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ABSTRACT As one of the key components of smart grid, advanced metering infrastructure (AMI) provides 

an immense number of data, making technologies such as data mining more suitable for electricity theft 

detection. However, due to the unbalanced dataset in the field of electricity theft, many AI-based methods 

such as deep learning are prone to under-fitting. To evade this problem and to detect as many types of theft 

attacks as possible, an outlier detection method based on clustering and local outlier factor (LOF) is proposed 

in this study. We firstly analyze the load profiles with k-means. Then, customers whose load profiles are far 

from their cluster centers are selected as outlier candidates. After that, the LOF is utilized to calculate the 

anomaly degrees of outlier candidates. Corresponding framework for practical application is then designed. 

Finally, numerical experiments based on realistic dataset show the good performance of the presented method. 

INDEX TERMS Clustering, data mining, electricity theft detection, local outlier factor.  

NOMENCLATURE 

Sets 

 Set of all users in an area. 

 Set of benign users in the area. 

 Set of fraudulent users in the area. 

 A dataset. 
j  The j-th cluster of dataset . 

 Set of outlier candidates for . 
j  Set of outlier candidates for j . 

Indices 

t  Index of time interval. 

i  Index of user and data sample. 

j  Index of cluster. 

d  Index of day. 

Variables and Parameters 

,i tu  Ground truth load for user i at time interval t. 

,i tu  Recorded load for user i at time interval t. 

iu  Recorded load vector for user i. 

i


u  Normalized recorded load vector for user i. 

,i d


u  
Normalized recorded load vector for user i on day 

d. 

m  Number of load profiles for each user. 

x  A data sample in dataset . 

y  A data sample in dataset . 
j

x  Center of cluster j in dataset . 

n  Number of nearest samples to x . 

k  Number of clusters. 

  Ratio of outliers account in . 
j

cd  Cut-off distance of cluster j. 

,LOFi d   Value of LOF for user i on day d. 

,ranki d  Rank of user i on day d based on descending 

order of LOFi,d 

rank i   Average rank of user i during m-days. 

Functions 

  Size of a set. 

( )f   Attack function. 

( , )dist    Euclidean distance between two data samples 

( )ndist   The n-th nearest distance of a data sample. 
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( )nN   The n-nearest objects of a data sample. 

( , )Rd    Reachability distance between two data samples. 

( )n   Local reachability density of a data sample. 

( )   Standard deviation of a vector. 

mean( )  Arithmetic average of a vector. 

 
I. INTRODUCTION 

Electricity theft in power system is that customers adopt 

certain techniques and devices to illegally tamper with the 

meters or intrude into the information flow of grid, resulting 

in the electricity consumption or the bills being lower than the 

actual amount [1] Electricity theft seriously damages the 

economic benefits of power utilities and also lays down 

potential safety hazards such as power outages, equipment 

damage, and casualties. According to the report conducted by 

Northeast Group, the annual cost caused by electricity theft in 

the USA had reached $10 billion in 2017 [2]. In China, State 

Grid Corporation has also retrieved the theft bills of nearly 13 

billion yuan in the past three years. 

With the establishment of Advanced Metering 

Infrastructure (AMI) and application of smart meter, the 

massive amounts of electricity consumption data they provide 

make data mining technologies more suitable for electricity 

theft detection [3]. However, the software and communication 

technologies applied in AMI make it possible for malicious 

users to tamper with the smart meters and intrude into the 

information flow of grid via cyberattacks. Corresponding 

high-tech electricity theft cases were reported in Fujian Daily 

of China [4]. Unlike traditional physical attacks such as meter-

bypassed or meter-tampered, cyberattacks modify the data in 

a more random way and leave little physical trace, making 

them more difficult to be detected. Because of such 

increasingly severe situation, corresponding detection 

methods become urgently needed to address the problems of 

electricity theft in AMI.  

Current data-driven electricity theft detection methods 

(ETDMs) can be divided into three categories [3], as follows. 

1) Game theory based. In this type of methods [5]-[6], 

electricity theft is described as a game between power 

suppliers and customers. The game equilibrium theory can be 

used to derive the difference in the distribution of electricity 

consumption between normal customers and abnormal ones. 

