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As one of the major factors of the nontechnical losses (NTLs) in distribution networks, the electricity theft causes significant harm
to power grids, which influences power supply quality and reduces operating profits. In order to help utility companies solve the
problems of inefficient electricity inspection and irregular power consumption, a novel hybrid convolutional neural network-
random forest (CNN-RF) model for automatic electricity theft detection is presented in this paper. In this model, a convolutional
neural network (CNN) firstly is designed to learn the features between different hours of the day and different days from massive
and varying smart meter data by the operations of convolution and downsampling. In addition, a dropout layer is added to retard
the risk of overfitting, and the backpropagation algorithm is applied to update network parameters in the training phase. And
then, the random forest (RF) is trained based on the obtained features to detect whether the consumer steals electricity. To build
the RF in the hybrid model, the grid search algorithm is adopted to determine optimal parameters. Finally, experiments are
conducted based on real energy consumption data, and the results show that the proposed detection model outperforms other
methods in terms of accuracy and efficiency.

1. Introduction

-e loss of energy in electricity transmission and distribu-
tion is an important problem faced by power companies all
over the world. -e energy losses are usually classified into
technical losses (TLs) and nontechnical losses (NTLs) [1].
-e TL is inherent to the transportation of electricity, which
is caused by internal actions in the power system compo-
nents such as the transmission liner and transformers [2];
the NTL is defined as the difference between total losses and
TLs, which is primarily caused by electricity theft. Actually,
the electricity theft occurs mostly through physical attacks
like line tapping, meter breaking, or meter reading tam-
pering [3]. -ese electricity fraud behaviours may bring
about the revenue loss of power companies. As an example,
the losses caused by electricity theft are estimated as about
$4.5 billion every year in the United States (US) [4]. And it is
estimated that utility companies worldwide lose more than
20 billion every year in the form of electricity theft [5]. In

addition, electricity theft behaviours can also affect the
power system safety. For instance, the heavy load of electrical
systems caused by electricity theft may lead to fires, which
threaten the public safety. -erefore, accurate electricity
theft detection is crucial for power grid safety and stableness.

With the implementation of the advanced metering
infrastructure (AMI) in smart grids, power utilities obtained
massive amounts of electricity consumption data at a high
frequency from smart meters, which is helpful for us to
detect electricity theft [6, 7]. However, every coin has two
sides; the AMI network opens the door for some new
electricity theft attacks. -ese attacks in the AMI can be
launched by various means such as digital tools and cyber
attacks. -e primary means of electricity theft detection
include humanly examining unauthorized line diversions,
comparing malicious meter records with the benign ones,
and checking problematic equipment or hardware. How-
ever, these methods are extremely time-consuming and
costly during full verification of all meters in a system.
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Besides, these manual approaches cannot avoid cyber at-
tacks. In order to solve the problemsmentioned above, many
approaches have been put forward in the past years. -ese
methods are mainly categorized into state-based, game-
theory-based, and artificial-intelligence-based models [8].

-e key idea of state-based detection [9–11] is based on
special devices such as wireless sensors and distribution
transformers [12]. -ese methods could detect electricity
theft but rely on the real-time acquisition of system topology
and additional physical measurements, which is sometimes
unattainable. Game-based detection schemes formulate a
game between electricity utility and theft, and then different
distributions of normal and abnormal behaviours can be
derived from the game equilibrium. As detailed in [13], they
can achieve a low cost and reasonable result for reducing
energy theft. Yet formulating the utility function of all
players (e.g., distributors, regulators, and thieves) is still a
challenge. Artificial-intelligence-based methods include
machine learning and deep learning methods. Existing
machine learning solutions can be further categorized into
classification and clustering models, as is presented in
[14–17]. Although aforementioned machine learning de-
tection methods are innovative and remarkable, their per-
formances are still not satisfactory enough for practice. For
example, most of these approaches require manual feature
extraction, which partly results from their limited ability to
handle high-dimensional data. Indeed, traditional hand-
designed features include the mean, standard deviation,
maximum, and minimum of consumption data. -e process
of manual feature extraction is a tedious and time-con-
suming task and cannot capture the 2D features from smart
meter data.

