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ABSTRACT

The charging of insulating surfaces by the flow of semi-insulating li-
quids is investigated with a view towards identifying ways to forestall
insulation failure in liquid-cooled power distribution equipment. Both
fully developed and fully mixed turbulent flows are considered, the for-
mer as a model for the flows in insulating tubes, the latter approximat-
ing conditions in certain practical elements such as pumps and expansion
regions. Models are developed for the space-time evolution of charge and
electrical stress that emphasize the interplay between electrokinetic
charge generation, convective transport, ion diffusion and self-precipi-
tation, and conduction driven by the generated fields themselves.

Experiments are designed to allow measurement of the currents influent
to the insulating tube or expansion region, and either the accumulating
surface charge or the generated electric field. Apart from the imposed
flow conditions, the liquid conductivity is controlled by a commercial
antistatic agent, while the external configuration of conductors is pre-
scribed with an awareness of the contribution of external image charges
to the generated fields. Results indicate that significant electrical
stresses stem from the transfer of a net charge to the flow upstream of
the insulating element, and migration of the entrained ions in a space
charge field that is predominantly normal to the the insulating surface.
Leverage over the flow-induced stresses is afforded by the external con-
ductor configuration, control of bulk and surface conductivities, and
control of the influent convection current with a properly designed ex-
pansion region inserted just upstream of the insulating element.

Physicochemical features of the liquid-insulating solid interface are
probed in two supplementary experiments that make use of a multi-phase
helical winding around a section of an insulating tube. In the first
experiment the flow is imposed and half of the phases are excited with a
sinusoidal potential. Convective displacement of the resulting standing-
wave perturbation in the entrained volume charge density is detected as
an imbalance in the currents carrying perturbation image charge to two
of the unexcited phases. The response is interpreted in terms of the un-
disturbed convection current, the surface conductivity, and the conduc-
tivity gradient at the interface. In the second experiment, the flow is
induced by a traveling-wave excitation of the winding with the objective
of investigating the charge injection process at the same interface.

Thesis Supervisor: James R. Melcher
Title: Stratton Professor of Electrical Engineering and Physics
Thesis Supervisor: Markus Zahn
Title: Associate Professor of Electrical Engineering
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Chapter 1

INTRODUCTION

1.1 Engineering Motivation

A fundamental understanding of the electrification phenomena resulting

from the flow of semi-insulating liquids is essential to the safe

operation of liquid-cooled power distribution equipment. In transformers

and high-voltage direct-current (VDC) substations these phenomena are

manifested as a build-up of electric fields much greater than those

allowed for by design, with the prospect of physical damage or fire

originating in electrical discharge. What implicates the cooling system

is the observation that the field build-up is initiated by the flow of

the liquid coolant, whether or not the equipment is energized. Without

control over such phenomena, flow rates and hence cooling capacity must

be limited, and equipment power ratings will be compromised to a degree

that must be determined empirically on a case by case basis.

In transformers, flow-induced fields stress the oil ducts whose oil-im-

pregnated paper surfaces tend to collect a net charge. Experiments with

full scale systems (1) typically record the dependence of signals from

charge density probes immersed in the oil, and of currents flowing from

terminals, on such parameters as oil temperature and flow rate. Even if

such in situ measurements had clear interpretations the quantitative and

qualitative differences among reported measurements emphasize that their

applicabilty is limited to the system at hand. One expedient recognizes

the oil as the common element that is most readily replaced, and seeks

to correlate flow-induced failure with, and appropriately modify, some

oil property. A suggested (2) property is the so-called "charging

tendency," which measures the charge separated as a sample volume flows

through a paper filter, and which is found to be sensitive to handling

and trace chemicals. While it would be a welcome development to find
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that an identifiable range of charging tendency presages failure in

existing units, and that this property can be controlled, there would

remain no rational basis for anticipating safe operation of planned

units when increased heat transfer capacity is pursued.

The present investigation concerns the electric field build-up initiated

by the fully-developed turbulent flow of semi-insulating liquids through

insulating tubes. This configuration is of practical interest whenever

the coolant must be transferred between metallic elements, such as heat

sinks, that are constrained to different potentials. The flow-induced

field stresses the wall of the tube, and failure of the insulation may

take the form of a pin hole through the wall that allows an exchange be-

tween the liquid coolant and the gas that surrounds the tube.

Several factors intensify these problems despite the vast experience

with related electrification phenomena acquired in other industrial

contexts, notably petroleum processing (3,4) and fueling operations (5).

First, because of pressures to use generated power more efficiently,

there has been a trend towards locating power substations closer to

loads. For such installations to be acceptable near populated areas,

they must be increasingly compact, fire-resistant, and benign to the

environment, with significant demands upon the capacity and integrity of

the cooling system a direct result. Second, because of the sensitivity

of electrification phenomena to materials and flow conditions, empirical

guidelines evolved from a review of superficially related experiences

will be of limited value for purposes of design.

Third, the remedial measures that have been explored in other contexts

are not immediately transferable to the high voltage environment. Active

systems (6), employing a charge injector and charge density monitor in a

feedback arrangement to eliminate any net charge from the flowing

liquid, are too cumbersome for compact high voltage equipment. Like the

active systems, passive charge injectors (7) are intended to protect

flow elements further downstream. However, these schemes require the

. ,
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field generated at grounded points inserted in the flow to exceed a

threshold value that is likely to drift as contaminants collect on the

points. Both the dielectric strength of the insulation and the heat

transfer characteristics of the metallic surfaces in contact with the

liquid are also likely to be sensitive to residues. t'us, the antistatic

agents (8,9) successfully added to petroleum products and jet fuels must

be applied conservatively in high voltage systems until their side

effects are fully appreciated. Bonding (10), which aims to provide a

controlled charge leakage path by constraining the potential of a

conductor in contact with the insulating tube along its length, defeats

the insulation function of the tube. Outwardly the simplest approach to

neutralizing a liquid stream is the relaxation volume, whose efficiency

increases with volume as discussed in Chapter 4 below. The essential

point is that without an understanding of the electrification process

there is no basis for limiting this volume other than the contraints

imposed by the available space.

Traditionally, efforts to maintain safe operating conditions in high

voltage equipment have centered on the identification of mechanisms of

electrical breakdown and factors which control dielectric strength. Such

efforts support designs consistent with applied potentials, but their

objective will not be achieved unless flow-induced electrical stresses

can be anticipated and controlled as well. While helping to establish a

basic understanding of the flow-induced stresses in a specific context,

an objective of the present research is to encourage informed design

that confronts the electrification problem as an integral step towards

meeting heat transfer specifications.

1.2 Flow-Induced Electric Field Generation

The source of the electric field that is not attributable to applied

potentials is a distribution of net charge that develops when the liquid

flow separates charges of opposite sign. Petroleum processing and
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aircraft fueling are examples in which the liquid carries a net charge

into a partially filled tank. There the absence of a significant mean

flow allows the charge to accumulate in the liquid volume and generate

an electric field in the vapor-filled space above the liquid (11,12,13).

It is typical of these works to neglect the surface charge accumulation

at the liquid-vapor interface. However, where the mean flow is signifi-

cant, as in the insulating tube, it is a surface charge distribution

that makes the dominant contribution to the generated field. Thus a

specific objective here is a description of the evolution, in space and

time, of the surface charge on the insulating tube and of the associated

electrical stress.

Whether the accumulating charge is a surface or volume density, and

despite differences in materials and configurations, the generation of

electric fields by mechanical action can always be analyzed in terms of

four basic processes: charge generation, transport, accumulation, and

leakage. A simple context for illustrating these processes is the Van de

Graaff generator (14) shown in Fig. l.la. A net charge is generated at

the bottom and imparted to the moving belt which transports the charge

to the metal dome at the top. Charge accumulates on the dome and

generates an electric field that by design is predominantly outside the

region occupied by the belt. A resistive divider running the length of

the belt both supports a leakage current from the dome, and ensures that

the field associated with the charge in transit will not oppose the

transport process. If the dielectric strength of the medium surrounding

the dome permits, the maximum generated field is that which drives a

leakage current from the dome equal to the convection current carried

upward by the belt.

That the Van de Graaff generator and the liquid circulation system have

much in common is emphasized most graphically by Boumans (15) who

constructed a high voltage generator with the liquid playing the role of

the belt, and a closed metal sphere playing that of the dome. What makes

the Van de Graaff generator a helpful, though less literal, analogue for
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present purposes is the clear spatial separation of the four basic

processes (Fig. l.la). The same processes underlie the charging of the

insulating tube, but here they cannot be identified with physically

distinct regions (Fig. .lb). It is to contend with this complication

that two modes of charging, distinguished by the origin of the collected

charge, are defined. In the external mode the collected charge origi-

nates in flow elements situated upstream of the insulating tube. In the

internal mode, which may operate simultaneously, the insulating tube

itself supplies a net charge to the flow while retaining the counter

charge which generates an electrical stress.

Much as in the Van de Graaff generator, the external mode is character-

ized by charge generation and accumulation in separate regions. However,

charge generation and transport occur in a common region because both

are intimately linked to the mean liquid motion. The flow that shears

the diffuse part of the charge double layer that is characteristic of

virtually all liquid-solid interfaces also entrains the double layer

charge and gives rise to a convection or streaming current. This current

can be continuous if there is a mechanism for replacing the charge that

is swept away by the flow. Thus, charge generation is likely to be most

significant where the flow is bounded by a potential-constrained metal-

lic surface that supports a charge transfer reaction.

Charge transport and accumulation overlap as well, this time in the in-

sulating tube where the potential is free to rise. In the external mode,

liquid enters the tube carrying a net charge that, in accordance with

Gauss' law, sets up a radial electric field at the inner surface of the

tube wall, denoted E in Fig. 1.2. The entrained charge migrates in its

own space charge field to the inner surface of the wall where it accumu-

lates as a surface density. The internal mode is revealed when electri-

cally neutral liquid enters the insulating tube. Now with the space

charge field absent near the tube entrance, a rate of change of surface

charge there points to the role of the radial diffusion current.

', ' . .
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Finally, charge leakage overlaps charge transport and accumulation be-

cause all of these processes depend on the presence of ions in the li-

quid. As indicated in Fig. 1.2, the generated field generally includes

components both normal (EW) and tangential (Ez) to the inner surface of

the tube wall. While the former stresses the insulation, the latter

drives a current through the slightly conducting liquid, and perhaps

along the liquid-solid interface, that tends to leak away the collected

surface charge. This leakage process is controlled in part by the

configuration of conductors in the region outside of the tube because

they support image charges that contribute to the generated field. As in

the Van de Graaff, the generated field continues to build-up until

either the insulation fails or the leakage and accumulation processes

reach a balance. It is to ensure that conduction rather than dielectric

strength determines the ultimate stress that proper design aims to

enhance charge leakage while attenuating charge accumulation.

1.3 Scientific Motivation

A quantitative model for the flow-induced electric field generation in

the insulating tube calls for the integration of material drawn from a

range of disciplines, and provides an opportunity to address issues that

have import beyond the immediate application.

A central concept in classical electrokinetic studies (16,17) is the

equilibrium charge double layer in which the net current normal to an

interface vanishes by virtue of a balance between ion diffusion and ion

migration in the space charge field of the ions themselves. Here,

diffusion originates in the thermal motion of the ions, and the familiar

Debye length (see Sec. 2.2.1 below) characterizes the thickness of the

diffuse part of the double layer where a net charge exists. When the

surface that bounds the electrolyte is that of a submicron colloidal

particle, the electrophoretic velocity or the sedimentation potential

are of interest; if it is that of a capillary, the electro-osmotic flow

.... . ., ..... _.
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or the streaming potential may be observed. A description of the

equilibrium ion distribution in the highly turbulent flows typical of

cooling applications must take account of the turbulent diffusivity

profile that is the province of mass transfer studies. This equilibrium

distribution defines, for a given flow condition, a fully developed

convection or streaming current that is characteristic of a flow element

in the sense of being independent of conditions further upstream.

Where charge generation and accumulation proceed, an imbalance between

diffusion and migration accounts for a transfer of net charge between

the interface and the flowing liquid, and hence a nonvanishing current

normal to the interface. The parallels with other convective diffusion

processes are not weakened by the fact that here the ions migrate in a

space charge field, while in electrodialysis (18), for example, an

imposed field dominates. What makes the ion distribution now a

nonequilibrium one is the need to specify the rates of both an

ionization reaction in the liquid bulk and an electrode reaction if

charge is transferred across the liquid-solid interface (see Sec. 2.2.2

below). Unfortunately, even when the chemical identities of the ions are

known, as when an antistatic agent supplies their majority, these rate

processes remain poorly understood in the semi-insulating liquids

typical of high voltage applications.