The game theory-based methods are useful for understanding 

the potential strategies and interactions among different 

players, but are hard to formulate a practically applicable 

model to involve all the players. 

2) System state based [7]-[10]. The methods based on 

system state utilize the fact of data inconsistency caused by 

data tempering of fraudulent customers to realize theft 

detection. The physical model of a power network indicates 

that the system variables should satisfy certain mathematical 

equations, which derives the consistency of the variables. But 

the data tempering of fraudulent users will destroy this 

consistency and cause some anomalies such as non-technical 

loss (NTL) and voltage limit violation. Works [7]-[8] on this 

direction perform distribution system state estimation to 

realize the detection for electricity theft detection. However, 

the state-estimation-based methods need precise information 

of network topology and parameter, which are not available at 

the end-user level. Thus, the practical applicability is limited 

in this situation.  

3) Power consumption pattern based. It is widely believed 

that the consumption patterns of fraudulent users differ from 

those of benign users. Based on such characteristics, this type 

of ETDM utilizes logistic regression [11]-[12] or artificial 

intelligence such as classification [13]-[16] and clustering 

[17]-[21] to analyze the load profiles of customers for 

electricity theft detection. Specifically, classification methods 

usually involve vast labeled historical electricity usage data to 

train the detection models. Examples including support vector 

machines (SVM) [13], convolutional neural networks (CNNs) 

[14] and other artificial neural networks [15]-[16] have been 

tested in literature. In contrast, unsupervised methods like 

clustering, focus on the information without labels. For 

example, [17] adopted the density-based spatial clustering of 

applications with noise (DBSCAN) to calculate the anomaly 

degrees of users.  

The existing data-driven ETDMs have some limitations. 

First, the game theory -based methods mainly focus on 

theoretical analysis with strong assumptions, thus are not 

competent in engineering practicality. Second, supervised 

methods need vast reliable theft samples to train the detection 

models. But the small proportion of theft users and the data 

poisoning (the false labeled samples) [18] limited their 

accuracies. Worse yet, they might not distinguish between 

electricity theft and non-malicious activities like meter 

reinstallation. 

Since the amounts of fraudulent users account for a very 

little proportion in reality and their consumption patterns 

deviate from the normal ones, it’s quite suitable for outlier 

detection methods [19] to be utilized in electricity theft 

detection. However, traditional outlier detection methods such 

as local outlier factor (LOF) can’t detect the overlapping 

outliers. To handle this problem and to detect as many types 

of theft attack as possible, an improved outlier detection 

method based on clustering and local density is proposed in 

this study. This method adopts k-means to analyze the load 

profiles of users. And then, customers whose load profiles are 

far from their cluster centers are selected as outlier candidates. 

After that, the LOF is utilized to calculate the anomaly degrees 

of the outlier candidates. The main contributions of this paper 

are as follows. 

1) New techniques: Combining k-means and LOF for 

electricity detection, which not only evade the problem of 

unbalanced dataset but also realize the detection for 

overlapping outliers.  

2) Extensive experiments: We have conducted extensive 

and comprehensive experiments based on a realistic dataset. 
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The comparisons with some other detection methods validate 

the effectiveness and superiority of our method. 

The rest of this paper is organized as follows. In Section II, 

we review the literature related to electricity theft detection in 

AMI. In Section III, the AMI model and the attack functions 

are pointed out. Section IV presents the theory of the two 

techniques and the framework of the detection method. 

Numerical experiments are conducted and evaluation results 

are shown in Section V. Finally, we conclude this paper in 

Section VI.  

II. RELATED WORK 

In this section we review existing data-driven ETDMs in 

literature. One direction for electricity theft detection is game-

theory-based techniques. Cárdenas et al. [5]-[6] studied the 

use of game theory in energy theft behaviors. In [6], electricity 

theft and combat losses are modeled as non-zero sum 

Stakelberg game. The distribution deploy AMI to maximize 

the likelihood of detecting energy thieves, while the attackers 

schedule their electricity theft behaviors so that the probability 

of being caught is minimized.  