Deep learning techniques for electricity theft detection
are studied in [18], where the authors present a comparison
between different deep learning architectures such as con-
volutional neural networks (CNNs), long-short-term
memory (LSTM) recurrent neural networks (RNNs), and
stacked autoencoders. However, the performance of the
detectors is investigated using synthetic data, which does not
allow a reliable assessment of the detector’s performance
compared with shallow architectures. Moreover, the authors
in [19] proposed a deep neural network- (DNN-) based
customer-specific detector that can efficiently thwart such
cyber attacks. In recent years, the CNN has been applied to
generate useful and discriminative features from raw data
and has wide applications in different areas [20–22]. -ese
applicationsmotivate the CNN applied for feature extraction
from high-resolution smart meter data in electricity theft
detection. In [23], a wide and deep convolutional neural
network (CNN)model was developed and applied to analyse
the electricity theft in smart grids.

In a plain CNN, the softmax classifier layer is the same as
a general single hidden layer feedforward neural network
(SLFN) and trained through the backpropagation algorithm
[24]. On the one hand, the SLFN is likely to be overtrained
leading to degradation of its generalization performance
when it performs the backpropagation algorithm. On the
other hand, the backpropagation algorithm is based on
empirical risk minimization, which is sensitive to local

minima of training errors. As mentioned above, because of
the shortcoming of the softmax classifier, the CNN is not
always optimal for classification, although it has shown great
advantages in the feature extraction process. -erefore, it is
urgent to find a better classifier which not only owns the
similar ability as the softmax classifier but also can make full
use of the obtained features. In most classifiers, the random
forest (RF) classifier takes advantage of two powerful ma-
chine learning techniques including bagging and random
feature selection which could overcome the limitation of the
softmax classifier. Inspired by these particular works, a novel
convolutional neural network-random forest (CNN-RF)
model is adopted for electricity theft detection. -e CNN is
proposed to automatically capture various features of cus-
tomers’ consumption behaviours from smart meter data,
which is one of the key factors in the success of the electricity
theft detection model. To improve detection performance,
the RF is used to replace the softmax classifier detecting the
patterns of consumers based on extracted features. -is
model has been trained and tested with real data from all the
customers of electricity utility in Ireland and London.

2. Overview Flow

-e main aim of the methodology described in this paper is
to provide the utilities with a ranked list of their customers,
according to their probability of having an anomaly in their
electricity meter.

As shown in Figure 1, the electricity theft detection
system is divided into three main stages as follows:

(i) Data analysis and preprocess: to explain the reason
of applying a CNN for feature extraction, we firstly
analyse the factors that affect the behaviours of
electricity consumers. For the data preprocess, we
consider several tasks such as data cleaning (re-
solving outliers), missing value imputation, and
data transformation (normalization).

(ii) Generation of train and test datasets: to evaluate the
performance of the methodology described in this
paper, the preprocessed dataset is split into the train
dataset and test dataset by the cross-validation al-
gorithm. -e train dataset is used to train the pa-
rameters of our model, whilst the test dataset is used
to assess how well the model generalizes to new,
unseen customer samples. Given that electricity
theft consumers remarkably outnumber non-
fraudulent ones, the imbalanced nature of the
dataset can have a major negative impact on the
performance of supervised machine learning
methods. To reduce this bias, the synthetic minority
oversampling technique (SMOT) algorithm is used
to make the number of electricity thefts and non-
fraudulent consumers equal in the train dataset.

(iii) Classification using the CNN-RF model: in the
proposed CNN-RF model, the CNN firstly is
designed to learn the features between different
hours of the day and different days from massive
and varying smart meter data by the operations of
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convolution and downsampling. And then, RF
classification is trained based on the obtained fea-
tures to detect whether the consumer steals elec-
tricity. Finally, the confusion matrix and receiver-
operating characteristic (ROC) curves are used to
evaluate the accuracy of the CNN-RF model on the
test dataset.

