minimizing the Root

Mean Squared Error (RMSE) in monetary units for all the contracts. The implicit market price per unit risk is reported together with its associated RMSE for all contracts in

monetary units (NOK) and in percentage (%). The RMSE is defined as the square root of the arithmetic average of the squared pricing errors. The pricing error in monetary units is

defined as the theoretical model price minus the actual market (closing) price. The pricing error in percentage is the pricing error in monetary units times 100 divided by the actual

market price.

Models Based on the Price Models Based on the Log-price

Model 1 Model 2 Model 3 Model 4

RMSE RMSE Implicit � RMSE RMSE Implicit � RMSE RMSE Implicit � RMSE RMSE

Observation Date

Implicit �

(in NOK) (in %) (in NOK) (in %) (in NOK) (in %) (in NOK) (in %)

12/14/98 0.012 8.0 5.3 -0.003 4.8 3.2 0.019 5.4 3.6 0.018 9.7 7.0

1/11/99 0.014 13.3 10.9 0.016 8.5 6.2 0.020 13.4 10.8 0.026 12.3 9.2

2/8/99 0.017 13.4 11.6 0.024 9.7 7.5 0.023 13.6 11.6 0.036 11.4 8.9

3/8/99 0.036 11.4 11.7 0.032 9.0 8.5 0.049 11.8 11.9 0.045 7.4 6.6

4/6/99 0.028 13.7 15.3 0.034 10.5 9.3 0.042 15.7 17.1 0.049 10.0 8.3

5/3/99 0.008 15.1 14.7 0.017 11.5 9.2 0.017 18.7 18.8 0.029 13.5 10.2

5/31/99 0.022 17.6 19.5 0.028 10.5 9.7 0.042 23.9 25.9 0.038 10.7 9.5

6/28/99 0.009 16.3 21.3 0.024 15.8 17.8 0.016 16.8 22.1 0.039 17.7 18.3

7/26/99 -0.014 7.2 5.7 0.021 5.6 5.1 -0.002 5.9 4.9 0.042 6.1 5.3

8/23/99 0.004 4.1 3.2 0.051 11.3 8.4 0.019 7.1 5.5 0.073 10.8 7.8

9/20/99 0.007 4.8 3.6 0.035 13.6 10.1 0.017 7.8 5.8 0.062 16.0 11.7

10/18/99 0.007 13.1 10.0 0.000 5.0 3.5 0.010 11.4 9.0 0.014 15.5 11.0

11/15/99 0.005 16.5 12.4 -0.006 6.4 4.8 0.009 14.8 11.4 0.003 9.3 6.7

Mean 0.012 11.9 11.2 0.021 9.4 8.0 0.022 12.8 12.2 0.036 11.6 9.3

Std. Deviation 0.012 4.5 5.7 0.017 3.3 3.8 0.015 5.4 7.0 0.019 3.4 3.3

Whole sample 0.011 14.8 14.4 0.018 12.9 11.1 0.019 15.8 15.9 0.033 15.4 12.5
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A) Model 2 Theoretical Prices vs. Actual Market Prices (1/11/1999)
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B) Model 2 Theoretical Prices vs. Actual Market Prices (5/03/1999)

80

90

100

110

120

130

140

150

160

170

180

190

5
/3

/9
9

6
/3

/9
9

7
/3

/9
9

8
/3

/9
9

9
/3

/9
9

1
0
/3

/9
9

1
1
/3

/9
9

1
2
/3

/9
9

1
/3

/0
0

2
/3

/0
0

3
/3

/0
0

4
/3

/0
0

5
/3

/0
0

6
/3

/0
0

7
/3

/0
0

8
/3

/0
0

9
/3

/0
0

1
0
/3

/0
0

1
1
/3

/0
0

1
2
/3

/0
0

1
/3

/0
1

2
/3

/0
1

3
/3

/0
1

4
/3

/0
1

5
/3

/0
1

6
/3

/0
1

7
/3

/0
1

8
/3

/0
1

9
/3

/0
1

1
0
/3

/0
1

1
1
/3

/0
1

1
2
/3

/0
1

1
/3

/0
2

2
/3

/0
2

3
/3

/0
2

4
/3

/0
2

5
/3

/0
2

6
/3

/0
2

7
/3

/0
2

8
/3

/0
2

9
/3

/0
2

1
0
/3

/0
2

1
1
/3

/0
2

1
2
/3

/0
2

Calendar Day

P
ri

c
e
 (

N
O

K
)

Model 2 with implicit lambda Model 2 with lambda zero Actual Futures Prices Actual Forward Prices

Figure 5. Model 2 Theoretical Values vs. Actual Futures and Forward Prices
The figure plots futures and forward closing prices as well as the daily theoretical prices provided by Model 2, for days

January 11, 1999 and May 3, 1999 in graphs A) and B), respectively. Only prices of contracts actually traded on those

dates have been considered. For the actual prices, the length of the line indicating the price level represents the duration of

the delivery period in days. A centered moving average of seven daily theoretical prices has been used to represent the

theoretical term structure of futures/forward prices.
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Table 6

Valuation Results by Implicit Methods
This table reports the valuation results for the one and two factor models using a sinusoidal function for the seasonal

component. The parameters corresponding to the deterministic seasonal term were obtained by minimizing the sum of the

squared errors from the spot price previous to the valuation sample period (the spot prices run from January 1, 1993

throughout December 14, 1998). The remaining parameters where obtained by implicit methods using the whole futures

and forward sample reported in Tables 4 and 5, by minimizing the sum of the squared errors (see the main body of the text

for details). The Root Mean Squared Errors in NOK for all futures and forwards contracts are also provided in the last

row.

Parameter Price models Log-price models

� 151.08 4.89

� -10.24 -0.10

� 30.27 0.31

� 3.96 -2.24

One Factor Two Factor One Factor Two Factor

� 0.0014 0.0077 0.0012 0.016

�* 9.57 -53.74 0.13 -0.17

�*
�

-0.029 -0.06�10-3

�X 2.36 5.77 0.018 0.056

�
�

3.10 0.019

� -0.81 -0.63

RMSE (NOK) 8.11 6.99 10.85 8.94