Another solution for electricity theft pinpointing is state 

estimation. Leite et al. [7], adopted a state estimator to monitor 

the bias between the estimated and measured voltages. Once 

the bias is detected, the sources of NTL are located by a 

pathfinding procedure based on the A-Star algorithm. Their 

method, however, is only effective when precise information 

of network topology and parameter is available. If this is not 

the case, Salinas et al. [9] introduced a peer-to-peer ETDM. In 

their approach, a central meter is deployed in each 

neighborhood to measure the NTL of this area at each time 

instance. By solving the sparsest solution of a group of 

underdetermined linear equations between NTL and load 

vectors, the fraudulent users can be found. But the algorithms 

to get a solution of low percentage of sparsity are still in their 

infancy. To handle this problem, Zheng et al. [10] adopted the 

maximum information coefficient (MIX) to measure the 

correlation between NTL and load data of users. The stronger 

the correlation, the more suspicious the user is. Nevertheless, 

this correlation-based method could but detect linear false data 

injection.  

Recently, with the booming of artificial intelligence (AI), 

techniques such as classification and clustering are utilized to 

analyze the load profiles of customers for energy thieve 

locating. For example, Jokar et al. [13]summarized several 

modes of FDI to artificially generate fraudulent consumption 

data. Then, a support vector machine (SVM) was trained to 

detect whether a new sample of load profiles is normal or not. 

In [14], it was observed that the load curves of abnormal users 

have poor periodicity compared with those of normal users. 

And a conventional neural networks (CNNs) was trained to 

detect such abnormal users. However, these classification-

based methods only can work if verified cases of theft samples 

are available. If this is not the case, then the unsupervised 

clustering which do not use electricity theft labels, must be 

used. Examples include fuzzy C-means (FCM) [20] and 

optimum-path forests [21].  

Perhaps, the most relevant in [22] presented the 

performance comparison for various existing outlier detection 

algorithms on real dataset. The results show the feasibility of 

outlier algorithms for electricity theft detection. Compared to 

[22], the proposed method analyzes the accuracy for detecting 

different attack functions and realizes the detection for overlap 

outliers.  

III. PROBLEM STATEMENT 

A. AMI SYSTEM MODEL 

The architecture of AMI is shown in Figure 1. AMI is 

composed of smart meters, communication networks and data 

management system. Under the structure of AMI, each 

customer is equipped with a smart meter to record his 

electricity data. A concentrator is installed in an area with a 

group of neighborhood users to collect the data from smart 

meters in this area. Due to the stable topology within the area 

and the fine security of concentrators, the electricity 

consumption Wt recorded by concentrator is the sum of ground 

truth consumption of all customers in one area, i.e.,  

 ,t i i tW u=   (1) 

 

FIGURE 1.  Illustration of AMI system model 

where ,i tu  is the ground truth load of user i at time instance t, 

and  is the set of all users in area A. If there are several 

fraudulent users in area A, the set of fraudulent users are 

denoted as  whose size is  and remnant benign users are 

denoted as  whose size is . The tampering behavior of 

the electricity thieves is to transform the ground truth data ,i tu  

into modified data ,i tu , i.e.  

 ,( )

, ,
i tf u

i t i tu u⎯⎯⎯   (2) 

where  is an attack function to simulate the modification 

of fraudulent users. The problem this study focuses on is how 

to find the fraudulent users in  with different types of .  

B. ATTACK FUNCTIONS 

There are many known techniques for electricity theft in 

AMI, which can be categorized into three groups [13]. 

( )f

( )f
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1) Physical Attacks: Fraudulent users manipulate smart 

meters physically to lower meter readings, such as meter-

bypassed and meter-tempered. 

2) Cyberattacks: Fraudulent users compromise meter 

readings remotely or modify the firmware on smart meters 

using communication technologies. 

3) Data Attack: Fraudulent users inject bad data into the 

data management system or smart meters, which reduces their 

electricity bills and meter readings. 