The leakage process also accounts for ties to apparently unrelated areas

of research, because apart from the liquid bulk there are two other

potential paths along which charge may leak from the inner surface of

the insulating wall. The first is a thin region of enhanced conductivity

at that surface that supports a surface current in the presence of a

tangential field (Ez in Fig. 1.2). This surface conductivity may itself
evolve with time if it stems from the adsorption of a surface-active

substance from the liquid. The second path is the bulk of the insulating

wall into which charge may be injected under the influence of the normal

component of the generated field (Ew in Fig. 1.,2). The same injection

process that may compromise the charge retention capacity of an electret
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will be beneficial here if it helps relieve the electrical stress within

the wall.

1.4 Overview

The guiding objective is to lend a rational basis to the design of a li-

quid circulation system in which the electrical stresses induced within

an insulating tube by the flow must be controlled. Because of their

technical importance, the focus is on the specific materials indicated

in Table 1.1, which are typical of those selected for current equipment

(19). However, to ensure that design guidelines are more broadly

applicable, the four basic processes of Sec. 1.2 must be elucidated in

terms of standard material parameters. To ensure that these guidelines

are easily applied, these processes must be integrated into a picture of

the field generation process that is flexible enough to make clear the

implications for a general system configuration.

To help outline essential issues, Chapter 2 organizes a review of

previous work on the flow of semi-insulating liquids through tubes under

section headings that divide the work along conceptual lines rather than

by author. That chapter begins by seeking a basis for classifying the

tube as conducting or insulating, and finding that a useful classifi-

cation hinges on the conductivity of the liquid as well. Section 2.2

discusses work on conducting liquid-tube systems in terms that should

help clarify the behavior of practical charge generating elements. New

data with the liquid fluorocarbon in Table 1.1 are presented here for

comparison with the previous experimental work with liquid hydro-

carbons. Section 2.3 critiques the previous work on insulating liquid-

tube systems to set the stage for the present contribution.

Chapter 3 gives quantitative expression to the picture of the external

charging mode introduced in Sec. 1.2, and describes supporting exper-

iments. The model presented in this chapter regards ion migration as

the dominant contribution to the normal current at the inner surface of
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TABLE 1.1

Cooling System Materials

Element

Liquid

Insulating
Tube

Additive

Metal
Sections

..

Gas
Insulation

Materials

trichloro-
trifluoro-
ethane

(C2C93 F3 )

ethylene-
tetrafluoro-
ethylene
copolymer

polymeric
amine salt

aluminum,
copper,
stainless
steel

SF6

Trade Name and
Manufacturer

Freon 113
Dupont

Tefzel
Dupont

DCA-48
Mobil

Properties

high dielectric strength,
good heat transfer
properties, compatibility
with other materials

chemically inert, good
mechanical properties,
retains dry surface after
exposure to moisture

maintains desired
Freon conductivity
over extended periods

compatible with Freon 113

high dielectric strength,
nonpolar (so does not
enhance ionization when
dissolved in Freon)
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the tube wall, and leads to a description of the field generation that

is appealing because of the small set of material parameters involved.

Appendix A helps to limit that set by offering a nonspecific treatment

of ionic reaction rates in the liquid bulk. It is left to Chapter 5 to

define the range of conditions for which diffusion does not contribute

significantly to the normal current, and to Chapter 7 to show that this

range encompasses conditions of practical interest. The supporting

experiments exploit configurations that are not immediately identifiable

with components of an actual system, but for which measured quantities

have clear significance and bear direct comparison to theoretical pre-

dictions.

Whereas the tube supports a fully developed turbulent flow, Chapter 4

considers flow elements in which the liquid is fully mixed in the sense

that the entrained volume charge is uniformly distributed. The random

turbulent motions that obscure the mean flow and wipe out gradients in

the charge density may be due to obstructions in the flow or to external

energy sources, as in a pump. In the expansion element that is con-

sidered in detail in this chapter, it is the energy of the influent

liquid Jet that is presumed responsible. An expansion with insulating

walls permits investigation of the basic processes in a context that is

simpler than that of the tube because charge transport and accumulation

are now separated. Practical interest in both insulating and conducting

expansions stems from their potential application as flow elements to be

inserted immediately upstream of an insulating tube to attenuate the

influent convection current. A theme of this chapter is the relationship

between expansion dimensions and its effectiveness in this role.

Experiments reported in Chapter 5 reveal the limitations of the model of

Chapter 3 by incorporating an expansion large enough to render the

liquid influent to the insulating tube essentially electrically neutral.

The diffusion component of the current normal to the liquid-solid

interface that was left out of that model is included here in a revised

model. Because the revised model introduces an additional boundary
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condition that brings in phenomenological material parameters, its

practical utility is likely to be compromised. Nevertheless, it provides

a basis for comparing the contributions of the internal and external

modes (see Sec. 1.2 above), as well as a framework into which a physi-

cally motivated boundary condition may eventually be incorporated.

It is because of complications inherent in the use of electrodes that

other methods are of interest for measuring the surface conductivity

whose role in the leakage process was noted in Sec. 1.3. One method,

described in Chapters 3 and 5, relates the surface conductivity to the

rate of the surface charge relaxation that ensues when flow through the

insulating tube is interrupted. Chapter 6 introduces a device that pro-

vides the means to continuously monitor changes in the surface conduc-

tivity without interrupting the flow. A helical winding on the outer

surface of the insulating tube is excited with a standing wave of

potential, and simultaneously induces and detects perturbation charge

within the flowing liquid to reveal conditions at the interface. The

subject of Appendix B is the inverse interaction where liquid convec-

tion is induced by electrical forces when the same winding is excited

with a traveling wave of potential, again with the objective of probing

the interface.

Finally, Chapter 7 is directed primarily to the design engineer who

seeks to limit flow-induced electrical stresses without compromising

equipment capacity. Here, the objective is to translate the models and

results of the previous chapters into concrete design suggestions. This

calls for an assessment of the practical value of the migration model of

Chapter 3, as well as an argument that results phrased in terms of spe-

cific experimental configurations have broader applicability.
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Chapter 2

BACKGROUND AND PRELIMINARY EXPERIMENTS

Two factors make the conducting tube a useful context for an introduc-

tion to the charge generation process. First, because the fully devel-

oped velocity and diffusivity profiles are known, attention can turn

directly to the transverse boundary condition that reflects a specific

electrochemical attribute of the liquid-solid interface. Second, these

profiles and the specialized forms of the equations that govern the

volume charge distribution in the liquid are common to the insulating

tube, so these can serve as a point of departure for a description of

the charge accumulation process. Section 2.1 establishes a basis for

classifying a liquid-tube combination as conducting or insulating. A

review of previous work with flowing semi-insulating liquids is divided

along these lines in Secs. 2.2 and 2.3, with some new streaming current

data included in the former section. These reviews emphasize themes that

could be the basis for critiques of papers not cited here.

2.1 Classification of Tubes as Conducting or Insulating

It is the engineer's license to classify materials according to their

behavior in a particular context without regard for fundamental physical

differences. In the following two sections, flow-induced currents are

reported for tubes of materials that cover both ends of the conductivity

spectrum. Bowever, whether the rate process that establishes these

currents forms a significant part of the observations depends in part on

the tube's conductivity. In the highly conducting limit, stationary

electrical conditions may be established on a time scale even shorter

than that needed to attain a steady hydrodynamic flow. In the highly

insulating limit, the electrical transient initiated by the flow can be

long enough to dominate the observations, and in the extreme case the

stationary state never develops because electrical failure terminates

the transient.

-
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Intermediate conductivities raise the issue faced by the electric cir-

cuit designer who, in considering the step response, would prefer not to

model rate processes that proceed quickly on the scale of the excitation

rise time, but must do so to verify the ordering of times. Here, the

role of the rise time is played by the liquid residence time in the tube

(L/U) which typifies the shortest time scale of interest, and it remains

to determine the time scale of the electrical transient in terms of the

tube's conductivity.

The description of the electric field generation in Sec. 1.2 regards the

transient as complete when the leakage process becomes competitive with

the accumulation process. So it is natural that in Chapter 3 the tran-

sient is found to be characterized by the same time that governs the

relaxation of surface charge from the inner surface of the tube wall.

For now, regard both the tube material and the liquid as ohmic, with

conductivities aw and a, respectively, and allow a uniform surface con-

ductivity cs at their interface. A detailed treatment in Chapter 3 of

the specific configuration shown in Fig. 2.1 leads to a description of

electrical quantities in terms of a set of Fourier modes, each of which

evolves on its own scale n:

- + CoFn(R,a)
'n 

= (2.1)
n Cy + (2ww/a) + (2as/a)

where

2 ( I0 (kno)Kl(kn8) + I(knB)Kg(knm) (2.2)

akn I(k no)K0 (kn8) - I (knS)Ks(kn) J)

and In and Kn are the nth order Bessel functions of the first and second

kinds, respectively, and kn nn/L is the wavenumber of the nth Fourier

mode. Evidently, the relaxation time is a heterogeneous one in the sense

that it depends on the properties of more than one region as well as on

their dimensions. It is because the tube wall is regarded as too thin to

store appreciable electric field energy that the permittivity of the

wall does not enter, and because dissipative processes in the region
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Fig. 2.1 Illustrative external conductor configuration. The axis of the
insulating tube coincides with that of a grounded cylindrical
conductor. Conducting discs truncate both the cylinder and the
insulating tube which conveys the liquid between metal tubes
of the same diameter. The liquid and the free space region
outside the tube have permittivities e, and so respectively.
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Pig. 2.2 Section of tube showing generators of closed cylindrical con-
trol surfaces S1 and S2 that are aligned with the tube axis.
The curved part of S 1 coincides with the outer surface of the
tube and lies within the perfectly insulating gas. The curved
part of S2 coincides with the inner surface, and encloses only

volume charge. Mean turbulent velocity profile is shown.
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surrounding the tube are neglected that a gas conductivity does not

appear. The geometric factor Fn proves to be positive-definite and a de-

creasing function of n, and thus it is the longest time constant of the

series 1 that defines the duration of the transient.

For other configurations, the counterpart of Eq. 2.1 can be found in

principle by the procedure outlined in Chapter 3. Section 2.2 concerns

conducting systems defined as those for which the combined conductivi-

ties render T1 < O(L/U). Thus Varga's (20) dielectric tubes would be

classified as conducting on the basis of the relatively conducting

aqueous liquids involved. In practical terms the steady state develops

quickly enough to forestall significant charge accumulation, while a

steady state charge generation process emerges as the dominant feature.

Section 2.3 concerns insulating systems for which the ordering of times

is reversed, and now the charge accumulation process will be significant

to an extent determined in part by the geometric factor (Fn ) that re-

flects the configuration of external conductors.

2.2 Streaming Currents in Conducting Systems

The charge double layer that resides in the liquid phase at virtually

all liquid-solid interfaces consists of an inner layer of molecular

dimensions bound to the interface by,a combination of specific and cou-

lomb forces, and an outer or diffuse layer held by coulomb forces alone.

Thus, essential differences between double layers in semi-insulating

liquids and those in the more extensively studied aqueous liquids should

be confined to the inner layer (21). Another specific feature of the

interface is the charge transfer reaction that sustains the continuous

streaming currents observed when the semi-insulating liquid flows

through a metal tube (21). The introduction to the charge generation

process that follows depends only on the existence of the double layer

and the availability of a charge transfer reaction, while their specific

attributes are reflected in phenomenological boundary conditions.
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The streaming current generated in a fully developed flow is defined as

Is(z) - fP(r,z)vz(r)2rdr (2.3)

where p, v and a are the net volume charge density in the liquid, the

mean liquid velocity and the tube inside radius, respectively, and r and

z are coordinates in a cylindrical coordinate system. To clarify issues

inherent in the measurement and prediction of Is it is necessary to de-

fine a total axial current (I) carried by the tube, the liquid and their

interface, and that fraction (I*) carried by the liquid bulk alone. By

the definition in Sec. 2.1 a conducting system is characterized by

quasistationary electrical conditions, so that

3 I a+w
al = 0 ; I | (pv + Ez)2nrdr (2.4)

where is the local conductivity, Ez is the axial electric field and w

is the tube wall thickness. This is just the statement that no net

current traverses the closed cylindrical surface S1 in Fig. 2.2 whose

curved part is situated in the perfectly insulating gas. Nor does a

steady net current traverse the closed surface S2 in Fig. 2.2 which

encloses only volume charge, so that I(z) satifies

aI a
1= -2naJr(a,z) ; IQ(z) - JJz(r,z)2nrdr (2.5a)

where

Jz(r,z) = (P(r,z)vz(r) + IEz(z)) (2.5b)

and Jr(r,z) are respectively the axial and radial components of the

current density in the liquid. Of course, Eqs. 2.4 and 2.5 do not

preclude temporal variations on time scales longer thanr-l:(see Sec..2,1.

above) due to (say) variations in either the upstream or the transverse
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boundary conditions. The definitions of I and I neglect axial diffusion

in view of the large Peclet number ( LU/De) based on the tube length.