3. Data Analysis and Preprocess

-e dataset was collected by Electric Ireland and Sustainable
Energy Authority of Ireland (SEAI) in January 2012 [25],
which consists of electricity usage data from over 5000
residential households and businesses. -e smart meters
recorded electricity consumption at a resolution of 30min
during 2009 and 2010. Customers who participated in the
trial had a smart meter installed in their homes and agreed to
take part in the research. -erefore, it is a reasonable as-
sumption that all samples belong to honest users. However,
malicious samples cannot be obtained since energy theft
might never or rarely happen for a given customer. To
address this issue, we generated 1200 malicious customers as
described in [26]. -e large number and a variety of cus-
tomers with a long period of measurements make this
dataset an excellent source for research in the area of smart
meter data analysis. For each customer i, there is a half-
hourly meter reporting for a 525-day period.We reduced the
sampling rate to one per hour for each customer. -is
section firstly analyses smart meter data to describe the
rationale of applying a CNN for feature extraction. -en, it
describes three main procedures utilized for preprocessing
the original energy consumption data: data cleaning, missing
value imputation, and data normalization.

3.1. Data Analysis. To introduce the rationale for applying a
CNN for feature extraction rather than other machine
learning techniques, this section analyses smart meter data.
-ere are the daily load curves of four different users
(residential and nonresidential), as shown in Figure 2, and it
can be seen that the daily electricity consumption of non-
residential users is significantly higher than that of resi-
dential users.

In addition, Figures 3 and 4 show the daily load profiles of
a consumer during working days and holidays. -e load files
are highly similar but slightly shifted. In a CNN, the filter
weights are uniform for different regions. -us, the features
calculated in the convolutional layer are invariant to small
shifts, which means that relatively stable features can be ob-
tained from varying load profiles. As described in [27], a deep
CNN first automatically extracts features from massive load
profiles and support vector machine (SVM) identifies the
characteristics of the consumers. To further investigate the load
series, we plot the four seasons’ load profiles for a customer. It
can be seen from Figure 5 that the electricity consumption of
the consumer changes with the change of seasons.

In summary, the load consumption differs in both
magnitude and time of use and is dependent on lifestyle,
seasons, weather, and many other uncontrollable factors.
-erefore, consumer load profiles are affected not only by
weather and conditions but also by the types of consumers
and other factors.

Based on the above analysis, extracting features from
smart meter data based on experience is difficult. However,
feature extraction is a key factor in the success of the de-
tection system. Conventionally, manual feature extraction
requires elaborately designed features for a specific problem
that make it uneasy to adapt to other domains. In the CNN,
the successive alternating convolutional and pooling layers
are designed to learn progressively higher-level features (e.g.,
trend indicators, sequence standard deviation, and linear
slope) with 2D historical electricity consumption data. In
addition, highly nonlinear correlations exist between elec-
tricity consumption and these influencing factors. Since
activation function has been designed on convolutional and
fully connected layers, the CNN is able to model highly
nonlinear correlations. In this paper, activation function
named “rectified linear unit” (ReLU) is used because of its
sparsity and minimizing gradient vanishing problem in the
proposed CNN-RF model.

3.2. Data Preprocess. xi,t and x′i,t are defined as the energy
consumption for an honest or malicious customer i at time
interval t. In this section, the main procedures utilized for
preprocessing raw electricity data are described as follows:
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Figure 1: Flow of electricity theft detection.
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(1) Data cleaning: there are erroneous values (e.g., outliers)
in raw data, which correspond to peak electricity
consumption activities during holidays or special

occasions such as birthdays and celebrations. In this
paper, the “three-sigma rule of thumb” [28] is used to
restore the outliers according to the following formula:
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Figure 2: Load profiles for nonresidential and residential users.
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Figure 3: Daily load profiles for a customer in working days.
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Figure 4: Daily load profiles for a customer during holidays.
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F xi,t  � avg xi,t  + 2σ xi,t , xi,t > x∗i,t,
xi,t, else,

⎧⎨⎩ (1)

where x∗i,t is computed by the mean avg(·) and standard
deviation σ(·) for each time interval comprising the
weekday/time pair for each month.

(2) Missing value imputation: because of various reasons
such as storage issues and failure of smart meters, there
are missing values in electricity consumption data.
-rough the analysis of original data, it is found that
there are two kinds of data missing: one is the con-
tinuous missing of multiple data, and the solution is to
delete the users when the number of missing values
exceeds 10; the other is missing single data, which is
processed by the formula (2). -us, missing values can
be recovered as follows:

F xi,t  �
xi,t− 1 + xi,t+1

2
, xi,t ∈ NaN,

xi,t, else,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (2)

where xi,t stands for the electricity usage of the consumer i
over a period (e.g., an hour); if xi,t is null, we represent it as
NaN.