TABLE I 

SEVEN TYPES OF THE ATTACK FUNCTIONS 

Types Attack Functions 

Type 1 , ,= , 0.2 0.8i t i tu u    

Type 2 
, ,

,
,

if
= max( )

if

i t i t i

i t i
i i t i

u u
u

u




 





u  

Type 3 , =max( ,0), max( )i t i,t i iu u  −  u  

Type 4 , ,= , 0.2 0.8i t t i t tu u    

Type 5 , = , 0.2 0.8i t t i tu   u  

Type 6 
1 2

, 2 1
,

0 if
= 4hours

otherwisei t
i t

t t t
u t t

u

 
− 


 

Type 7 , =i t iu u  

 

 

FIGURE 2.  An example of different attack types 

 

To simulate the tampering behaviors of above attacks, Jokar 

et al. [13] summarized several attack functions. Table 1 gives 

the detains of these attack functions, and Figure 2 shows an 

example of the tampered load profiles. As shown in Table 1, 

Type 1 reduces the ,i tu  in a constant percentage throughout 

the entire fraudulent period. Type 2 means that ,i tu  above a 

threshold are clipped. In type 3, a cut off value is subtracted 

from all ,i tu . Type 4 modifies every ,i tu  in different ratios. 

Type 5 generates ,i tu  by multiplying the average consumption 

of this day by a random percentage defined for each user. In 

type 6, ,i tu  during a random period longer than 4 hours each 

day are replaced by zero. Finally, type7 modifies all ,i tu  by 

the average consumption of this day to represent attacks 

against load control mechanisms in which the price of 

electricity varies over different hours of the day; while the total 

amount of electricity usage stays the same. We utilize these 7 

types of attack functions to generate fraudulent data to conduct 

numerical experiments for evaluation. There are many other 

theft attack functions in [32]. However, a characteristic can be 

generalized based on their definitions: An attack function 

either keeps the features and fluctuations of the original curve, 

or creates new patterns. This is the same for other attack 

functions, so our method can handle them as well. 

III. METHODOLOGY 

A. LOCAL OUTLIER FACTOR 

The outliers are a sort of special data objects, which occupy a 

very little proportion and deviate from overall normal model. 

The outlier detection aims to find out these abnormal objects. 

Electricity thieves account for a very little proportion in reality, 

and their consumption patterns differ from normal ones. Thus, 

outlier detection methods are quite suitable for electricity 

identification. Local outlier factor (LOF) [23] is an outlier 

detection method based on local density, and has been proven 

to be very powerful in the field of fraud detection [25] and 

fault diagnosis [26]. 

Suppose that x  and y  are two data objects of dataset . 

Let us denote their Euclidean distance as ( )dist x, y . To 

calculate LOF, the reachability distance (RD) and the local 

reachability density (LRD) need to be defined. The n-objects 

in  closest to x  are called n-nearest neighbors of x  and 

are denoted as ( )nN x . The reachability distance from x  to 

y  can be calculated as follows: 

  ( ) max ( ), ( )nRd dist dist=x, y x, y y   (3) 

where ( )ndist y  is the n-th nearest distance between the 

objects in to y . It is worthwhile to mention that the 

reachability distance ( )Rd x, y  from x to y may not equal to 

the reachability distance ( , )Rd y x  from y  to x . As shown in 

Figure 3, when y is in ( )nN x  but x is not in ( )nN y , the 

( )Rd x, y  is equal to ( )dist x, y  while the ( , )Rd y x  is equal 

to ( )ndist x .  

 

FIGURE 3.  Illustration of the reachability distance 

 

The local reachability density of x is defined as the 

reciprocal of the average value of ( )Rd x, y  when ( )nNy x , 

i.e., 
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( )

( )
( )

n

n

N

n

Rd




=
 y x

x
x, y

  (4) 

( )n x  is able to measure how close x is to its n-nearest 

neighbors ( )nN x . And a higher ( )n x indicates a closer 

distance between x  and ( )nN x . Finally, the LOF of x  is 

defined as the average of the specific value between ( )n y  

and ( )n x  when ( )nNy x , i.e.,  

 ( )

( )1
LOF ( )

( )n

n
n N

nn




=  y x

y
x

x
  (5) 

From (5), it can be seen that, LOF is a sort of density 

comparison which could represent the density contrast 

between x  and its n-nearest neighbors ( )nN x . The essence 

of LOF is to quantify the outlier degree of x  by its nearest 

neighbors. If x  is not a neighbor in the view of ( )nN x , 

which means that x  is isolated and separate from its 

neighbors, the value of LOF would be much higher than 1. 

