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Abstract—Electricity theft is a major concern for the utilities. 
With the advent of smart meters, the frequency of collecting 
household energy consumption data has increased, making it 
possible for advanced data analysis, which was not possible 
earlier. We have proposed a temperature dependent predictive 
model which uses smart meter data and data from distribution 
transformer to detect electricity theft in an area. The model was 
tested for varying amounts of power thefts and also for different 
types of circuit approximations. The results are encouraging and 
the model can be used for real world application. 
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I. INTRODUCTION 

Utilities incur great financial losses due to electricity 
thefts. It has been estimated that in the US itself, electricity 
worth about $ 6 billion (1% to 3% of total revenue) is stolen 
annually [1]. In many other countries, the losses due to power 
theft, as a percentage of the total power generated are much 
higher [2]. 

There are different methods used by customers to steal 
power from the grid [3]. A very common approach involves 
bypassing the meter completely [4]. This is done by directly 
connecting the mains of the house to the low voltage grid. 
This method requires lineman skills and can be very 
dangerous if the connection is not proper. Another common 
approach is to tamper with the meter installed in the house 
[5]. There are many ways of doing this. One of them is to 
short the ends of the meter installed at the house. By doing 
so, the user ensures that the current flowing into the house 
does not flow through the meter and hence the meter records 
very low usage. Another way is to regulate the supply voltage 
by disconnecting the neutral from the feeder and using a 
separate neutral for the return path [6]. As a result of this, the 
energy meter assumes that the voltage between the connected 
phase and the new neutral is zero, implying that the total 
energy consumed is zero. Other methods include tampering 
with the meters so that the measurements taken by the meter 
are inaccurate and show lower consumption than actual. 

In general, loss of energy in an electricity grid is caused 
due to two reasons. One of them is due to the circuit itself. 

These losses are called technical losses (TL) and include 
losses due to power dissipation in resistive components, leaks 
due to improper isolation, etc. Since these are due to 
components in the circuit, the loss values depend on the 
current flowing in the circuit. The other category includes 
losses due to electricity thefts and is called non-technical 
losses (NTL). 

Popular methods for electricity theft detection include 
load profile analysis of customers to detect abnormal energy 
consumption patterns [5]-[7]. But these methods cannot be 
used to detect energy thefts where there is complete bypass of 
meters. In such cases, losses calculated using energy balance 
between the energy supplied from the distribution transformer 
(DT) and the energy consumed by users is used for theft 
detection. The TL and NTL component of these losses have 
to be estimated accurately to detect power thefts. In [8], a 
model to calculate TL has been developed, but it requires 
topological information of the primary and secondary 
networks. 

This work is an extension of the work mentioned in [4]. A 
predictive model to calculate TL was developed in [4] 
without using the actual topology information of the network. 
We have improved the predictive model to estimate technical 
loss in a branch of the distribution network by taking into 
consideration the temperature dependency of resistances in 
the circuit. In addition, we have tested our models on linear 
circuits as well. Distribution feeders mostly have linear 
circuits and the successful application of the NTL model on 
these circuits would validate their usefulness in the real world 
scenario. Finally, we have tested our models for different 
amount of power thefts to find the minimum amount of 
power theft that our models can detect with confidence. 

II. POWER THEFT DETECTION BASED ON A TECHNICAL 

LOSS MODEL 

One effective way of estimating non-technical losses in 
the distribution network is by correctly estimating technical 
losses in the network and then subtracting it from the total 
loss in the network. A novel way for estimating technical 
losses was proposed in [4]. The work assumed that the utility 
received data from every smart meter and DT every 30 
minutes. For any particular time interval k, information about 
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total energy consumption for that user group ( , ) was 
obtained from each DT and the individual smart meters 
provided information about the consumption of individual 
users ( ). The total losses for such a user group for that time 
interval ( ) can be calculated using (1). 
 = , − ,  (1) 

where n is total number of smart meter 
 
If the technical loss estimate ( ) can be calculated for the 
user group for the same time interval, the NTL estimate can 
be calculated as shown in (2). 
 = −  (2) 
The method in [4] approximates the distribution circuit 
downstream of the DT to be radial in nature as shown in Fig. 
1 [9]. Since it assumed the resistances in the network to be 
constant, it is referred to as the Constant Resistance Technical 
Loss Model (CRTLM). 