(3) Data normalization: finally, data need to be nor-
malized because the neural network is sensitive to the
diverse data. One of the common methods for this
scope is min-max normalization, which is computed
as

F xi,t  � xi,t − min xi,T 
max xi,T  − min xi,T , (3)

where min(·) and max(·) represent the min and max values
over a day, respectively.

4. Generation of Train and Test Datasets

After data processing, the SEAI dataset contains the elec-
tricity consumption data of 4737 normal electricity cus-
tomers and 1200 malicious electricity customers within
525 days (with 24 hours).

Our preliminary analytical results (refer to Section 3.1)
reveal the electricity usage consumer load profiles are af-
fected not only by weather and conditions but also by the
types of consumers and other factors. However, it is difficult
to extracting features based on experience from the 1D
electricity consumption data since the electricity con-
sumption every day fluctuates in a relatively independent
way. Motivated by the previous work in [29], we design a
deep CNN to process the electricity consumption data in a
2D manner. In particular, we transform the 1D electricity
consumption data into 2D data according to days. We define
2D data as a matrix of actual energy consumption values for
a specific customer, where the rows of 2D data represent
days as D (D� {1, . . . , 525}) and columns represent the time
periods as T (T� {1, . . . , 24}). It is worthmentioning that the
CNN learns the features between different hours of the day
and different days from 2D data.

-en, we divide the dataset into train and test sets using
the cross-validation method, in which 80% are the train set
and 20% are the test set. Given that electricity theft
consumers remarkably outnumber nonfraudulent ones,
the imbalanced nature of the dataset can have a major
negative impact on the performance of supervised ma-
chine learning methods. To reduce this bias, the SMOT
algorithm is used to make the number of normal and
abnormal samples equal in the train set. Finally, the train
dataset contains 7484 customers, in which the number of
normal and abnormal samples is equal. And the test
dataset consists of 1669 customers.

5. The Novel CNN-RF Algorithm

In this section, the design of the CNN-RF structure is
presented in detail and some techniques are proposed to
reduce overfitting. Moreover, correlative parameters in-
cluding the number of filters and the size of each feature map
and kernel are given. Finally, the training process of the
proposed CNN-RF algorithm is introduced.

5.1. CNN-RF Architecture. -e proposed CNN-RF model is
designed by integrating CNN and RF classifiers. As shown in
Figure 6, the architecture of the CNN-RF mainly includes an
automatic feature extractor and a trainable RF classifier. -e
feature extractor CNN consists of convolutional layers,
downsampling layers, and a fully connection layer.-e CNN
is a deep supervised learning architecture, which usually
includes multiple layers and can be trained with the back-
propagation algorithm. It also can explore the intricate
distribution in smart meter data by performing the
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Figure 5: Four seasons’ load profiles for a customer.
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stochastic gradient method. -e RF classifier consists of a
combination of tree classifiers, in which each tree contrib-
utes with a single vote to the assignment of themost frequent
class in input data [30]. In the following, the design of each
part of the CNN-RF structure is presented in detail.

5.1.1. Convolutional Layer. -e main purpose of convolu-
tional layers is to learn feature representation of input data
and reduce the influence of noise. -e convolutional layer is
composed of several feature filters which are used to
compute different feature maps. Specially, to reduce the
parameters of networks and lower the complication of
relevant layers during the process of generating feature
maps, the weights of each kernel in each feature map are
shared. Moreover, each neuron in the convolutional layer
connects the local region of front layers, and then a ReLU
activation function is applied on the convolved results.
Mathematically, the outputs of the convolutional layers can
be expressed as

yconv X
fl
l  � δ Fl

fl�1

W
fl
l ∗X

fl
l + b

fl
l

⎛⎝ ⎞⎠, (4)

where δ is the activation function, ∗ is the convolution
operation, and both W

fl
l and b

fl
l are the learnable param-

eters in the f-th feature filter.