Vice versa, when x  is a neighbor in the view of ( )nN x , 

which means that x  stays close to its n-nearest neighbors, the 

value of LOF would be close to 1.  

Compared with other outlier detection method such as 

DBSCAN and variogram cloud, LOF can consider clusters 

with an arbitrary shape and requires only one parameter n (We 

set n as 5% of the total number of  in this paper because it 

is found to work well in practice). However, the definition of 

LOF also suggests that, when some outliers overlap together, 

the LOFs of these overlapping outliers could be close to 1. And 

attack type 7 modifies the load curves to straight curves which 

will overlap together after normalization. Thus, this problem 

of LOF need to be tackled to detect type 7.  

B. CLUSTERING AND LOCAL OUTLIER FACTOR 

To handle the problem of LOF’s failure to overlapping 

outliers, we proposed an improved outlier detection method 

based on clustering and local outlier factor (CLOF). The idea 

of CLOF is to cluster dataset  with k-means and select the 

objects which deviate from their cluster centers as the outlier 

candidates set . And then, LOF is adopted to measure the 

outlier degrees of the objects in .  

In CLOF, the k-means is firstly utilized to classify the 

objects in . The cluster number could be easily chosen 

according to elbow method [20]. For every object in , we 

calculate its Euclidean distance to its cluster center, i.e., 

 
2

( )j j j j
i idist = −x , x x x   (6) 

where, j
ix  is the i-th object in j-th cluster j  ; j

x  is the 

cluster center of j , 
2

is the 2-norm of a vector. For j , 

the objects are chosen as its outlier candidates set j  

according to the following equation. 

  = ( , ) orj j j j j j
i i cdist d  x x x   (7) 

where, j
cd  is the cut off distance of j , 

j
 is size of j ; 

 is the size of dataset ,   is the ratio of outliers. In this 

paper, j
cd  is defined as triple standard deviation of j  based 

on “three-sigma rule of thumb”, and   is set as 5% according 

to the parameter n in LOF. Finally, we can get the overall 

outlier candidates set 1 2= k   .  

From (7), it can be concluded that, the outlier candidates in 

 is composed of two kinds of objects: one is the objects that 

deviate from their cluster centers, the other is the clusters that 

account for very little proportion of the whole dataset. After 

 is obtained, the LOFs are calculated for the outlier 

candidates in .  

Algorithm of CLOF  

Input: Dataset , and parameters n ,   

Output: Rank of every sample in  

Step1: Get the cluster number k according to elbow method. 

Step2: Analyze the data samples in with k-means and divide into 

k-clusters 1 2= k  

Step3: For each cluster j :  

Calculate the Euclidean distance ( )j j
idist x , x  between every 

data sample
j

ix in this cluster and the cluster center j
x ; 

Calculate the cut-off distance
j

cd of j ; 

Get the outlier candidate set j of j according to (7); 

Step4: Get the outlier candidate set 1 2= k   

Step5: For every data sample x in : 

Get the n-nearest ( )nN x  neighbors of x ; 

Calculate the n-th nearest distance ( )ndist x of x
 

Step6: For every data sample x in : 

Calculate the reachability distance ( )Rd x, y   for every 

( )nNy x  according to (3); 

Calculate the local reachability density of x according to (4); 

Calculate the LOF of x ; 

Step7: Get the ranks of the samples in  according to the descending 

order of their LOF first; 

Then, get the ranks of the samples not in  according to the 

descending order of their LOF; 

The ranks of the samples in should be higher than that of the 

samples not in ;  

 

By adding the clusters with a small number into , CLOF 

can detect the overlapping outliers effectively. Figure 4 shows 

an example of 2-dimentional outlier detection with CLOF. In 

Figure 4, the black points are outliers detected by CLOF while 

the hollow points are the non-outliers. And the red point is 5 

overlapping outliers. From the distribution of LOFs in Figure 

4, the points deviate from the normal majority more, the higher 

LOFs of these points are. The outliers detected by CLOF is 

accord with visual intuitive, and the overlapping outliers can 

also be detected, which proves the effectiveness of CLOF.  
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FIGURE 4.  An example of 2-dimentional outlier detection by CLOF 

 

C. DETECTION FRAMEWORK 

Based on above methodology, we design corresponding 

detection framework for CLOF. The framework is composed 

of three modules: the preprocessing module, the detection 

module and the judgement module, as shown in Figure 5.  