Also, the mean velocity profile is imposed in the sense that electrical

forces are too weak to modify it. Hence, to determine the integrand in

Eq. 2.3, it remains only to specify the volume charge profile of which

there are two aspects: the developing profile p(r,z) that reflects

conditions at the tube inlet, and the fully developed profile p(r,M)

that prevails far downstream of the inlet.

2.2.1 Fully Developed Volume Charge Density

Although both the fully developed and the developing charge profiles are

governed by the same basic equations, they are considered separately

here to emphasize that treatment of the former requires less data of a

specific nature. Where the volume charge density is fully developed,

Eq. 2.4 indicates that

az E aE2
+ w rdr = 0 (2.6)

Because the axial field arises from sources distributed over lengths

much greater than the tube radius, and is therefore essentially uniform

over the tube cross section, Eq. 2.6 requires the axial field to be

independent of z. It follows that both Jz (Eq. 2.5b) and I1 (Eq. 2.5a)

are fully developed as well, and now to ensure a steady state current

density in the liquid that is divergence free, the radial component must

satisfy

r d (rJr(r,,)] = Jr(r) = = (2.7)

with the integration constant set to zero to satisfy Eq. 2.5a. For two

ionic species with valences of equal magnitude, this result implies only

that the radial flux densities of the individual species are equal. It
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is left to Sec. A.3 to show that with the additional constraint that the

total solute concentration remain independent of z, these flux densities

vanish indentically:

r+(rc) = r(rJw) = 0 (2.8)

Thus, neither ionic species participates in a reaction that transfers a

net charge across the interface, and the transverse boundary condition

will be an equilibrium one in the sense that rates of charge transfer

reactions do not enter. Section A.3 also develops the corollary that

chemical equilibrium prevails within the liquid bulk, so that the spe-

cies conservation equations specialized to the region of fully developed

electrical conditions will not call for the rates of the ionization

reaction.

As shown in Sec. A.2, the chemical equilibrium condition allows the con-

tributions of migration and diffusion to the vanishing radial current

density Jr to be expressed entirely in terms of the unknown fully

developed volume charge profile (r,c). Abedian and Sonin (22), who

summarize the related work prior to 1980, confine attention to the small

charge density limit where the liquid conductivity is essentially

uniform and equal to its rest value. As a result the equation for p(r,0)

is a linear one, facilitating the development of analytical solutions.

Their essential contribution is a consistent account of the role of the

turbulent diffusivity in the balance between radial migration and

diffusion. Whether the turbulent diffusivity appreciably influences the

volume charge distribution is shown to depend on the ratio of the

diffusion sublayer thickness (see Eq. 3.3 below) to the Debye length

AIm a Xd (2.9)

Figure 2.3 illustrates that when the ratio 8/Xm is large, the net charge
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is confined to the laminar region near the interface; when it is small

the original diffuse layer is exposed to the turbulent motions and drawn

into the core. Thus, if the interfacial value p(a,w) remains fixed, an

increase in the mean velocity yields a decrease in this ratio and an

increase in the streaming current given by Eq. 2.3.

The charge distributions in Fig. 2.3 are not fully determined until a

boundary condition governing p(a,w) is specified. Abedian and Sonin pos-

tulate a linear relation between the charge density and radial current

at the interface

Jr(a,z) w J pwl p (2.10)

where J and are empirical properties of the liquid, solid and ioniz-

able solute combination, but are independent of flow conditions. In view

of Eq. 2.7, this condition specializes to p(a,w) = Pw where electrical

conditions are fully developed, and leads to the analytical solution

.s = H w(n 2 (S/Am) (s/xm)/sinh(8/Am)

QPW PmU2a2 sinh(S/Xm) 1 + (aS/2xm2)

in terms of the shear stress at the interface T", the hydrodynamic

Reynolds number Ry, the volume flow rate Q, the mass density Pm and the

superficial velocity U. P has an order of magnitude determined by

recognizing that (by assumption) this parameter also characterizesthe

original stationary double layer. Then equating the total diffuse

charge per unit area (~kmp w) to the product of the zeta potential (%)

and the diffuse layer capacity per unit area (g/Xm) yields

9.W2B g P t0 .I2 =-D °b (2.12)
XTUPW ) 4 IN , 2 DM =0(
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with the final result exploiting Eq. 2.9, the Einstein relation (which

brings in the ion mobility b), and the understanding that the thermal

voltage typifies the magnitude of the zeta potential. Nothing is implied

here about the sign of Pw which must be determined empirically. owever,

the exchange current density Jw is a positive-definite quantity.

In their theory for the streaming current generated in laminar flow

Pribylov and Chernyi (23) regard the bulk concentration of one ionic

species at the interface to be constrained independently of flow condi-

tions. Where electrical conditions are fully developed so that chemical

equilibrium prevails, this is tantamount to constraining the interfacial

concentration of the other species as well. Thus, the net volume charge

density at the interface is also independent of the flow, and their

boundary condition acquires the same form as that of Abedian and Sonin.

Walmsley and Woodford (24) suggest the boundary condition

+ ±
rr(a,z) = K c - Ks (2.13)

where c are the concentrations of ionic species, the K are proportion-

ality factors that reflect the fraction of the interface accessible to

the ions, while the Ks are proportional to the respective surface

concentrations of the ions. In their treatments of the fully developed

streaming current in both laminar (24) and turbulent (25) flows these

authors specialize Eq. 2.13 by omitting the K terms. In addition, they

regard the equilibrium value of the product' cc_ as independent of

radial position, which is tantamount to assuming a uniform, density of

the neutral solute (see Sec. A.2). Consistent with Eq. 2.7 they:equate.

the two ion flux densities in Eq. 2.13. But, because these are nonzero,

and because there is no gradient and hence no radial flux of neutral

solute, they implicitly allow a change in the total solute concentration

along the tube axis. This implies an axial variation of the liquid con-

ductivity which, however gradual, is inconsistent with the fully devel-

oped electrical condition.

il
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2.2.2 Spatial Development of the Volume Charge Density

The convection current at the tube inlet generally differs from its

fully developed value, and thus ap/az 0 over a section of the tube

near the inlet as the current tends towards :1s(m). However, as is now

shown, the description of the developing profile p(r,z) is complicated

by more than the addition of an independent variable. Equation 2.4 can

be written as

a+w
(PV + aIEze)2rrdr Cf. - ow"Ez2nrdr (2.14)

with surface conduction lumped into the integral on the right. With'Ez

essentially uniform over the tube cross section, the relative conductiv-

ities determine which conduction term balances the nonzero convection

term on the left. In the case of present interest the system is rendered

conducting (in the sense of Sec. 2.1) by virtue of the tube rather than

the liquid, so that typically 0a < (2 w/a)aw. Thus, the magnitude of the

term on the right side of Eq. 2.14 far exceeds the conduction term on

the left, and hence the left side must be nonzero. Finally, by defini-

tion the left side is aIl/az, and Eq. 2.5a shows that Jr(a,z) must be

nonzero as well. Now the rates of a charge transfer reaction at the

interface are needed, and with the argument of Sec. A.3 no longer appli-

cable, rates of the bulk ionization reaction must also be specified.

This reliance on additional specific data, which can be circumvented

only at the expense of additional assumptions, renders the description

of the developing profile p(r,z) and convection current Is(z) more ten-

tative than that of the fully developed current.

Abedian and Sonin's boundary condition (Eq. 2.10) provides a concrete

example: in the fully developed region only Pw enters, but in the

developing region where the wall current density Jr(a,z) is nonzero, the

"exchange current density" J (which characterizes the rate of interfa-

cial charge transfer) must be specified as well. However, these authors

assume that Jr(a,z) remains much less than Jw' which is tantamount to
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regarding the transport of reactants to and from the interface as the

rate limiting process, so that the boundary condition again reduces to

P(a,z) P Their assumption of a volume charge density that is small

in the sense that it results from small perturbations of ionic concen-

trations from equilibrium values obviates the need to specify rates of

the ionization reaction. A simple extension of their solution for the

developing convection current allows for a finite inlet convection cur-

rent Is(a):

Is(z) = Is(0)exp(-z/d) + Is() (l - exp(-z/d)) (2.15a)

where

d -U 1 + - (2.15b)

and Is(0) is given by Eq. 2.11. Thus, if the tube length L exceeds the

development length d, the fully developed current will emerge, while

only if L is less than or of the order of d will the inlet current Is(0)

be reflected in the effluent current Is(L). Of course, the electrical

development described by Eq. 2.15 will be obscured by the hydrodynamic

development unless the latter is complete within a distance much less

than d.

In his treatment of the electrical development in turbulent flow

Walmsley (26) retains the K terms in Eq. 2.13, giving four empirical

parameters. He invokes the assumptions of local chemical equilibrium and

small charge density, so that in the special case of K = K or if the

K± are only weakly dependent on surface ion concentrations, it can be

shown that Eq. 2.13 reduces to a boundary condition of the same form as

Sq. 2.10, with the two parameters expressible in terms of Walmsley's

original four. Walmsley divides the flow into a core region where

turbulent diffusion is assumed to render the ion distributions uniform,

and a diffusion sublayer where molecular diffusion dominates; but he
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introduces an internal inconsistency in the process of modeling the

respective charge distributions. e regards the radial field in the

sublayer as independent of radius, consistent with the large radius of

curvature of the sublayer relative to its thickness and his assumption

that the radial field is essentially imposed by a net charge in the

core. However, he simultaneously precludes a net charge in the core by

setting c+ = c_ there when he splices the uniform core distributions to

the initially unknown distributions in the sublayer. Nevertheless, the

apparent agreement with a portion of the experimental data is not for-

tuitous, but rather due to the lack of constraints on the empirical pa-

rameters. Apart from the inconsistent assumptions, it reveals a lack of

predictive capability that to achieve correlations, values assigned to

these parameters ranged freely over several orders of magnitude.

Abedian and Sonin (27) test their theory (Eqs. 2.11 and 2.15) against

published data, virtually all of which are for doped hydrocarbon liquids

in metallic tubes. The shear stress w in Eq. 2.11 is obtained from the

Blasius friction-factor correlation (22). Despite the scatter that is

characteristic of work with such liquids, satisfactory agreement is

discernible for a range of materials and conditions, with Pw assigned a

value consistent with Eq. 2.12. An exception to the agreement is a

consistent tendency of the theory to overestimate the measured currents

when 8/X m > 1. The authors argue that under this condition a significant

fraction of the actual effluent convection current is lost to conduction

through the effluent liquid jet back upstream to the potential-

constrained tube, a possibility discussed previously by Taylor (28).

2.2.3 Preliminary Experiments

Design guidelines for the coolant circulation system cannot be broadly

applicable unless qualitative features of the phenomena are common to

the various candidate materials. The charge generation process is one

basis for comparing the fluorocarbon-additive system of Table 1.1 to the

extensively studied hydrocarbon systems. In the experimental arrangement
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shown in Fig. 2.4 a test section is fed by a tube of twice the diameter

to limit the velocity and hence the current generated upstream of the

test section. The two electrometers agree closely whether the connection

at point A is made or broken, indicating that essentially all of the

convection current is generated in the test section. Rather than let the

liquid et exiting the test section flow freely into the receiver, an

attempt is made to avoid conduction in the effluent stream back to the

test section by channeling the liquid directly into another tube of the

same diameter and held at virtually the same potential.

At issue is whether the streaming currents generated by the fluorocarbon

liquid parallel the behavior of the hydrocarbon liquids as summarized at

the end of the previous subsection. Figure 2.5 presents one third of the

collected data (for the extremes of the range of hydrodynamic Reynolds

numbers used) along with the predictions of Eqs. 2.11 and 2.15. In the

former equation the shear stress w is obtained from the Blasius fric-

tion-factor correlation (22). The remaining two thirds of the collected

data are for intermediate Reynolds numbers and reveal the same trends.