5.1.2. Downsampling Layer. Downsampling is an important
concept of the CNN, which is usually placed between two
convolutional layers. It can reduce the number of parameters
and achieve dimensionality reduction. In particular, each
feature map of the pooling layer is connected to its corre-
sponding feature map of the previous convolutional layer.
And the size of output feature maps is reduced without
reducing the number of output feature maps in the
downsampling layer. In the literature, downsampling op-
erations mainly include max-pooling and average-pooling.
-e max-pooling operation transforms small windows into
single values by maximum which is expressed as formula 5,
but average-pooling returns average values of activations in a
small window. In [31], experiments show that the max-
pooling operation shows better performance than average-
pooling. -erefore, the max-pooling operation is usually
implemented in the downsampling layer:

ypool X
fl
l  � max

m∈M
Xl,m , (5)

whereM is a set of activations in the pooling window andm
is the index of activations in the pooling window.

5.1.3. Fully Connected Layer. With the features extracted by
sequential convolution and pooling, a fully connected layer
is applied for flattening feature maps into one vector as
follows:

yfl Xl(  � δ Wl ·Xl + bl( , (6)

whereWl is the weight of the l-th layer and bl is the bias of
the l-th layer.

5.1.4. RF Classifier Layer. Traditionally, the softmax clas-
sifier is used for the last output layer in the CNN, but the
proposed model uses the RF classifier to predict the class
based on the obtained features. -erefore, the RF classifier
layer can be defined as

yout XL(  � sigm Wrf ·Xl + bl( , (7)

where sigm(·) is the sigmoid function, which maps ab-
normal values to 0 and normal values to 1.-e parameter set
Wrf in the RF layer includes the number of decision trees
and the maximum depth of the tree, which are obtained by
the grid search algorithm.

5.2. Techniques for Selecting Parameters and Avoiding
Overfitting. -e detailed parameters of the proposed CNN-
RF structure are summarized in Table 1, which include the
numbers of filters in each layer, filter size, and stride. Two
factors are considered in determining the CNN structure.
-e first factor is the characteristics of consumers’ electricity
consumption behaviours. Since the load files are such a
variable, two convolutional layers with a filter size of 3∗ 3
(stride 1) are applied to capture hidden features for detecting
electricity theft. Moreover, because the dimension of input
data size is 525 × 24, which is similar to what is used in image
recognition problems, two max-pooling layers with a filter
size of 2∗ 2 (stride 2) are used. -e second factor is the
number of training samples since the number of samples is
limited; to reduce the risk of overfitting, we design a fully
connected layer with a dropout rate of 0.4, whose main idea
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Figure 6: Architecture of the hybrid CNN-RF model.
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is that dropping units randomly from the neural network
during training can prevent units from coadapting too much
[32] and make a neuron not rely on the presence of other
specific neurons. Applying an appropriate training method
is also useful for reducing overfitting. It is essentially a
regularization that adds a penalty for weight update at each
iteration. And we also use a binary cross entropy as the loss
function. Finally, the grid search algorithm is used to op-
timize RF classifier parameters such as the maximum
number of decision trees and features.

5.3. Training Process of CNN-RF. -ere is no doubt that the
CNN-RF structure needs to train the CNN at first before the
RF classifier is invoked. After that, the RF classifier is trained
based on features learned by the CNN.

5.3.1. Training Process of CNN. With a batch size (the
number of training samples in an iteration) of 100, CNNs are
trained using the forward propagation algorithm and
backpropagation algorithm. As shown in Figure 6, firstly, the
data in the input layer are transferred to convolutional
layers, pooling layers, and a fully connected layer, and the
predicted value is obtained. As shown in Figure 7, the
backpropagation phase begins to update parameters if the
difference of the output value and target value is too large
and exceeds a certain threshold. -e difference between the
actual output of the neural network and the expected output
determines the adjustment direction and strip size of weights
among layers in the network.

Given a sample set D � (x1, y1), . . . , (xm, ym)  with m
samples in total, y is obtained at first by using the feed-
forward process. As for all samples, the mean of difference
between the actual output yi and the expected outputyw,b(xi) can be expressed by

J(W, b) �
1

m
m
i�1

1

2
yw,b xi(  − yi���� ����2 , (8)

where w represents the connection weight between layers of
the network and b is the corresponding bias.