For an area that contains  consumers with their m-day 

load profiles, the preprocessing module firstly vectorize the 

load profiles each day to get the daily load vectors 
T

,1 ,2 ,[ , ,..., ]i i i i Tu u u=u  of user i. For every daily load vector, 

the missing data are recovered as follows: 

 
,

,
,

mean( ) NaN
( )

otherwise

i i t

i t
i t

u
G u

u


= 


u
  (8) 

where mean( iu ) is the average value of vector iu . In addition, 

there are some erroneous data in some conditions. Therefore, 

the preprocessing module also recover those data by the 

following equation according to “three-sigma rule of thumb”: 

 

, 1 , 1

, , 1 , 1
,

,

if 3 ( ) , NaN
( ) 2

otherwise

i t i t

i t i i t i t
i t

i t

u u
u u u

G u

u


− +

− +

+
 

= 



u ，
 (9) 

where, ( )i u  is the standard deviation of vector iu . Next, 

every load vector is normalized by dividing it with its 

maximum.  

Let us denote the normalized load vector of user i on d-th 

day as ,i d


u . For all the normalized vectors on d-th day, the 

detection module calculates LOFi,d utilizing CLOF. And it 

gives a rank list of the p-users on d-th day by the descending 

order of LOFi,d. The rank of user i on d-th day is denoted as 

,ranki d . After the detection module get all the rank list of m 

days, the judgement module calculates the average rank of 

user i according to (10).  

 
1

1
rank rank

m

i i,d

jm =

=    (10) 

Finally, a user is considered committing electricity theft if his 

average rank is high.  

 

FIGURE 5.  Framework of the CLOF detection method 

IV. VALIDATION AND EVALUATION 

A. DATASET 

We use the realistic electricity consumption data released by 

SGCC as benign dataset. Because all the users involved in the 

dataset come from the areas whose line loss rates per month 

are lower than 3%, those data are considered ground truth. 

Table 2 presents detailed information about this dataset. 

Particularly, it contains the load profiles of 3000 single-phase 

(SP) users and 500 three-phase (TP) users within 285 days 

(from April 1, 2019 to December 31, 2019). Each load profile 

a day consists of 96 points with a time interval of quarter hour.  

TABLE II 
INFORMATION OF THE DATASET 

Description Information  

Types of users SP TP 

Number of users 3000 500 

Date Apr. 1, 2019-Dec. 31, 2019 

Type of data 
Each load profile a day consists of 96 points 

with a time internal of quarter hour 

 

We use the load profiles of all TP users in the dataset from 

August 1 to September 31, 2019 to conduct the experiments. 

The 500 TP users are randomly and evenly divided into 

several areas. For each area, several users are randomly chosen 

as electricity thieves. And certain types of attack functions are 

used to tamper with their load profiles. 40 of the 61 profiles of 

each fraudulent user are tampered with.  

B. EVALUATION METRICS AND COMPARISON 

To obtain comprehensive evaluation results, we use area under 

curve (AUC) [28] and mean average precision (MAP) [29] 

that are widely adopted classification evaluation criteria as 

performance metrics. The AUC is the area under the receiver 

operating characteristic (ROC) curve, which is the trace of true 

positive rate and false positive rate under different thresholds. 
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In addition to drawing the ROC curve, AUC can also be 

calculated as in (22) [14]: 

 
rank 0.5 ( 1)

AUC =
i i − +


  (11) 

where  is the number of fraudulent users,  is the number 

of benign users, and rank i  is the rank of user i in ascending 

order according to rank i . The value of AUC must be in (0, 1). 

And if it is closer to 1, the better result can be achieved.  