Evident is some discrepancy for 8/m > 1, suggesting that the attempt to

avoid back conduction was unsuccessful, perhaps due to the finite length

of the insulating union at the end of the test section. There are also

departures under conditions where the theoretical effluent current is

not fully developed, that is, where Is(L) differs from Is(w). This may

be attributed to the more tentative nature of the theory for the spatial

development, which in this case apparently overestimates the development

length d since the experimental curves tend to follow the theoretical

curve for Is(w). Nevertheless, under conditions where a fully developed

effluent current is predicted, that is, where the more rigorous aspect

of the theory applies, the agreement is satisfactory with both sets of

theoretical curves based on a single value of Pw that is consistent with

Eq. 2.12. Consistent with much of the data for hydrocarbon liquids in

metallic tubes, the convection currents are observed to be negative,

corresponding to negative values of p".
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Fig. 2.4 Experimental arrangement for measuring streaming currents.
Nitrogen gas pressurizes a stainless steel reservoir to drive
liquid from left to right. All tubes are stainless steel
joined together by Teflon unions. Inside radius and length of
the test section are 1.3 mm and 1.14 m. Electrometers E mon-
itor currents generated in the test section and collected by
the stainless steel receiver.
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2.3 Streaming Currents in Insulating Tubes

To profitably review the previous work while accomodating a diversity of

emphases and perspectives, two essential themes are defined. -The first

is an elucidation of the rate processes that are initiated by the flow,

and which ultimately compete to establish a steady state. The second is

the internal charging mode (see Sec. 1.2 above) in which the insulating

tube acquires a net charge in excess of the integrated influent

convection current. A simple calculation shows that, to be practically

significant, this net charge must greatly exceed that contained in the

diffuse part of the original double layer along the tube wall before

commencement of the flow. The net diffuse charge (Qdl) is approximately

the product of the the double layer capacity per unit area (c,/Am), the

zeta potential () and the area of the tube wall (2aL):

Qdl 2naL j (2.16)

The maximum stress that can be attributed to the original double layer

results when the flow turns the double layer "inside-out" by sweeping

out all of the diffuse charge, leaving the fixed charge to findlnew

images outside of the tube. With the magnitude of the net fixed charge

also given by Eq. 2.16, Gauss' law yields for the radial electric field

within the tube wall of permittivity w

t| Jdl ' = 2. 0 x 1098 (2.17)ri 2nacwL Xmrw

where the final approximate equality is based on permittivities of,2e,V

a diffusivity of 10 , and a zeta potential equal to the thermal voltage

at room temperature. Even for liquid conductivities as high as 1.0 IS/m

this, field does not approach the dielectric strength of practical

insulation. Thus, evidence that a different mechanism is available to

generate a significant stress in the absence of upstream charge sources

would be the observation that the net accumulated charge exceeds the in-
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tegrated influent current by an amount much greater than Qdl:

II(0) - I(L)dt -J II(U)ldt IQ dl (2.18)

where the integration limit t is the duration of the experiment. 'Tables

2.1 and 2.2 summarize the conditions of the previously reported experi-

ments that are the subject of the next four subsections.

2.3.1 Early Work

Keller and Boelscher (29), who summarize the work prior to 1957, exper-

imented primarily with nominally pure n-heptane in plasticized polyvinyl

chloride tubes, and sought to correlate their observations with the

Helmholtz-Smoluchowski equation (17) for the streaming current:

-2na e -4s , v-8 r
Is a = a RY a2JQ (2.19)

where the second equality incorporates Poiseuille's law, and the third

brings in the volume flow rate Q. This equation relates the streaming

current to the zeta potential under conditions typical of the relatively

conducting aqueous liquids for which spatial and temporal developments

are short. While the use of Poiseuille's law restricts the validity of

Eq. 2.19 to laminar flows, it can be adapted to turbulent flow in the

limit 8/Xm >) 1 (see Fig. 2.3a) by inserting an empirical correlation

for the wall shear stress w (22).

Consistent with the authors' use of an equation that does not recognize

distributed aspects of the phenomena is their experimental arrangement

shown in Fig. 2.6 which reveals only the net charge separated by the

flow. The capacities with respect to ground of the Faraday cage and

receiver, and the parallel resistances which were limited by those of

the polystyrene supports, imply time constants that play the role of l

of Sec. 2.1. Because these times are long compared with the duration of
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TABLE 2.1

Room Temperature Data for Hydrocarbon Liquids

Properties

n

nil
u m

Sc

n-heptane
(C 7 H1 6 )

1.97

-4
3.86 x 10

683.7

5.65 x 10 

5.2 x 10- 8

1.4 x 1 9

400.

iso-octane*

(C8 H1 8 )

1.94

5.42 x 1 - 4

692.

7.83 x 10

3.7 x 10 - 8

9.8 x 10 10

800.

hydrocarbon
napthat

2.

9.25 x 1 - 4

771.

1.2 x 10- 6

2.2 x 19-8

5.8 x 10 10

2100.

kerosene

2.09

1.35 x 13

748.7

1.8 x 1 -6

1.5 x 10 8

3.9 x 10

4600.

(CH3 )3CCH2-CH:(CH 3)2 (2,2,4-trimethylpentane)

t MIL-F-7024A, Type II (Shafer et al, (31))

§ b (2.0 x 10-11)/n

I Dm = VTb 0.027b @ 25 IC

*

· 1i 11 1 -· 1 -111 l S ~ ~ ~ ~ ~ ~ ~ - II
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TABLE 2.2

Summary of Experiments with InsulatinQ Tubes

Authors

Keller &
Hoelscher

Carruthers
& Marsh

Gibson

Gibbings
& Saluja

Shafer
et al

Mason
Rees

&

Liquid
& Tube

n-heptane
PVC

iso-octane
PTFE

kerosene
rubber

kerosene
PE

kerosene
PTFE

naptha
PTFE

kerosene
HDPE

notes:

1. conductivities, tube diameters and velocities are those reported by
the authors

2. others parameters needed to calculate Debye lengths, Reynolds numbers
and diffusion sublayer thicknesses are obtained from Table 2.1.

a, (pS/m)

3.0-?

17.-362

1.2-6.0

100
10,000

1.7

1-450

x1 (n)

?-90.

6.8-32.

35.-78.

8.6
0.86

65.

7.2-36.

4.0-85.

Ry x 10i

0.03-0.4

1.8

17.5

6.7
6.7

0.06-. 55

1.5-9.1

13.

8s/m

0.16-?

0.2-0.8

0.08-0.17

0.3
3.0

0.28-0.45

0.1-3.2

.07-1.5

__ - II
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Fig. 2.6 Experimental arrangement of Keller and Hoelscher. A plasti-
cized polyvinyl chloride (PVC) test section communicates with
a reservoir and receiver through unplasticized polyethylene
(PE) tubes. The Faraday cage and receiver have capacitances Cf
and Cr to their respective grounded enclosures.

tubular electrode
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U

1 for

r et al

d 

-- receiver

Fig. 2.7 Experimental arrangement of Carruthers and Marsh, and Shafer
et al. Carruthers and Marsh used a plain PTFE test section and
measured currents I and I3. Shafer et al measured I and 12
and used a PFE tesE section with a conductive inner lining.
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the experiments, the measured rates of change of the Faraday cage and

receiver potentials ought to reflect only the convection of charge by

the liquid. (In conducting systems for which this ordering of times is

reversed, leakage is instantaneously on par with convection, and the

resulting potentials should be time-independent.) The reported tendency

of the liquid to enter the tube wall and extract the plasticizer was

manifested in preliminary tests as an increase in the rates of change of

these potentials, and a reduction in the resistivity of the tube mate-

rial. The relatively small contribution of the polyethylene sections to

the measured potentials was attributed to the absence of plasticizer.

Consistent with the long time constants, the rates of change of the

potentials observed in the formal experiments were essentially

independent of time, although the rates increased slightly near the ends

of some runs. The authors attributed these departures from fixed rates

of change to a redistribution of charge within the Faraday cage and

receiver, which they erroneously believed would be reflected in the

measurements; they did not suggest that the gradual extraction of

plasticizer might be responsible. Nevertheless, the two measured rates

of change multiplied by the respective capacities remained equal,

indicating that all of the charge collected in the receiver originated

in the Faraday cage. Thus, the streaming current issuing from the test

section can be calculated from

dsf der
Is(L) = Cf dt = Cr dt (2.20)

This current was independent of tube length as L ranged from 6 to 18

feet, and a linearly increasing function of hydrodynamic Reynolds number

over a range that encompassed both laminar and turbulent flow.

The authors claim satisfactory agreement between Eqs. 2.19 and 2.20

provided that the zeta potential is regarded as proportional to Reynolds

number, with % E .019 when Ry = 100. However, their claim is compro-
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mised by more than this expedient. They assert that the observed depend-

ence of streaming current on tube radius raised to the +1.7 power (based

on a single streaming current measurement in each of two tubes) is

consistent with Eq. 2.19 when r a Ry. While it is unclear whether they

fixed the Reynolds number or the volume flow rate for these measure-

ments, in neither case is the predicted dependence on radius to the +2.0

power as stated. In fact, with . a Ry, Eq. 2.19 indicates an exponent of

-1.0 if Ry is fixed or -3.0 if Q is fixed.

Enough information is provided to estimate from Eq. 2.16 the net charge

in the diffuse part of original double layer; and with I(0) = 0 to be

consistent with Eq. 2.20, it can be shown that Eq. 2.18 is satisfied.

This implies a significant charge generation process within the poly-

vinyl chloride tube, which the authors attribute to the presence of

plasticizer in the liquid. ow the charge left behind in the Faraday

cage is distributed between the inner and outer surfaces of the tube

wall would then depend on the extent to which the PVC tube is rendered

conducting by the extraction process.

2.3.2 Steady State

Although by the definition of an insulating system (see Sec. 2.1 above)

an observable transient precedes the steady state, the latter remains

valid ground for seeking insights. Rutgers et al (30) outline a theory

for the steady state distributions of volume charge and potential along

the tube axis, which Carruthers and Marsh (10) elaborate in order to

explain their experimental results. As discussed in Sec. 2.3.4 below,

Shafer et al (31) also invoke the (elaborated) theory to interpret ex-

periments.

Rutgers et al combine integral forms of Gauss' law and a steady state

charge conservation statement, both written for the control surface S2

in Fig. 2.2. In the latter statement the radial diffusion current at the

interface is assumed to remain what was for the liquid at rest, inde-
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pendent of flow conditions and the local volume charge distribution. :The

resulting ordinary differential equation governs the volume charge av-

eraged over the tube cross section p(z,w), and has the solution subject

to p(0,.) = 0,

p(z,=) = (0,o,)(1 - exp(-z/LRe)) (2.21a)

where

(o ,M) = Q2 ; Re = "I (2.21b)
ra2L L/u

Here Re is the electric Reynolds number based on the mean ion velocity 

which bears an unspecifed relation to the mean liquid velocity. With

the authors' assumption that the radial diffusion current equals that in

the stationary double layer, the fully developed charge density (-,0)

is just that which generates a radial migration current of equal magni-

tude but opposite sign. Thus, (w,w) is also independent of flow condi-

tions, and can be identified with Qdl of Eq. 2.16.

With the axial field Ez(z,w) assumed uniform over the cross section of

the tube, Eq. 2.4 has the integral

I(z,-) = a2 (P(,) + E(z,)) + Ez(z,) = C (2.22)

where I is the axial current carried by the tube wall. It remains to

substitute Eq. 2.21 and resolve the integration constant C with one of

the two boundary conditions suggested by Rutgers et al. If the liquid

flows out freely at the end of the tube then Iw(L,u) = 0 is the

recommended condition. Here the authors count on Ez to vanish uniformly

over the cross section at the end of the tube, implicitly denying the

possibility of a conduction current in the effluent liquid back to the

tube (see Sec. 2.2.3 above). Alternatively, if electrodes at each end

of the tube are constrained in potential then the integral condition
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Jo Ezdz = (i) - (L) applies, and now Iw(z,-) must be expressed in

terms of the axial field and the conductivity of the tube. While neither

boundary condition depends for its applicability on the range of this

conductivity, the authors associate the former condition with metal

tubes and the latter with glass tubes, reflecting what were the

traditional modes of experimenting with these materials. Finally, the

potential distribution along the tube is obtained from a line integral

of the axial electric field, which follows from Eq. 2.22 once the inte-

gration constant is determined.

Because it calls for the mean ion velocity which is not directly measur-

able, and because the assumed radial diffusion current at the interface

is physically unrealistic, the theory of Rutgers et al remains unsatis-

factory. Making no attempt to rectify these difficulties, Carruthers and

Marsh begin by restating the theory, this time allowing for a finite

influent convection current. Their counterpart to Eq. 2.21a brings in

the finite value of P(0,a) in a straightforward way, and is substituted

into Eq. 2.22 to yield

I(z,-) = Is(0,c)exp(-z/LRe) + (1 - exp(-z/LRe)) (2.23a)

+ na2OdrEz(z,c) + I(z,) = C

where

Is( )a2P(,) (2.23b)

The first term on the right in Eq. 2.23a accounts for the convection

current'generated upstream of the tube; the last three correspond to the

one convection and two conduction terms in Eq. 2.22. When the tube

length L is sufficiently short that the first term in Eq. 2.23a

dominates the second, the objections to Rutger's treatment of diffusion

can be waived. Moreover, in view of the rigorous steady state theory
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summarized by Eqs. 2.11 and 2.15, the neglect of radial diffusion in the

first term is justifiable under conditions for which U U and

(2 /aS) << 1.