 
Fig. 1: Radial approximation of distribution circuit 

A. Constant Resistance Technical Loss Model (CRTLM) 

The detailed derivation of the method can be found in [4]. 
A brief description is given here. The following variables 
were defined for the simplified circuit: 

 
The actual resistance of the line to user i 
(assumed to be constant) 

 The estimated resistance of the line to user i 

, = ( ) 
The measured instantaneous current of branch 
i at the end of time interval k ,  
Actual technical loss of branch i during time 
interval k 

,  
Estimated technical loss of branch i during 
time interval k 

 

Total loss during time interval k for all 
branches (users), obtained by means of power 
balance between the DT and all legal users 

 
Technical loss during time interval k for all 
branches (users). When there is no theft, =  

 Non-ohmic technical loss (time independent) 

 
The estimated non-technical loss (NTL) 
during time interval k 

Total loss for all users during time interval k is given as: 
 = ( ) − ( )3 , +  (3) 

 
During the no theft period, the total loss is equal to the total 
technical loss. It is clear that in order to calculate the 
technical losses, the values of various resistances need to be 
calculated. Equation (3) can be written for all values of k in a 
matrix format and estimates of the resistances can be 
calculated using Moore–Penrose pseudoinverse as shown in 
(4). = ( )  (4) 
where 

=
( ) − ( )3 , ( ) − ( )3 , … ( ) − ( )3 , 1( ) − ( )3 , ( ) − ( )3 , … ( ) − ( )3 , 1… … … … 1( ) − ( )3 , ( ) − ( )3 , … ( ) − ( )3 , 1

 

 =	 …  
 =	 …  
Once the resistance estimates have been calculated the NTL 
estimate can be calculated using the following equation. 
 = − ( ) − ( )3 −  (5) 

     

B. Temperature Dependent Technical Loss Model (TDTLM) 

In our work, we have improved the CRTLM by making 
the resistance temperature dependent. We assume that the 
atmospheric temperature would be available every 30 minutes 
and would be constant for all users in a group. It is known 
that the resistance of a material is linearly dependent on its 
temperature as represented in (6). The coefficients  and  
are different for different materials. By making the model 
temperature dependent, the estimation problem now changes 
to estimating the coefficients  and  for each resistance in 
the circuit downstream of the DT. Substituting the value of  
in equation 3 we obtain (7) which can be expanded to get (8). 
The estimates of the coefficients are then obtained by using 
the least squares methods. The Moore–Penrose pseudoinverse 
(9) is used to calculate the coefficients. 
 = +  (6) 



= ( ) − ( )3 , ( +	 ) +  (7) 

 = ( ) − ( )3 ,+ 	 ( ) − ( )3 ,+  

(8) 

 
 = ( )  (9) 
 
where =  
 

=
( ) − ( )3 , ( ) − ( )3 , … ( ) − ( )3 ,( ) − ( )3 , ( ) − ( )3 , … ( ) − ( )3 ,… … … …( ) − ( )3 , ( ) − ( )3 , … ( ) − ( )3 ,

 

 

=
( ) − ( )3 , ( ) − ( )3 , … ( ) − ( )3 ,( ) − ( )3 , ( ) − ( )3 , … ( ) − ( )3 ,… … … …( ) − ( )3 , ( ) − ( )3 , … ( ) − ( )3 ,

 

 =	 1 1 … 1  
 =	 …  
 =	 … …  
 
Once the coefficients are obtained, the TL (8) and NTL 
estimates  (5) are calculated and a decision regarding power 
theft can be taken. 