-en, each parameter is initialized with a random value
generated by a normal distribution when the mean is 0 and
variance is ϑ, which are updated with the gradient descent
method. -e corresponding expressions are as follows:

W(l)
ij � W(l)

ij − α
z

zW(l)
ij

J(W, b), (9)

b(l)i � b(l)i − α
z

zb(l)i
J(W, b), (10)

where α represents a learning rate, W(l)
ij represents the

connection weight between the i-th neuron in the l-th layer
and the j-th neuron in the (l + 1)-th layer, and b(l)i represents
the bias of the i-th neuron in the l-th layer.

Finally, all parameters W and b in the network are
updated according to formulas 9 and 10. And all these steps
are repeated to reduce the objective function J(W, b).

5.3.2. Training Process of RF Classifier. -e process of the RF
classifier takes advantage of two powerful machine learning
techniques: bagging and random feature selection. Bagging
is a method to generate a particular bootstrap sample
randomly from the learnt features for growing each tree.
Instead of using all features, the RF randomly selects a subset
of features to determine the best splitting points, which
ensures complete splitting to one classification of leaf nodes
of decision trees. Specifically, the whole process of RF
classification can be written as Algorithm 1.

6. Experiments and Result Analysis

All the experiments are implemented using Python 3.6 on a
standard PC with an Intel Core i5-7500MQ CPU running at
3.40GHz and with 8.0 GB of RAM.-e CNN architecture is
constructed based on TensorFlow [33], and the interface
between the CNN and the RF is programmed using scikit-
learn [34].

6.1. Performance Metrics. In this paper, the problem of
electricity theft is considered a discrete two-class classifi-
cation task, which should assign each consumer into one of
the predefined classes (abnormal or normal).

In particular, the result of classifier validation is often
presented as confusion matrices. Table 2 shows a confusion
matrix applied in electricity theft detection, where TP, FN,
FP, and TN, respectively, represent the number of con-
sumers that are classified correctly as normal, classified
falsely as abnormal, classified falsely as normal, and
classified correctly as abnormal. Although these four indices
show all of the information about the performance of the
classifier, more meaningful performance measures
can be extracted from them to illustrate certain performance
criteria such as TPR � TP/(TP + FN), FPR� FP/
(FP +TN), precision�TP/(TP+ FP), recall�TP/(TP+ FN),
and F1 score � 2(precision × recall)/(precision + recall),
where the true positive rate (TPR) is the ability of the
classifier to correctly identify a consumer as normal, also
referred to as sensitivity, and the false positive rate (FPR) is
the risk of positively identifying an abnormal consumer.
Precision is the ratio of consumers detected correctly to the
total number of detected normal consumers. Recall is the
ratio of the number of consumers correctly detected to the
actual number of consumers (Figure 7).

In addition, the ROC curve is introduced by plotting all
TPR values on the y-axis against their equivalent FPR values
for all available thresholds on the x-axis. -e ROC curve at
the upper left has better detection effects, where lower FPR
values are caused by the same TPR. -e AUC indicates the

Table 1: Parameters of the proposed CNN-RF model.

Layer Size of the filter Number of filters Stride

Convolution1 3∗ 3 32 1
MaxPooling1 2∗ 2 — 2
Convolution2 3∗ 3 64 1
MaxPooling2 2∗ 2 — 2
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quality of the classifier, and the larger AUC represents better
performance.

6.2. Experiment Based onCNN-RFModel. -e experiment
is conducted based on normalized consumption data.
With the batch size of 100, the training procedure is
stopped after 300 epochs. As shown in Figure 8, it could be
seen that training and testing losses settled down
smoothly. -is means that the proposed model learned
train dataset, and there was small bias in the test data
dataset as well. -en, the RF classifier is the last layer of the
CNN to predict labels of input consumers. Forty values
from the fully connected layer of the trained CNN are used
as a new feature vector to detect abnormal users and are
fed to the RF for learning and testing. To build the RF in
the hybrid model, the optimal parameters are determined
by applying the grid search algorithm based on the

training dataset. -e grid searching range of each pa-
rameter is given as follows: numTrees � [50, 60, . . . , 100]
and max depth � [10, 20, . . . , 40]. 6 × 4 � 24 are tried with

Require:

(1) Original training datasets
S � (xi, yi), i � 1, 2, 3, . . . , m , (X,Y) ∈ Re × R