In fact, Carruthers and Marsh do verify the condition on L by observing

the relatively small effluent current that results when their upstream

current generating filter is momentarily bypassed. The entries in

Table 2.2 indicate that their experimental conditions entailed turbulent

flows with the volume charge density distributed as in Fig. 2.3b. Thus,

with most of the convection current carried by the core of the flow the

authors are justified in replacing the mean ion velocity by that of the

liquid. Finally, the above condition on the Debye length and diffusion

sublayer thickness can be shown to hold, so that Eq. 2.23 should bear

comparison to their experimental results once the conduction terms are

resolved.

Unfortunately, the authors invite skepticism even before reporting their

experiments, by seeking explicit expressions for quantities that in

principle cannot be isolated experimentally. In evaluating the integra-

tion constant C in Eq. 2.23, they confine attention to the integral

condition that goes with constrained potentials at the ends of the tube.

With the conduction terms evaluated on this basis, they write separate

expressions for the total axial currents carried by the liquid and by

the tube wall. However, their plan to compare the former with the

measured effluent current is ill-founded because it requires the

conduction currents in the liquid and the wall to channel through

different electrometers from a point where the potential is constrained.

In their experiments, Carruthers and Marsh conveyed iso-octane through

both copper and PTFE tubes in the arrangement shown in Fig. 2.7, and

measured the current ratio I3/I 1 as a function of liquid conduc-

tivity. The range of liquid conductivities was such that the.axial con-.

duction current was carried entirely by the tube, in the case of copper,

and by the liquid, in the case of PTPE. Despite the expected scatter, a.
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trend towards higher current ratios with the PTFE tube can be discerned

in the data. This is the basis for the authors' claim of satisfactory

confirmation of the theory which predicts an increase in the ratio

I~(L,)/Is(,-), that is, the ratio of the total axial current in the

liquid at the outlet to the convection current at the inlet, with

decreasing tube conductivity. The authors also performed full scale ex-

Deriments with aviation kerosene flowing through rubber hoses, but found

it necessary to adjust the measured conductivity by a multiplicative

factor of 0.08 to make results conform to the theory.

The prediction of a higher value of the ratio (L,w)/Is(0,w) with the

PTFE tube is easily explained. In the steady state, Eq. 2.4 requires

the axial conduction current to be distributed to render the net axial

current at z = L the same as that at z = 0. Then because the convection

component decreases with z in accordance with the first term on the

right in Eq. 2.23, the conduction component will tend to supplement

convection at z = L and oppose it at z = 0. With the copper tube, the

conduction component is excluded from the liquid, and hence I(L,w)

reflects only the convection component. With the PTFE tube, the net

axial current is carried entirely by the liquid, and now I,(L,0) is

larger in magnitude because it includes the conduction component. The

authors obscure this explanation by labeling the ratio in question the

"fraction of charge unrelaxed." In a review article, Gibson (32)

perpetuates the misnomer by asserting that insulating tubes constitute a

greater hazard for receiving vessels further downstream because the

higher ratio implies a "decrease in charge relaxation." What they failed

to recognize is that the ratio is higher by virtue of a conduction

current, not an increase in the effluent convection current.

That the data didn't reveal more clearly a higher ratio with the PTFE

tube is likely due to a combination of two factors. First, is the

possibility discussed earlier that a portion of the conduction current

attributed to the liquid is diverted from the effluent stream by the

electrode that constrains the potential at z = L. Second, is an
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indication from their measurements of the potential along the PTFE tube

that the steady state modeled by the theory had never developed. They

found that discharges prevented the potential measured at the midpoint

of the tube from exceeding roughly 2.5% of that predicted by their

modification of Rutgers' theory. If these discharges contributed to the

leakage process, the observed steady currents were not the result of the

balance between axial convection and conduction that underlies the

theory.

2.3.3 Transient

Keller and Hoelscher confine attention to such early times that only the

convection current is revealed, while the steady state theory of Rutgers

et al can only apply after long enough times that conduction and convec-

tion are already in balance. Bridging the temporal gap between these

extremes is the transient where conduction is important, though not yet

sufficient to offset the rate of increase of surface charge. Both Gibson

(32) and Gibbings and Saluja (33) explicitly consider the transient,

though neither do so in a satisfactory way.

In unpublished work summarized in (32), Gibson and co-workers investi-

gate the effects induced by kerosene flowing through a polyethylene tube

that directly connects a conducting reservoir and receiver. The effluent

current and the surface charge density on the tube for two typical runs

are shown in Fig. 2.8. Gibson does not report the influent current, nor

does he indicated where the surface charge density is measured, what the

external conductor configuration is, or whether the reservoir is

grounded.

Gibson offers the following interpretation of the results in Fig. 2.8a.

For the low conductivity liquid, the "charge that separates to the pipe

surface cannot migrate quickly along the pipe and its presence impedes

the progress of further charge separation." While for the high conduc-

tivity liquid, "the layer of conducting liquid adjacent to the pipe wall
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may be considered to provide a leakage path to earth and so reduce

charge accumulation at the liquid-solid interface." Be then suggests

that the results in Fig. 2.8b "confirm this general picture," noting in

particular the more rapid decay of charge in the high conductivity li-

quid after the flow has ceased, but ignoring the fact that for the same

liquid under flow conditions the linear increase of charge with time

contradicts his account of the constant effluent current.

In fact, it is readily shown that Gibson's interpretation has no basis

in the data as presented. A charge conservation statement written for a

surface that encloses the entire tube is

I(0,t) = (2aL) + I(L,t) (2.24)

where is the charge per unit inside surface area of the tube averaged

over that area. If the surface charge density reported in Fig. 2.8b

approximates this averaged value, then the right side of Eq. 2.24 is

fully specified by the given data. For the high conductivity liquid

Eq. 2.24 yields

I(O,t) 4.3 x 1 - 10

For the low conductivity liquid, the given curves are regarded as expo-

nential with time constant 3 (sec), and thus

i(0,t) (2.5 x 10-1l) + (32.0 x 10 1 0)exp(-t/)

Because the estimated influent currents are in each case apparently com-

parable to the effluent currents in Fig. 2.8a, it is inconceivable that

the latter can be explained without reference to the former..Even if the

signs of the quantities on the right in Eq. 2.24 are misrepresented by



56

Fig. 2.8 this conclusion stands, because for both runs the magnitude of

the effluent current exceeds that of the rate of change of the net

charge by at least 50%, again indicating significant influent currents.

The entries in Table 2.2 are based on the maximum liquid velocity

(10 m/s) possible with Gibson's apparatus. If the given data was

obtained at this velocity, then an additional factor behind the qualita-

tive differences in the runs with the high and low conductivity liquids

may have been their correspondence to Figs. 2.3a and 2.3b, respectively.

Gibbings and Saluja performed experiments on apparatus similar to that

of Gibson, and present a quantitative theory for the transients in the

effluent current and in the surface charge density. In the experiments,

undoped kerosene was withdrawn from a stainless steel reservoir by a

straight section of PTFE tube and conveyed to a stainless steel receiver

into which the liquid flowed freely. The authors measured only the

effluent current and the potential in the liquid at the tube exit, the

former with an electrometer attached to the receiver, and the latter by

means of a probe inserted in the effluent stream. A monotonic decrease

with time of the effluent current was observed under both turbulent and

laminar flow conditions. In the former case, a plot of the logarithm of

the current against time suggested to the authors a piecewise linear

curve which they interpreted as a succession of exponential segments,

each implying a longer time constant than the preceding segment. On this

basis they extrapolated the ultimate current to zero. In the laminar

case, following an erratic transient, the effluent current abruptly

settled to a finite asymptote within one hour.

The authors do not state whether the reservoir was grounded. Nor do they

attempt to measure either the influent current or the accumulating

charge, and thus the comment on Gibson's work applies here as well: the

effluent current alone is insufficient basis for a comparison with

theory. Nevertheless, it is instructive to outline the theory because it

differs on a fundamental level from the picture introduced in Secs. 1.2

and 1.3 above, and detailed below in Chapters 3 and 5.
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Gibbings and Saluja's theory attributes a rate of change of the surface

charge density at the inner surface of the tube wall to a competition

between "charging" and "rejection" components of the radial current

density. The charging component is an adaptation of the initial normal

current at a wall bounding a weakly ionized gas, which arises because

the mean electron velocity exceeds that of the positive ions (34). For a

binary electrolyte, this component acquires the form (5)

3zRT2 (2.25)
ch - 4i (ctb+ - c_b_j

where R, T, and i are respectively the gas constant, absolute tempera-

ture, and ionic mean free path, while c are the molar concentrations of

the two ionic species with valencies ±z i and mobilities b. The rejec-

tion component is proportional to the product of the liquid conductiv-

ity and the local surface charge density d

Jrej -- ko - k kziF(c+b+ + cb_) (2.26)

where F is Faraday's constant and k is a "positive coefficient express-

ing the radial component of the field at the wall resulting from the

surface charge deposited on the wall per unit area." Neglecting conduc-

tion through the wall or along the liquid-solid interface, conservation

of surface charge is expressed by

at (az t ) = Jch + re (2.27)

"To simplify the discussion," the authors "consider only ions of one

negative valency adjacent to the wall," and apply Eqs. 2.25 and 2.26

with c+ set to zero. In addition, c_ is approximated as independent of

both time and position along the tube, so that subject to the initial

condition of vanishing surface charge Eq. 2.27 has a solution
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a(z,t) = t(3 - exp(t)) ; % (-Zic_b_kF) (2.28)

and

Jr(a,z,t) = (-zic-b-) RTIjexp(ot) (2.29)

that is independent of z. Finally, the influent current is assumed to

remain zero, and thus the effluent current follows from Eqs. 2.24, 2.27

and 2.29 as

I(L,t) = I(L,0)exp(at) ; I(L,O) = (2raL)(zic b_) RT (2.30)

To argue that this result supports their interpretation of the decaying

effluent current in turbulent flow as a succession of exponential seg-

ments, the authors restate a hypothesis from an earlier publication

(36): ions of several different valencies are present, and these

deposit on the wall in batches, with ions of higher valency deposited

first. The progressively longer time constants of successive segments

are then accounted for by the dependence of 1/a (Eq. 2.28) on the

reciprocal of the valence. Objections to this hypothesis and to the

description of the data as a succession of exponential curves are raised

in the discussion following (36).

Of immediate concern is whether the theory captures the physics of the

charging process. Two obvious difficulties are perhaps more issues of

presentation than substance. First, is the clear inconsistency in

neglecting positive ions while assuming that the influent current

vanishes. Second, there is nothing apparent in the theory that restricts

it to turbulent flow, yet it cannot account for the finite asymptote of

the effluent current observed in laminar flow. The authors recognized

that the finite asymptote implies a leakage process, but they did not

incorporate one in the theory. Nor did the finite asymptote lead them to

question whether the influent current was actually negligible.
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But two more substantive criticisms reveal the essential inadequacy of

the theory. First, the postulated rejection current arises from a radial

electric field that is proportional to the local surface charge density

and independent of the local volume charge density. That Gauss' law is

generally violated is seen by writing its integral form for the surface

S2 in FPig. 2.2

Er(az) = - z ; = iF(c - c_) (2.31)

which relates the radial field at the interface to both the local volume

charge and the axial field which arises from distributed sources,

including those on external conductors. Second, because the charging

current density of Eq. 2.25 is generally finite even when the net volume

charge vanishes, the postulated transient can be initiated simply by

filling the tube with stationary liquid, and can proceed to completion

before the flow commences. If the theory is to imply that coLmnencement

of the flow will initiate a new transient, then the ion concentrations

(c±) in the influent liquid must differ from those in the stationary

liquid. Because there is nothing in the theory to relate these concen-

trations to flow conditions, it fails to account for the characteristic

feature of observed electrification phenomena, namely, their initiation

by the flow.

2.3.4 Flow-Induced Failure

Both Shafer et al (31) and Mason and Rees (37) identified experimental

conditions that produced pin-hole failures in insulating tubes, as well

as conditions under which the responsible discharges could be suppressed

or rendered less energetic.

Mason and Rees measured the charge transferred by discharges between the

surface of a high density polyethylene tube with an outer diameter of 63

mm and a movable grounded brass sphere of 28 mm diameter. The discharges

were induced by circulating kerosene around a closed loop with a filter
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and filter bypass line just upstream of the polyethylene tube, and a

relaxation tank just downstream to avoid recirculating charge. A pump

situated upstream of the filter was thought to contribute negligible

charge to the flow. The 15 foot length of tube was supported at regular

intervals by a frame made of the tube material, and was arranged, ac-

cording to the authors' schematic, in a zig-zag pattern. Liquid conduc-

tivity was controlled by clay filtering and an unspecified antistatic

agent over the range indicated in Table 2.2.