III. EXPERIMENTAL SET-UP 

We have verified the performance of TDTLM on a system 
similar to the one mentioned in [4]. The test branch of the 
distribution system consists of 30 users with 10 users being 
connected to each phase. The data from each user was 
generated using a smart meter simulator. Each user’s smart 
meter sends measurement data back to the utility every 30 
minutes. The theft analysis has been done on 10 users 
connected to phase A. One of the users was connected to the 
grid illegally. The rogue user stole electricity by bypassing 
the smart meter and the amount varied roughly between 1% 
and 10% of the total energy consumed by the 10 users. Data 
was collected from these users for a period of six days (144 
hours). It was assumed that there was no theft for the first 
four days. Data collected on the first two days was used for 

calculating parameters of the predictive model used for NTL 
estimation. This model was then tested using the data 
collected over the next four days. 

The smart meter simulator calculated the power quality 
measurements like power consumed, instantaneous current 
and voltage readings every 30 minutes for every user. The 
load profile for each user (Fig. 2) was generated from [10] in 
the same manner as mentioned in [4].  

 
Fig. 2: Load profile of one of the users  

The simulator took the load profiles and the temperature 
profile for the area as inputs and calculated the state of the 
nodes connected to each user (instantaneous current, voltage 
measurements, etc.) by executing power flow calculations 
every 10 seconds. It was assumed that copper wires were 
used in cables and the resistance values were calculated by 
using the temperature coefficients of resistance for copper. 
The power consumption values were aggregated every 30 
minutes and communicated back to the utility along with 
other instantaneous measurements.  

 
Fig. 3: Linear approximation of distribution circuit 

In this work, the circuit for the distribution system has 
been approximated in two ways. In the first case, a radial 
circuit is considered. Downstream of the DT, all users were 
directly connected to the bus as shown in Fig. 1. The 
technical loss calculation for CRTLM and TDTLM is done 
assuming this type of circuit approximation. The second way 



of approximating the circuit is to assume a linear circuit as 
shown in Fig. 3. In Fig. 3, each phase of the bus downstream 
of the DT is connected to 10 users (similar to the previous 
case) but in a linear way. This is a more realistic 
approximation of the actual distribution feeder circuit. 
Successful application of the technical loss models on this 
type of linear circuit would indicate the robustness of the 
proposed models, hence implying that they could be deployed 
to detect power theft using real data from actual smart meters. 

For each loss model and each type of circuit 
approximation, the data from the first two days (no theft) is 
used to train the predictive model. A well-trained model for 
this period should be able to estimate the technical losses 
very well and the root mean square error (RMSE) for the 
training set should be low. The non-technical losses for this 
period should be low and be distributed around zero. The data 
from the next two days (no theft) is used to validate the 
predictive model. Ideally, a good predictive model would 
have a low RMSE for this validation data set too. The error 
would be slightly higher, since this data is completely new to 
the model but a good performance (low RMSE) would imply 
that the model did not over fit the training data. The 
maximum non-technical loss in the validation set is used as a 
threshold to separate the theft cases from the non-theft cases 
in the third data set. The third data set contained data 
collected on the last two days. During this period, one of the 
users was stealing power by bypassing the meters. If the 
calculated non-technical loss exceeded the threshold 
calculated during the validation step, then it was assumed 
there was theft in the user group. The power theft detection 
algorithms were tested for different amounts of power thefts 
in order to evaluate the algorithms and check the minimum 
amount of theft that they could catch with confidence. The 
power theft percentage was varied from roughly 1% of total 
consumption to 10% and the performance of the algorithm 
was seen. 

IV. EXPERIMENTAL RESULTS 

Data was collected every 30 minutes from the smart meter 
simulator for six days. During each of the three phases – 
training, validation and testing, 96 data points were obtained. 
Non-technical losses were estimated for each time instant and 
have been discussed. 