(2) Test datasets xj ∈ Rm
for d � 1 to Ntree do

(1) Draw a bootstrap Sd from the original training data
(2) Grow an unpruned tree hd using data Sd

(a)Randomly select new feature set Mtry from original feature set e
(b)Select the best features from feature set Mtry based on Gini indicator on each node
(c)Split until each tree grows to its maximum

end for

Ensure:
(1) -e collection of trees hd, d � 1, 2, . . . , Ntree 
(2) For xj, the output of a decision tree is hd(xj)
f(xj) � majority vote hd(xj) d

Ntree
return f(xj)

ALGORITHM 1: Random forest algorithm.
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Figure 7: Process of forward propagation (a) and backpropagation (b).
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Figure 8: Loss curves of training and testing.

Table 2: Confusion matrix applied in electricity theft detection.

Actual/detected Normal Abnormal

Normal TP (true positive) FN (false negative)
Abnormal FP (false positive) TN (true negative)
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different combinations. -e best result is achieved when
numTrees � 100 and maxDepth � 30. -ese parameters
are then used to train the hybrid model.

-e classification results of the detection model pro-
posed in this paper are as follows: the number of TPs, FNs,
FPs, and TNs is 1041, 28, 23, and 577, respectively.
-erefore, the precision, recall, and F1 score can be calcu-
lated, as shown in Table 3, where Class 0 is an abnormal
pattern and Class 1 is a normal pattern. Also, the AUC value
of the CNN-RF algorithm is calculated, which is 0.98 and far
better than the value of the baseline model (AUC� 0.5). -is
means the proposed algorithm is able to classify both classes
accurately, as shown in Figure 9.

6.3. Comparative Experiments and the Analysis of Results.
To evaluate the accuracy of the CNN-RF model, comparative
experiments are conducted based on handcrafted features
with nondeep learning methods including SVM, RF, gradient
boosting decision tree (GBDT), and logistic regression (LR).
Moreover, we compared the obtained classification results by
various supervised classifiers: CNN features with the SVM
classifier (CNN-SVM) and CNN features with the GBDT
classifier (CNN-GBDT), to those obtained by the previous
classification work. In the following, five methods are in-
troduced, respectively, and then the results are analysed:

(1) Logistic regression: it is a basic model in binary
classification that is equivalent to one layer of neural
network with sigmoid activation function. A sigmoid
function obtains a value ranging from 0 to 1 based on
linear regression. -en, any value larger than 0.5 will
be classified as a normal pattern and less than 0.5 will
be classified as an abnormal pattern.

(2) Support vector machine: this classifier with kernel
functions can transform a nonlinear separable
problem into a linear separable problem by pro-
jecting data into the feature space and then finding
the optimal separate hyperplane. It is applied to
predict the patterns of consumers based on the
aforementioned handcrafted features.

(3) Random forest: it is essentially an integration of
multiple decision trees that can achieve better per-
formance when maintaining the effective control of
overfitting in comparison with a single decision tree.
-e RF classifier also can handle high-dimensional
data while maintaining high computational
efficiency.

(4) Gradient boosting decision tree: it is an iterative
decision tree algorithm, which consists of multiple
decision trees. For the final output, all results or
weights are accumulated in the GBDT, while random
forests use majority voting.

(5) Deep learning methods: softmax is used in the last
layer of the CNN, CNN-GBDT, and CNN-SVM in
comparison with the proposed method.

Table 4 summarizes the parameters of comparative
methods. All experiments have been done. Figure 10 shows

the results of different methods and proposed hybrid CNN-
RF method, and it can be seen that the AUC value of CNN-
RF, CNN-GBDT, CNN-SVM, CNN, SVM, RF, LR, and
GBDT is 0.99, 0.97, 0.98, 0.93, 0.77, 0.91, 0.63, and 0.77. And
Figure 11 presents the results of all comparative experiments
in terms of precision, recall, and F1 score. Among the
performances of eight different electricity theft detection
algorithms, the deep learning methods (such as CNN, CNN-
RF, CNN-SVM, and CNN-GBDT) show better perfor-
mances than machine learning methods (e.g., LR, SVM,
GBDT, and RF).-e reason of this result is that the CNN can
learn features through a large number of electricity con-
sumption data. -us, the accuracy of electricity theft de-
tection is greatly improved. In addition, it is indicated that
the proposed CNN-RF model shows the best performance
compared with other methods.