A field mill howed that the potential at the tube surface increased

with time following commencement of the flow and reached a steady state

after about ten minutes. In this state equal currents were drawn from

ground by the filter and returned to ground by the relaxation tank,

consistent with Eq. 2.24 if these currents represent respectively the

influent and effluent currents in the tube. A bulk charge relaxation

time of the tube wall of about twenty seconds, based on the wall

conductivity reported by the authors, suggests that accumulated charge

resided on the outer surface of the tube. The steady state potential

distribution was nonuniform with sign reversals about the tube cir-

cumference and along the axis, perhaps due partly to the uncontrolled

arrangement of external conductors and partly to undetected discharges

during the transient.

In this steady state, discharges of both signs were induced by the ap-

Droach of the brass sphere with its radius of curvature just under half

that of the outer tube surface. The charge transferred between the tube

surface and the sphere was insensitive to their spacing in the range of

0.7 to 7.0 sphere diameters. At the lowest liquid conductivities

(~2 pS/m) discharges were energetic enough to puncture the tube wall,

permitting the escape of liquid. With the objective of identifying

conditions that would limit the tranferred charge below the threshold of

75.0 nC which the authors considered incendive, they investigated the

influence of liquid conductivity, conductive coatings on the outer tube

surface, and the spacing of grounded tube supports.
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Their finding that the transferred charge decreased linearly with in-

creasing liquid conductivity, does not have a clear-cut interpretation.

While enough information is provided to show that the tube wall contrib-

uted a larger resistance per unit axial length than the liquid so that

the latter controlled the leakage process, the effects of liquid conduc-

tivity on charge separation in the upstream filter were not reported.

The application of a conductive coating to the outer surface of the tube

was found to increase or decrease the transferred charge, respectively,

if the coating was isolated or continuous. In the former case, the

coating creates "hotspots" by shorting out the local axial conduction

current. In the latter, the resistance per unit length attributable to

the coating undercuts that of the tube wall and liquid, thus enhancing

the leakage process. The linear decrease of transferred charge with

decreasing spacing of (and hence increasing number of) grounded tube

supports is at least qualitatively consistent with the notion that the

steady state stress is reduced by enhancing the leakage process.

Based on these findings the authors offer specific recommendations, but

caution that they apply only to their specific experimental configura-

tion. Perhaps the most significant observation was the pin-hole puncture

produced in a tube wall having a short enough bulk charge relaxation

time that the discharge may have been initiated at the outer surface of

the tube. This would suggest that to avoid insulation failure it is not

enough to relieve the stress within the wall.

Shafer et al provide a vivid description of pin-hole failures induced in

plain tetrafluoroethylene (TFE) tubes by the flow of a white hydrocarbon

naptha. With a liquid conductivity of 165 pS/m and a hydrodynamic

Reynolds number of 45,000 a visible discharge appeared within about 4

minutes of the start of the flow that left multiple pin-hole punctures

through which the liquid could seep. These pin holes became enlarged if

the flow continued, or the phenomenon could be reproduced if a fresh

tube was used. In contrast to the later study of Mason and Rees, the

bulk charge relaxation time of the tube wall far exceeded the duration
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of the experiment. Inspection of the inner surface of the tube revealed

"paths" branching out from each pin hole and covering practically the

entire surface, suggesting that the discharge originated at the inner

surface and engaged essentially all of the accumulated surface charge.

The significance of the Reynolds number and liquid conductivity were

determined in preliminary experiments that related the charge generated

in a paper filter just upstream of the tube to flow rate and additive

type and concentration. The authors observed "bell" curves similar to

those shown in Fig. 2.5 for the streaming current, and noted that the

currents generated by the filter easily exceeded those generated by the

insulating tube alone. They also found that the results of a "charging

tendency" test (like that mentioned in Sec. 1.1 above, but with a steel

capillary in place of the filter) bore no relation to the charge gener-

ating behavior of their filter in situ, confirming that such tests do

not reflect an intrinsic property of the liquid-additive combination.

In a second set of experiments, with essentially the same arrangement as

that of Carruthers and Marsh shown in Fig. 2.7, Shafer et al measured

the maximum steady state potential developed along the tube under vari-

ous flow conditions. Unlike Carruthers and Marsh, however, Shafer et al

achieved a steady state without discharges by using TFE tubes with inner

liners rendered sufficiently conducting by carbon particles to provide

the dominant axial conduction path. Thus, the leakage process is con-

trolled independently of the liquid conductivity, but because of the

nonlinear current-voltage characteristics of the liners, their effective

conductance varies with each run. Despite this complication the results

support the view of the steady state as the result of a balance between

charge generation and leakage by showing that the steady state potential

increases with the former and decreases with the latter. Note that in

contrast to the outer coatings used by Mason and Rees, the inner liners

always enhance leakage regardless of the conductivity of the wall bulk.
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A third set of experiments, also with the apparatus in Fig. 2.7, was

intended to measure the ratio of the effluent to influent convection

currents under conditions where the entrained charge originates entirely

upstream of the tube. The authors' implicit assumption that the effluent

current 13 was entirely convective was likely based on the expectation

that the large conductance of the tube liner would preclude a signifi-

cant conduction component in the liquid. The effluent current was not

measured directly, but rather inferred from the difference between the

influent current I1 and the current 12 drawn from the tubular electrodes

at each end of the test section which presumably made contact with the

inner liner. There is no mention of a transient in the measured cur-

rents, probably because the large conductance of the liner rendered 1

(see Sec. 2.1 above) sufficiently short.

Shafer et al obtained a satisfactory correlation between these results

and the model represented by the first term on the right in Eq. 2.23a.

For the measured ratio

I2 Il - I3 I3

11 Il I

that model predicts

Is(L) ¢~/bl
1 - 1 - exp(-l/Re) ; Re (2.32)

The conditions under which this represents a limit of the more rigorous

steady state theory of Abedian and Sonin are discussed in Sec. 2.3.2

above. In view of Fig. 2.3, the entry in the last column of Table 2.2

indicates that the identification u U made by the authors is valid

only over part of the experimental range of flow rate and liquid con-

ductivity, with u U over the remainder. This may help explain their

finding that Eq. 2.32 tends to slightly underestimate the measured ratio

(I2/I1), a tendency which the authors tentatively attributed to ambigu-.



64

ous dc liquid conductivity measurements in which steady applied voltages

did not yield steady currents.

2.3.5 Summary

Perhaps more unfortunate than the paucity of work addressed to the flow-

induced failure of insulating tubes are the limited perspectives that

characterize the existing work. The experiments reviewed above typically

measure "terminal" currents from which the net charge on an insulating

tube may be inferred, but they fail to capture the distributed character

of the phenomena. Nor do the previous models reflect the interplay among

the four basic processes outlined in Sec. 1.2. For example, Rutgers et

al decouple the radial diffusion current at the tube wall from flow

conditions (Sec. 2.3.2), while the transient postulated by Gibbings and

Saluja may proceed to completion even before the flow commences (Sec.

2.3.3). The need remains for controlled experiments that support a self-

consistent account of the space-time evolution of the flow-induced elec-

trical stress within the insulating tube wall.

On the positive side, two results from the previous work are germane-be-

cause they are suggestive of the practical value of the model introduced

in the next chapter. That model attributes the charge accumulating on

the insulating tube wall exclusively to sources upstream of the tube,

and regards the radial current density at the wall as being dominated by

migration. The first germane result addresses an issue raised in connec-

tion with Eq. 2.18: in each experiment that produced discharges, includ-

ing those of Carruthers and Marsh, Mason and Rees, and Shafer et al, an

essential element was an upstream charge generator, typically a filter.

The second such result, the reasonable correlation secured by Shafer et

al with Eq. 2.32, encourages the expectation that practical situations

exist that are adequately represented by a model that neglects the dif-

fusion component in the radial current density.
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Chapter 3

FLOW-INDUCED CHARGING OF THIN INSULATING TUBES:
MIGRATION LIMIT

3.1 Introduction

The limiting condition that underlies the model of this chapter for the

flow-induced electric field generation in the insulating tube is one

that would naturally be introduced for the sake of simplicity, yet it

proves a satisfactory representation for a range of practical condi-

tions. Without prior justification, the normal current density in the

liquid at the liquid-tube interface that accounts for a rate of increase

of surface charge is regarded as due entirely to ion migration. In this

limit the insulating tube is no more than a passive charge collecting

surface, in that no surface charge accumulates unless an upstream flow

element supplies a net charge to the flow. It is when this limit applies

that flow-induced electrical stresses will be reduced by insertion of a

"charge trap" in the flow immediately upstream of the insulating tube;

Chapter 4 outlines the conditions under which an expansion volume will

be effective as a trap. The normal diffusion current that generally com-

petes with ion migration is accounted for in Chapter 5, leading to clar-

ification of the conditions under which the latter is actually dominant.

Section 3.2 addresses the question: given the total axial current in the

liquid at the entrance to the insulating tube, what is the space-time

evolution of the electrical stress within the tube wall. Conditions on

the liquid conductivity (the Debye length) and the hydrodynamic Reynolds

number (the diffusion sublayer thickness) are such that most of the con-

vection current is carried in the core of the turbulent flow. The condi-

tion on the conductivity also renders the electrical transient initiated

by the flow long enough (see Sec. 2.1 above) that it dominates the ex-

perimental observations. Thus, to help interpret experiments the model

must retain time rates of change of electrical quantities. Analysis of

the temporal transient also highlights the essential role of the exter-
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nal conductor configuration, which supports image charges that contri-

bute to the generated field. While the steady state potential distribu-

tion along the tube (but not the radial electric field in the wall) can

be determined independently of that configuration, the latter must be

specified at the outset to determine any transient quantity. Neverthe-

less, the steady state stress distribution is of interest because it

proves to be a convenient basis in Sec. 7.1.1 for deducing general

guidelines from the model.

In Sec. 3.3 two versions of the experiment are described, distinguished

by the external conductor configurations. The first configuration, pic-

tured in Fig. 3.1, is a close fitting coaxial sleeve that accentuates

the role of the radial electric field component in the liquid by elimi-

nating the axial component at the outer surface of the insulating tube

wall. The extreme aspect ratio of the tube is the justification for

neglecting the axial field at the inner surface of the wall as well. In

terms of the basic processes of Sec. 1.2, charge accumulation proceeds

unopposed by leakage; in terms of the characteristic times of Sec. 2.1,

establishment of a steady state is delayed well beyond the duration of

the experiment. The role of the small but finite axial field at the

inner surface of the wall is not recognized until this configuration is

taken up again in Chapter 5. The second configuration, pictured in Fig.

3.2, relaxes the constraint on the axial field and renders the leakage

process competitive with the accumulation process on a short enough time

scale that the approach of the steady state can be discerned experimen-

tally.

There is no pretense that either configuration represents, let alone

idealizes, any practical configuration, nor would that be desirable.

Moreover, while the model of Sec. 3.2 could in principle be applied to

other configurations, including those identifiable as practical ones, to

do so would contribute nothing to a clarification of the phenomena that

underlie the flow-induced field generation. Rather, the view is-taken

here that these phenomena are most profitably explored in the simplest
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possible context, and that once clarified, their implications for other

configurations will be clear.

3.2 Migration Model

What makes the specific external conductor configuration shown in Fig.

3.2 an ideal context for presenting the model is the relatively simple

mathematical description of the potential distribution in the external

region. The insulating tube lies on the axis of a cylindrical conducting

annulus, and extends between conducting caps that truncate the annulus.

Upstream of the insulating tube, a potential-constrained metallic sec-

tion generates the convection current that drives the charging process.

A similar section downstream collects the liquid as well as part of the

leakage current driven by the rising potential of the insulating tube.

The objective is to predict the temporal and spatial evolution of both

the charge distribution along the insulating tube and the electric field

within the tube wall. Fields at the inner surface of the external con-

ductor are more conveniently measured than those that stress the insula-

tion, so expressions for the former are sought as well. Two dependent

variables are needed to specify the charge distribution, and natural

choices are the volume and surface charge densities. It proves conven-

ient, however, to eliminate the latter in favor of a new variable, an

effective line charge density representing the total charge per unit

length of tube, with contributions from both the volume and surface

charge densities. After the assumptions are clarified, a pair of coupled

partial differential equations expressing conservation of the volume and

line charge densities is identified (Sec. 3.2.2). The axial electric

field component within the tube (Ez in Fig. 3.3) enters these equations

as a third dependent variable. The additional relation called for comes

from solving Laplace's equation for the potential distribution in the

external region andsexpresses the field in terms of the line charge den-

sity (Sec. 3.2.3). When the influent convection current can be regarded
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as imposed, an analytical solution of these equations is available for

the transient electrical quantities (Sec. 3.2.5). Numerical treatment is

required if that current varies on a time scale comparable to that of

the charging transient, perhaps through its dependence on the generated

field.