MAP is usually used to estimate the quality of information 

retrieval. To calculate MAP, we first define P@S as 

 P@S = sY

S
  (12) 

where sY  is the number of fraudulent users among the top S 

suspicious users; Given a certain number of R, MAP@R can 

be calculated as in (24) 

 1 P@S
MAP@R =

r
i i

r

=
  (13) 

where r is the number of fraudulent users among the top R 

suspicious users and iS  is the position of such i-th fraudulent 

user. It can be summarized that the value range of MAP@R is 

[0, 1], which can measure how high-ranking the fraudulent 

users are in suspicious list. The closer the value of MAP@R is 

to 1, the higher the fraudulent users rank. On the other hand, if 

there are no fraudulent users among top R suspicious users, 

the MAP@R will be 0.  

To demonstrate the effectiveness of the presented method, 

we use some other correlation sorting and unsupervised outlier 

detection methods for comparison.  

1) PCC [30] A famous bivariate correlation measurement. 

Put the value of PCC as anomaly degree, the larger the PCC 

is, the more suspicious the user is.  

2) Maximum information coefficient (MIC) [30]: A metric 

that can measure the degree of non-linear correlation between 

two vectors. 

3) Clustering by fast search and find of density peaks 

(CFSFDP) [31]: A novel clustering algorithm based on density 

and distance. In [10], it was transformed into an outlier 

detection method to find fraudulent users. 

4) Local outlier factor (LOF) [23]: a classic outlier detection 

method based on local density.  

C. RESULTS 

In this part, we divide the users into 10 areas, and randomly 

chose 6 users as electricity thieves. Thus, each area contains 

50 users, and the ratio of electricity thieves is 12%. The test is 

repeated for 100 times by recombination of users and random 

selection of electricity thieves.  

Table 3 gives the best values of AUC and MAP@20 of the 

5 methods with the 8 attack types, in which type MIX indicates 

that the 6 electricity thieves randomly choose one of the seven 

attack functions. The best scores for each attack functions are 

bold. And Figure.6 shows the average AUC and MAP@20 of 

the 5 methods in 100 tests.  

From Table 3 and Figure 6, the highest MAP@20 of outlier-

based methods is only 0.323 in detecting type 1, whereas the 

lowest MAP@20 of correlation-based methods is 0.737. 

Meanwhile, the gap of AUCs of type1 between these two sorts 

of methods is also huge. This result demonstrate that the 

outlier-based methods perform poorly in detecting type1, 

while the correlation-based methods are far more capable of 

detecting this type. This is because the tampered load curves 

of type 1 are nearly identical with the ground truth ones after 

standardization, which makes these load curves still conform 

to the normal majority. On the other hand, when the load 

curves are modified to arbitrary shapes (e.g., type4, type5 and 

type6), the results are up-side-down. The outliers-based 

methods have quite high values of AUC in detecting type4, 

type5 and type6, especially LOF which is found to have the 

best performance in detecting type5 and type6. While 

correlation-based methods perform poorly in detecting these 

three attack types because the tampered load curves become 

quite random and the correlation no longer exists. For type2 

and type3, there is not much difference of the performances of 

all 5 methods. However, for type7, all the methods are failed 

except CLOF. This is because type7 modified the load curves 

into straight curves which overlap together after normalization  

The presented CLOF have taken the advantages from LOF 

and overcome its disadvantage in type 7. For type4, type5 and 

type6, for which LOF specializes in, the performance of our 

method is as good as LOF. For type 7 which LOF failed with, 

both the AUC and MAP@20 of CLOF are above 0.80. The 

results demonstrate that, CLOF maintain the excellent 

TABLE III 

BEST EVALUATION RESULTS OF THE 5 METHODS WITH DIFFERENT ATTACK TYPES 

Attack 

Type 

AUC(%) Attack 

Type 

MAP@20(%) 

PCC MIC CFSFDP LOF CLOF PCC MIC CFSFDP LOF CLOF 

Type1 82.73 80.11 59.37 63.08 62.77 Type1 84.52 83.33 26.19 29.58 27.75 

Type2 61.70 69.85 63.00 71.06 69.89 Type2 54.29 67.66 49.37 57.81 58.96 

Type3 59.62 67.93 71.25 72.03 72.20 Type3 49.53 61.38 54.69 63.27 66.16 

Type4 51.08 62.64 81.75 80.20 79.86 Type4 35.51 57.24 59.88 65.68 62,24 

Type5 50.20 61.11 83.48 85.50 85.11 Type5 28.66 53.17 63.29 68.58 67.71 

Type6 41.25 49.13 89.70 92.61 90.08 Type6 20.05 34.25 69.91 73.31 71.92 

Type7 34.51 39.75 54.34 60.18 91.84 Type7 12.25 18.27 28.14 33.23 73.11 

MIX 63.23 67.97 71.25 73.44 81.50 MIX 53.16 60.15 69.34 70.10 73.35 
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performance of LOF in its specialized situations while 