A. Radial Circuit 

In case of CRTLM, 11 parameters (10 resistance and 1 
non ohmic non technical loss parameter ( )) were first 
estimated from these 96 data points while for TDTLM 21 
parameters (10 s, 10 s and ). The TL estimates for both 
models were very close to the actual TL in the system and 
hence the RMSE was very low. The RMSE for TDTLM was 
found to be lower than that of CRTLM as shown in Fig. 4. 
Similarly, the RMSE for both models was calculated using 
data from the validation set. The RMSE for both models was 
low although it increased slightly in comparison with the 

value obtained with training data. This proved that the models 
were robust and didn’t over fit the training data. The RMSE 
of the TDTLM was again lower than the RMSE of the 
CRTLM.  

 
Fig. 4: RMSE comparison for radial circuit approximation 

The non-technical loss estimates for the constant 
resistance model during the training phase was obtained as in 
[4]. On similar lines, once the parameters of the temperature 
dependent predictive model were obtained, the non-technical 
loss (NTL) estimate for every 30-minute interval was 
calculated for the three phases. The distribution of the NTL 
estimates for the different periods has been shown in Fig. 5.  

 
Fig. 5: Distribution of NTL estimates during different phases for temperature 

dependent model 

It can be seen that during the no theft period, the NTL 
estimates are low and distributed around zero. But when 
power theft occurs (Fig. 5 shows the distribution for case 
when the power theft is 10% of the total power consumption 
by all users), the estimates are no longer small values. In 
addition, the NTL estimates are no longer distributed around 
zero. The maximum NTL estimate calculated during the 
validation phase was taken as the threshold and whenever an 
NTL estimate was more than this threshold, it was assumed 
that there was power theft in the user group. During the 
testing phase, all the NTL estimates were greater than the 
threshold and this can be seen in Fig. 5. Hence the power 
theft detection rate was 100% when the power theft was 10% 
of the total power consumption. 

The detection rate of both the models was calculated for 
different amount of power thefts and is shown in Fig. 6. For 
both the models power theft can be detected 100% of times 
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when the power theft percentage is greater than 4%. For 
lower percentage of power theft, the detection rate falls, but 
in all cases, the performance of TDTLM is either better than 
or similar as that of the CRTLM.  

Fig. 6: Detection rates for different amounts of power theft in radial circuits 

B. Linear Circuit 

The process described for radial circuits was repeated on 
the new linear circuit type to obtain the results. In this case 
also, the technical loss estimates were very close to actual 
technical loss and the RMSE was very low with the training 
data.  

 
Fig. 7: RMSE comparison for linear circuit approximation 

As expected, the RMSE for each linear circuit model was 
greater than the RMSE obtained for the radial circuit. With 
the validation data also, the RMSE followed an expected 
pattern. The RMSE value did go up but was not high. This 
confirmed the robustness of the models. In terms of theft 
detection rate, both the models performed very accurately 
when the power theft percentage was more 4% of the total 
consumption. It can be seen again (Fig. 7 and Fig. 8) that 
TDTLM performs better than the CRTLM. It can be inferred 
from Fig. 6 and Fig. 8 that the models performed slightly 
better on radial circuits but overall their performances is very 
good. This proves that these predictive models work very 
well even with the linear approximation of distribution 
networks and hence can be applied to real data. 

 
Fig. 8: Detection rates for different amounts of power theft in linear circuits 

V. CONCLUSIONS 

In this work, we have fine-tuned the predictive model for 
calculating technical loss for a branch in the distribution 
network by incorporating the temperature dependency of 
resistances in a distribution network. The new model 
performed better than the constant resistance model and gave 
better power theft detection rates. In addition, we tested the 
proposed predictive models on distribution circuits, which 
were approximating them as linear circuits. The performance 
of our models on these circuits was also very good which 
implies that they can used to detect electricity thefts using 
data from actual smart meters. 
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