3.2.1 Assumptions

[a] The flow is turbulent and fully developed. Fully turbulent flow

occurs for hydrodynamic Reynolds numbers in the approximate range

Ry 2aU > 4000 (3.1)

Here a, U and v are respectively the tube inside radius, the mean liquid

velocity, and the kinematic viscosity. Hydrodynamic conditions become

independent of position along the tube axis beyond a development length

of the order of 100 tube radii. Thus, either the length of the tube

under study greatly exceeds this length, or a metal entrance section of

the same inside diameter, and of sufficient length to complete the de-

velopment, lies just upstream of the insulating tube.

[bJ The Debye length exceeds the diffusion sublayer thickness,

X4 >> 8 (3.2)

For the high Schmidt numbers typical of liquids of interest (see Table

2.1) there is a thin layer near the phase boundary of thickness (22)

8 (118 RY-7/8 Sc-1/3)a (3.3)

within which the turbulent fluctuations are diminished so that molecular

diffusion outweighs the turbulent contribution to mass transfer. :The
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Debye length (Eq. 2.9) characterizes the width of the region near the

wall within which, by virtue of a balance between conduction and dif-

fusion, the net volume charge would remain if the flow were laminar

throughout. As a consequence of Eq. 3.2, the entrained volume charge is

not confined to the Debye layer but extends into the core of the flow

where its distribution is influenced by the eddy diffusivity (Fig.

2.3b). It is perhaps tempting to relax the inequality of Eq. 3.2 by

arguing that the field (E E ~/Xm) internal to the "laminar" double layer

is weak enough that the generated fields will disrupt the layer and

eject the diffuse charge into the core of the flow. However, the same

condition on the liquid conductivity that renders the internal fields

weak also strengthens the inequality of Eq. 3.2. Moreover, the transient

described by the model includes the initial portion where the generated

fields are not yet significant, and thus the inequality in question must

be retained.

[c] Most of the convection current is carried in the core of the flow

where the mean liquid velocity is essentially the superficial velocity:

na2p(z,t) >> 2naSp(a,z) (3.4)

Here, p is the volume charge density averaged over the core of the flow

(0 < r < a-8) and p(a,z) is the volume charge density at the liquid-

solid interface that typifies the density within the diffusion sublayer.

As discussed in (22) this inequality is consistent with Eq. 3.2, and

facilitates an integral approach in the description of the volume charge

distribution along the axis of the tube.

[d] The migration component of the radial current density within the

diffusion sublayer completely dominates the diffusion component. Condi-

tions that justify this assumption are outlined in Sec. 5.5.2. In view

of the large Peclet number (LU/De) axial diffusion is neglected as well.
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[e] Departures of ionic concentrations from their respective values in

an undisturbed solution remain small compared with those values. Thus,

the liquid conductivity o1 is essentially uniform and remains close to

its value %O where the net volume charge density vanishes. This condi-

tion appears to breakdown at the liquid-solid interface where if Jr(a,z)

<< J, Eqs. 2.10 and 2.12 suggest that the net charge density ((a,z) 

Pw) is of the order of the individual densities (+ c/b). However, as

discussed below in Sec. 6.3.2 chemical equilibrium can be expected to

prevail within the diffusion sublayer, and now Eqs. A.11 and 2.12 yield

an approximate value for the bulk conductivity at the interface

0, (a,z) = o1 + (Pwb/%) 2 = 1.4% (3.5)

that is still close to the assumed value.

[f] The bulk charge relaxation time (w s w/ow) of the tube wall is

long compared with the time that characterizes the charging transient

(Tl of Sec. 2.1). As a consequence charge precipitated from the flow is

stored at the liquid-solid interface as a surface density () that can

be reduced only by conduction through the liquid and perhaps along the

interface. This condition is relaxed in Sec. 5.3.

[g] The gas that surrounds the insulating tube is perfectly insulating

on the time scale of interest (1 of Sec. 2.1). Coupled with assumption

[f], this implies that there is no net charge anywhere other than in the

liquid bulk, at the liquid-solid interface, and on the external conduc-

tors.

[h] The axial electric field is essentially uniform over the tube cross

section. This presumes that the local axial field arises primarily from

distant sources (image charges on external conductors) distributed over

length scales large compared to the tube radius, while the local volume

and surface charge densities make no signficant net contribution.
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[i] The influent convection current Is(0,t) varies slowly on the scale

of the liquid residence time (L/U) in the tube. While probably of gen-

eral validity, this assumption is certainly appropriate if variations in

Is(0,t) relate to the rising potential of the insulating tube relative

to the grounded upstream section that generates the convection current.

The time scale for variation of the potential is 1 which, by the defi-

nition in Sec. 2.1 of an insulating system, is much greater than L/U.

3.2.2 Conservation Laws

Conservation of volume charge is expressed by Eq. A.9 specialized to

reflect the assumptions of the previous section. Assumptions d] and [e]

justify neglect of both the diffusion term and the term containing the

gradient of the liquid conductivity. Integrating the remainder of Eq.

A.9 over the tube cross section yields

~a _ ·, Uaa ; Q _B (3.6)

where assumption [c] allows the simple form of the convection term. To

complete the specification of the charge distribution along the tube, an

effective line charge density

X(z,t) - a2p(z,t) + 2na;(z,t) (3.7)

is introduced instead of the surface charge density () at the inside

surface of the tube. This choice leads most directly to evaluation of

the axial electric field, and to application of the boundary condition

at the tube entrance when (0,t) is unknown (see Sec. 3.2.5, case C).

Conservation of line charge is expressed by

a=x~ 1_a _(3.8a)
8t az
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where the net axial current

I(z,t) - a2(U~ + 0eEz(a,z,t)] ; e (6 + (2s/a))' -(3.8b)

includes conduction and convection in the liquid volume, and conduction

along the inside surface of the tube via a uniform surface conductivity

Cs , but excludes conduction within the tube wall (assumption f]).

Assumption hi allows the simple form of the conduction term and the

definition of an effective axial conductivity e. Equation 3.8 simply

recognizes that no current flows across the curved part of the surface

S2 in Fig. 3.4 which lies within the perfectly insulating gas.

With p(0,t) slowly varying on the scale of the liquid residence time

(assumption [i]), the temporal derivative in Eq. 3.6 is small compared

with the convection term and Eq. 3.6 can be integrated immediately:

P(z,t) = (0,t)exp(-z/taU) (3.9)

This is substituted into Eq. 3.8 to yield

8_x 8gzE, na2P(B
ax + (na2e) afz(azt) na P(0.t] exp(-z/ U) (3.10)
at+ (a 2 e)-z(a'zt) = 

That Eq. 3.10 is written with the "excitation" on the right and the "re-

sponse" terms on the left is made clear in the next section where the

local axial field is shown to be a linear integral function of the line

charge density. This inhomogenous equation is the starting point for the

analyses in the remaining sections. In Sec. 3.2.4 surface charge relax-

ation is treated by setting p(9,t) = 0. In Sec. 3.2.5, Eq. 3.10 is

applied to describe the charging transient for the capped cylinder con-

figuration (Fig. 3.2), and then specialized to the sleeve configuration

(Fig. 3.1) by setting Ez(a,z,t) = 0. Finally, the steady state governed

by Eq. 3.10 with ax/at = is discussed in Sec. 3.2.6.
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3.2.3 External Fields

To complete the description of the model, Eq. 3.10 must be supplemented

by a relation between X(z,t) and Ez(a,z,t), and this comes from solution

of Laplace's equation,

v2 = ; = (r,z,t) (3.11)

for the potential in the region outside the insulating tube. Gauss'

law applied to a cylindrical volume of differential axial extent and co-

incident with the outer surface of the tube (S2 in Fig. 3.4) yields

2na(Az)EE r + na2 c (Ez) = XAz (3.12)

where c o and 9, are the permittivities of the free space region sur-

rounding the tube and of the liquid, respectively. The simple form of

the axial field term is allowed by assumption h]. Neither the thickness

nor the permittivity of tube wall appear in Eq. 3.12 because the former

is regarded as small compared with the inner diameter (a). The electric

field satifies the electro-quasistatic limit of Faraday's law if it is

the negative gradient of the potential:

E (rzt) 0= at ; E°(r,z,t) (3.13a,b)W zi rth = -xial r ar

With the axial field continuous at the tube-gas interface, the field

components in Eq. 3.12 are just those of Eq. 3.13 evaluated at r = a.

Combining these two equations, and taking the limit of z 4 0, yields

the boundary condition on the potential at the outer surface of the in-

sulating tube

(Wa) + 2[iQ z _ _2 2 ; r = a (3.14)
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with additional boundary conditions on the potential being imposed by

the external conductors. For the specific configuration shown in Fig.

3.4, the additional boundary conditions on the potential are

O(r,,t) = 0 ; O(r,L,t) = 0 ; O(R,z,t) = 0

The complete set of solutions to Laplace's equation satisfying Eq. 3.15

is the series

(r,z,t) = E n(t)Bn(R,r)sin(knz)
n

k = n.
n L

(3.16)

where

Bn( ,8) (I0(kn)K 0(knB) - I0 (kn)K(kna) )
(3.17)

and In and Kn are the nth order modified Bessel functions of the first

and second kinds, respectively. Application of the boundary condition

Eq. 3.14 is facilitated by expressing the line charge density as a

Fourier series:

X(z,t) = Xkn(t)sin(knz)
n

where

Xn(t) (2/L)jX(z,t)sin(knz)dz

Now, substituting Eqs. 3.16 and 3.18a into Eq. 3.14 yields a relation

among Fourier coefficients

Xn(,) 
On(t) = 2akn(a/2)knBn(R,a) + oCn(R,a)1

(3.19)

where

(3.15)

(3.18a)

(3.18b)



77

Cn(,8) _(Ig0(knc)Kl(knS) + I(knB)K(kn) ]) (3.20)

Field components in the external region are expressed in terms of these

coefficients by substituting Eq. 3.16 into Eqs. 3.13:

Ez(r,z,t) =- E n(t)knBn(R,r)cos(knz) (3.21)
n

and

E (rzt) = + n(t)knCn(Rr)sin(knz) (3.22)
n

With no surface charge density at the outer surface of the insulating

wall (assumption [g]), an expression for the radial electric field with-

in the wall (Pig. 3.3) follows from Gauss' law as

E (z,t) = E0 (a,z,t) (3.23)
r S. r

The desired relation between X(z,t) and Ez(a,z,t) is given by Eq. 3.21

(evaluated at r = a) with Eqs. 3.19 and 3.18b substituted.

3.2.4 Surface Charqe Relaxation

Unlike the bulk conductivity, the surface conductivity is not readily

determined with confidence in advance. However, this parameter can be

deduced from observation of the surface charge relaxation that follows

interruption of the flow. When the flow, and hence the convection

current at the tube inlet, is interrupted the residual volume charge

relaxes to the liquid-solid interface within a few bulk relaxation times

(c/aQ), leaving only surface charge within the tube. Thus, the ensuing

surface charge relaxation is governed by Eq. 3.10 with P(0,t) 0:

at X (naie) az= i (3.24)8~ +(a2% =;
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An explicit statement of surface charge conservation attributes a rate

of change of surface charge to a divergence of the surface current and a

bulk conduction current normal to the interface. To represent the latter

contribution would require the introduction of a Laplacian potential

0i(r,z,t) = E (t)Ig(knr)sin(knz)

for the charge-free region inside the tube. In terms of this potential,

and that given by Eq. 3.16 for the external region, surface charge con-

servation is expressed by

at -(Co)a + ( = + ( i

To deduce the relaxation times of the spatial modes, a second relation

between the Fourier coefficients n and 0n would be obtained from the

requirement that the potential be continuous, (a,z,t) = i(a,z,t).

The purpose of this footnote is to show that Eq. 3.24 is consistent with

the explicit treatment. The left side of the conservation statement is

equivalent to (1/2na)(a/at), and it is in the same limit (kna < 1)

that renders the axial field uniform over the tube cross section (as-

sumption [h]) that the right side reduces to

( 2 BE 3E

-(V r + (°s) t - + s) -= z

as can be seen by substituting the series expression for 0i, taking the

indicated limit and making use of Faraday's law Eq. 3.13a. That the

condition on ka fails for large enough n is unimportant because the

amplitudes of these higher order modes are strongly attenuated.

_ __ __

_ _ _ _
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The generality of Eq. 3.24 could be emphasized by using Eqs. 3.13a and

3.14 to eliminate the axial field and the line charge density, giving a

boundary condition on the potential in the external region that applies

regardless of the external conductor configuration. This boundary con-

dition could then be applied to the specific form Eq. 3.16 to determine

the surface charge relaxation times (38). However, with a specific con-

figuration in mind at the outset it is more direct to insert Eqs. 3.18a,

3.19, and 3.21 in Eq. 3.24, which yields the homogeneous differential

equation for each Fourier coefficient:

dXn nxn

dt + n ; kn(t) = n(O)exp(t/Tn) (3.25a,b)

where

e + CFn(R,a)
Zn = o + (2Os/a) (3.26)

and

Pn(,S)2= aknBn(,8) (3.27)

The external configuration evidently plays an essential role in con-

trolling the charge relaxation process, reflecting the fact that while

dissipative processes are confined to within the tube, energy storage is

primarily in the free-space region outside the tube. The more general

result given by Eq. 2.1 is obtained if axial conduction within the bulk

of the tube wall is included in Eq. 3.8b.