achieving significant improvements in type 7, resulting in the 

best detection accuracy in type MIX. The AUC and MAP@20 

of CLOF in detecting MIC increased by 12% on basis of those 

of LOF. It is worthwhile to mention that weight factors in type 

MIX alter the detection accuracy. Although we assume 

identical weights for the attack types, the CLOF method 

achieve improvements in accuracy for other nonextreme 

weight factors.  

  
(a) (b) 

FIGURE 6.  Evaluation results of the 5 methods with different attack types. 
(a) Average values of AUC in 100 tests. (b) Average values of MAP@20 in 
100 tests.  

Figure 7 (a) shows the standard deviations   of AUC and 

MAP@20 in 100 experiments for the 5 methods when 

detecting type MIX. The AUC  of the 5 methods are all 

approximately 0.04, and CLOF has a minimum AUC  of 

0.041. The MAP@20  is distributed between 0.8 and 0,19. The 

MAP@20  of CLOF is 0.084, and is lower than that of all other 

methods. The result shows that the CLOF method has a 

superior and stable performance when detecting type MIX. 

Figure 7 (b) gives the average time consumption of the 5 

methods for one detection of the whole 30500 load profiles. 

The test was done on AMD Ryzen 95900@4.7GHz desktop 

computer with 64GB RAM. Among the 5 methods, the 

CFSFDP is the most time consuming while PCC is the least. 

The time consumption of the CLOF is 4,76s, which still is the 

lowest in the three outlier-based methods.  

  

（a） （b） 

FIGURE 7.  (a) The standard deviations of the evaluation results. (b) The 
time consumption of the 5 methods. 

D. SENSITIVITY ANALYSIS 

In this part, we attempt to explore the impact of number of 

electricity thieves on the accuracy of above 5 methods. We 

hold the number of users per area to 50 and change the number 

of electricity thieves from 2 to 16 (step size is 2). Figure 8 

shows the AUC and MAP@20 of the 5 methods in this 

progress when detecting type MIX.  

We can see from the AUC and MAP@20 values that PCC 

and MIC perform well under the conditions of fewer 

electricity thieves. However, with the number of electricity 

thieves increasing, the AUC and MAP@20 values of PCC and 

MIC drop rapidly. The three outlier-based methods all behave 

robustly against the number increasing of electricity thieves. 

Among them, CLOF maintains excellent performance for both 

AUC and MAP@20.  

  
(a) (b) 

FIGURE 8.  Performance of the 5 methods with different numbers of 
electricity thieves per area. (a). AUC values of the methods. (b) MAP@20 
values of the methods. 

V. CONCLUSION 

In this study, we proposed a CLOF based method for 

electricity theft detection in AMI. By combining k-means and 

LOF together, this method utilizes LOF to calculated the 

anomaly degree of outlier candidates selected by k-means. 

And a detection framework for practical application is 

designed. Numerical experiments based on realistic dataset 

from SGCC with 7 attack types shows that, the proposed 

method exhibit excellent performance in all attack types 

except type 1. Thus, our method outperforms other approaches 

in detecting type MIX which is closer to the real scene. 

Considering the fact there is no one-fit-all solution to handle 

all sorts of attack types, the CLOF method is of high value in 

practical application.  

However, there are also some limitations in the proposed 

method. First, the proposed method only analyzes electricity 

consumption data alone, which may contain limited 

information. In addition to meter reading data, the other 

information such as climatic factors (temperature), regional 

factors, and some electric factors (current and voltage) is 

worth being studied in the future. Second, our method dose not 

specialize in detecting linear FDI (type 1), which is adopted 

by most physical attacks. Therefore, it is worthwhile for us to 

investigate how to supplement the detection for linear FDI in 

next step.  
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