Table 3: Classification score summary for CNN-RF.

Precision Recall F1 score

Class 0 0.97 0.96 0.96
Class 1 0.98 0.98 0.98
Average/total 0.97 0.97 0.97
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Figure 9: ROC curve for CNN-RF.

Table 4: Experimental parameters for comparative methods.

Methods Input data Parameters

LR
Features
(1D)

Penalty: L2
Inverse of regulation strength: 1.0

SVM
Features
(1D)

Penalty parameter of the error term: 105

Parameter of kernel function (RBF):
0.0005

GBDT
Features
(1D)

-e number of estimators: 200

RF
Features
(1D)

-e number of trees in the forest: 100

CNN
Raw data
(2D)

-e max depth of each tree: 30
-e same as the CNN component of the

proposed approach
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As detecting electricity theft consumers is achieved by
discovering the anomalous consumption behaviours of
suspicious customers, we can also regard it as an anomaly
detection problem essentially. Since CNN-RF has shown
superior performance on the SEAI dataset, it would be
interesting to test its generalization ability on other datasets.
In particular, we have further tested the performance of
CNN-RF together with the above-mentioned models on
another dataset: Low Carbon London (LCL) dataset [35].
-e LCL dataset is composed of over 5500 honest electricity
consumers in total, each of which consists of 525 days (the

sampling rate is hour). Among the 5500 customers, we
randomly chose 1200 as malicious customers and modified
their intraday load profiles according to the fraudulent
sample generation methods similar to the SEAI dataset.

After the preprocess of the LCL dataset (similar to the
SEAI dataset), the train dataset contains 7584 customers, in
which the number of normal and abnormal samples is equal.
And the test dataset consists of 1700 customers together with
corresponding labels indicating anomaly or not. -en, the
training of the proposed CNN-RF model and comparative
models is all done following the aforementioned procedure

C
N

N

C
N

N
-R

F

C
N

N
-G

B
D

T

C
N

N
-S

V
M

G
B

D
T

L
R

R
F

SV
M

Different algorithms

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
er

fo
rm

an
ce

 m
et

ri
c

Precision

Recall

F1 score

Figure 11: Comparison with other algorithms based on the SEAI
dataset.
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Figure 13: Comparison with other algorithms based on the LCL
dataset.
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based on the train dataset. -e performances of all the
models on the test dataset are shown in Figures 12 and 13.

Figures 12 and 13 show that the performances of CNN-
SVM, CNN-GBDT, and CNN-RF are better than those of
other models on the whole. Since they are deep learning
models, the distinguishable features can be learned directly
from raw smart meter data by the CNN, which has equipped
them with better generalization ability. In addition, the
CNN-RF model has achieved the best performance since the
RF can handle high-dimensional data while maintaining
high computational efficiency.

7. Conclusions

In this paper, a novel CNN-RF model is presented to detect
electricity theft. In this model, the CNN is similar to an
automatic feature extractor in investigating smart meter data
and the RF is the output classifier. Because a large number of
parameters must be optimized that increase the risk of
overfitting, a fully connected layer with a dropout rate of 0.4
is designed during the training phase. In addition, the SMOT
algorithm is adopted to overcome the problem of data
imbalance. Some machine learning and deep learning
methods such as SVM, RF, GBDT, and LR are applied to the
same problem as a benchmark, and all those methods have
been conducted on SEAI and LCL datasets. -e results
indicate that the proposed CNN-RF model is quite a
promising classification method in the electricity theft de-
tection field because of two properties: -e first is that
features can be automatically extracted by the hybrid model,
while the success of most other traditional classifiers relies
largely on the retrieval of good hand-designed features
which is a laborious and time-consuming task. -e second
lies in that the hybrid model combines the advantages of the
RF and CNN, as both are the most popular and successful
classifiers in the electricity theft detection field.

Since the detection of electricity theft affects the privacy
of consumers, the future work will focus on investigating
how the granularity and duration of smart meter data might
affect this privacy. Extending the proposed hybrid CNN-RF
model to other applications (e.g., load forecasting) is a task
worth investigating.
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