All field quantities are expressible in terms of the same set of Fourier

coefficients, and hence they decay with same relaxation times. Because

Tn proves to be a decreasing function of n, the relaxation time for the

fundamental spatial mode, x1, can be determined from relaxation data if

the initial portion ( < t < 2T2) is excluded. Thus, 1 can be deter-

mined from fields measured at the surface of the conducting enclosure,

and as follows from Eq. 3.26 as
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c + eoFl(R,a) a
Us (2Tl/a) V- I (3.28)

The surface conductivity appears only in Eqs. 3.8 and 3.26, which indi-

cate that it must be of the order of (aod/2) to be significant.

3.2.5 Charging Transient

The system of equations to be solved is Eqs. 3.10 and 3.21 (supplemen-

ted by Eqs. 3.18 and 3.19). If the influent convection current Q(0,t)

can be regarded as imposed, then an analytical solution is available,

though not in closed form. To illustrate this solution for the two ex-

perimental external conductor configurations, both cases A and B below

regard the charge density at the inlet p(0,t) as slowly varying over the

duration ex of the experiment. Case C allows for an effect of the

generated fields on the influent convection current by allowing an

arbitrary temporal variation of p(0,t), which necessitates a numerical

treatment.

A. Capped Cylinder and Imposed Influent Convection Current: While p(0,t)

varies slowly on the scale of Tex, the latter is presumed long enough

compared with 1 that the entire transient is of interest. The homogene-

ous solution to Eq. 3.10 is given by Eqs. 3.18a and 3.25b. The particu-

lar solution can be expressed as an exponential function, but to facili-

tate application of the initial condition, the right side of Eq. 3.10 is

represented as a Fourier series of the same form as the homogeneous

solution:

exp(-z/d) = E ensin(knz) (3.29)
n

where

en = (] ( 1 (d 3L; 2 n odd (3.30)
1 + (L/nid)2

and en = 0 for n even. The characteristic length d - U. Substituting
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Eqs. 3.18a, 3.19, 3.21 and 3.29 into Eq. 3.10 yields

dXn + n...nn= a2P.t)n (3.31)
dt + n en

where the rn are given by Eq. 3.26. With the right side of Eq. 3.31

essentially constant on the scale of the longest time constant ( 1 ), and

subject to the initial condition of X(z,0) = 0, the complete solution to

Eq. 3.31 is

Xn(t) = aP(t) ( - exp(-t/¶n))nen (3.32)

Finally, the field components are obtained from Eqs. 3.19, 3.21 and 3.22

with Eq. 3.32 substituted. These can be evaluated at points on the ur-

face of the external conductor with appropriate values of (r,z), or

evaluated at (a,z) to apply Eq. 3.23 for the electrical stress within

the insulation. In retrospect, the assertion in Sec. 2.1 that the charg-

ing (Eq. 3.32) and relaxation (Eq. 3.25b) transients are characterized

by the same time constants holds only as long as the influent convection

current is stationary on the scale of 1.

B. Close Fittina Sleeve and Imposed Influent Convection Current! As in

case A, the influent convection current varies slowly on the scale of

Wex' However, the extreme aspect ratio of the tube and the proximity of

the equipotential surface (Fig. 3.1) render the time that now plays the

role of x1 (Sec. 5.3.3) long enough compared with ex that axial conduc-

tion remains negligible. Letting Ez * 0 in Eq. 3.10 yields

ax-= a t exp( - z/(3.33)

The assumption that (s,t) is independent of the generated fields is

perhaps more plausible here than in case A because the experiment ends
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before the axial field at the inlet becomes appreciable. In fact, this

assumption receives strong support from experiments with the sleeve con-

figuration reported in Secs. 3.3.2 and 6.2.

With the condition on (,t), Eq. 3.33 is immediately integrated with

respect to time to yield

X(z t) = t a2p(,t)exp(-z/i U) (3.34)
'r 9

The measured quantity in this case is the rate of change of the total

charge accumulated within the tube (Qt)' which is obtained by integra-

ting Eq. 3.33 over the length of the tube

d t

With Ez 0 the electrical stress within the insulating wall

E(z,t) = X(z.t) = t a(t) exp(-z/tU) (3.36)
,r 2nacw 2 2c.r j

follows immediately from Gauss' law and Eq. 3.34. The essentially linear

increase in electrical stress with time reflects the dominance of the

charge accumulation process over the leakage process for times short

compared with (the counterpart of) 1.

C. Capped Cylinder and Arbitrary Influent Convection Current: In Abedian

and Sonin's theory (Sec. 2.2) for the convection current in a conducting

tube, steady electrical conditions are assumed to prevail well away from

the ends of the tube. However, where the upstream conducting tube joins

to the entrance of the insulating tube, the rising potential of the lat-

ter produces an unsteady electric field that penetrates into the conduc-

ting tube a distance of the order of the tube diameter. It is for now an
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open question whether the unsteady field in the neighborhood of the out-

let of the conducting tube affects-the effluent convection current com-

municated to the insulating tube. Thus, it is essential to allow for

such an effect if tests of the model for processes in the insulating

tube are to be unambiguous.

As in case A the full transient is of interest ( 1 < ex) but now an ar-

bitrary time dependence of (0,t) is allowed to account for an effect on

the influent convection current of the generated electric field. Thus,

the upstream boundary condition is now expressed in terms of the meas-

ured influent current (which reflects both convection and conduction)

rather than the initially unknown (0,t). Since the generated field

varies essentially on the time scale of 1 it is reasonable to expect

that (0,t) does as well, and hence the latter still varies slowly

relative to the liquid residence time (assumption [i]). Thus, (z,t) is

still given by Eq. 3.9 so that Eq. 3.10 still holds. Now, however, Eq.

3.8b must be used to eliminate the unknown (0,t) in Eq. 3.31 in favor

of the experimentally accessible I(0,t):

dxn Xn I I(0,t) - na2aeEz(a,O,t) 
dx~ .r,~ -r2~U en (3.37)

where

co -'X(t)Bm(R'a)
Ez(a,,t) = Z (3.38)
~z (a0,t) =m {2a((eta/2)kmBm(R,a) + oCm(Ra)j

follows from Eqs. 3.19 and 3.21. As in case A only the odd spatial modes

are excited. To apply this result, the series Eq. 3.38 can be truncated

after k terms so that Eq. 3.37 represents a set of k coupled linear or-

dinary differential equations for the coefficients Xn to be integrated

numerically with the given I(0,t).
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3.2.6 Steady State Solution

The steady state results when axial conduction offsets the rate of in-

crease of surface charge due to the space charge field in the liquid.

Thus, there is no basis for a steady state solution for the sleeve con-

figuration because the corresponding axial electric field has not yet

been determined. That solution emerges from analysis of the same config-

uration in Sec. 5.3 where the small but finite axial electric field is

recognized. Here, attention is confined to the capped cylinder configu-

ration, and the steady state solution that is governed by Eq. 3.10 with

ax/at 0

(na2ae) a2 ( )]exp(-z/xU) (3.39)a2e)-z =I
Substituting Eqs. 3.21 and 3.29 into Eq. 3.39 yields the relation among

Fourier coefficients

enP(0,c)
n(0) = en2 (3.40)

dneT) Bn(Ra)kn

where en is given by Eq. 3.30. With Eq. 3.40 inserted in Eqs. 3.21 and

3.22 the steady state fields are expressed in terms of the average

volume charge density at the inlet. The latter can be expressed in terms

of the steady state influent current I(0,w) by recognizing that in the

steady state Eq. 3.8a requires the total axial current

I(z,.) I na2 (U (z,.) + eEz(a,z,)) = I(0,") (3.41)

to be independent of axial position. The integration constant I(,oo) is

resolved by substituting Eq. 3.9 into Eq. 3.41 and requiring that the

line integral of the axial field over the length of the tube vanish (in

view of the grounded terminations):
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p( = (1 - exp(-L/%U) (3.42)

The quantity in the large parentheses is evidently the fraction of the

net influent current carried by convection.

It is notable that if only the steady state potential distribution along

the tube is of interest, a closed form expression can be obtained with-

out specifying the external conductor configuration. Equations 3.9 and

3.42 are combined and the result is used to eliminate p(z,w) from Eq.

3.41, which then gives the explicit dependence of Ez(a,z,c) on z and

I(,m):

L/r U _______

EZ(a,z,) = 1 - 1 exp(-zL// U) ) I(g.3) (3.43)
1 - exp(-L/rU) na2ce

With respect to the grounded terminations, the potential (a,z,w) at any

point along ..e tube follows immediately from a line integral of Ez:

O(a,z,) = - Ez(a,z,)dz (3.44)

If now the radial electrical stress E(z,c) is desired, Laplace's equa-

tion for the potential (r,z,o) in the external region must be solved

subject to boundary conditions dictated by the specific external con-

ductor configuration and the known potential along the tube. Then the

stress follows from Eqs. 3.13b and 3.23.
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3.3 Experiments

Because the model of Sec. 3.2 is phrased in terms of known material pa-

rameters (with the exception of the surface conductivity) and simple

external configurations, support for the view of the charging process as

a competition between accumulation and leakage tendencies can come from

simple controlled experiments. Following an overview of the experimental

arrangement and materials, results for the configurations shown in Figs.

3.1 and 3.2 are summarized in Secs. 3.3.2 and 3.3.3, respectively.

3.3.1 Arrangement and Materials

The experimental facility shown in Fig. 3.5 is designed with three ob-

jectives in mind: to accommodate a range of experiments, including those

pictured in Figs. 3.1 and 3.2 as well as those reported in later chap-

ters, to ensure that all significant net charge and currents can be

accounted for, and to maintain the liquid conductivity. Immediately

upstream and downstream of the experimental section are stainless steel

tubes of the same diameter as the insulating tube and joined to the

latter by Teflon unions that provide a smooth hydrodynamic transition.

The upstream section serves to complete the development of the velocity

profile and to generate a convection current at the inlet to the insu-

lating tube. Under nitrogen gas pressure, liquid is forced out of the

reservoir at a velocity calculated from the measured rate of change of

liquid height in the glass level indicator. After the liquid inventory

is exhausted, liquid is returned to the reservoir through a separate

tube (not shown in Fig. 3.5) also under gas pressure.

The liquid comes into contact only with potential-constrained stainless

steel surfaces and the insulating tube under test. Observed rates of

change of net charge are confined to the latter because the capacitances

of the metallic elements (with respect to the pressure vessels and alu-

minum screens) charge through the electrometer input impedances quickly

on the scale Tl of the transient in the insulating tube. It is to allow

measurement of the influent and effluent currents in the insulating tube
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Experimental test facility. Flow path is completed by experi-
ments shown in Figs. 3.1 and 3.2. All tubes and beakers are
stainless steel. Not shown are a dedicated three-terminal con-
ductivity cell on the floor of the beaker in the reservoir, a
PTFE tube through which spent liquid is returned to the reser-
voir, and sections of aluminum screen "wrapped" around the
tubes and grounded to provide electrostatic shielding.
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Fig. 3.6 C2CI3P3 conductivity measured at the indicated frequencies as
a function of additive concentration. All conductivities re-
ported in the text are measured at 200.0 cps.
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that the liquid is not recirculated. The upstream section draws initial-

ly quiescent, and hence electrically neutral liquid from a reservoir of

large enough dimensions compared with the tube radii that the liquid

presumably remains quiescent. The influent current I(0,t) is measured by

the electrometer shown in both Figs. 3.1 and 3.2, which maintains at

ground potential all of the metallic sections upstream of the test sec-

tion, including the reservoir. The effluent current I(L,t) returns to

ground through the electrometer shown in Fig. 3.5, which is connected

to all of the metallic sections downstream of the test section, includ-

ing the receiver.

The insulating tubes under study are Tefzel, an ethylene-tetrafluoro-

ethylene copolymer developed by Dupont (39, 40) with slightly superior

mechanical properties than, but otherwise similar to, Teflon (polytetra-

fluoroethylene). The liquid is Dupont's Freon TF (41), which is a rela-

tively pure grade of Dupont's refrigerant Freon 113 (CC2F-CCF 2) with

the properties indicated in Table 3.1. Liquid, as received, is filtered

through silica gel into the closed experimental system, after which it

is exposed only to its own vapor and the nitrogen gas. A dedicated

three terminal cell immersed in the reservoir typically indicates an

initial liquid conductivity of about 1.3 pS/m, as measured at 200.0 cps

with a capacitance bridge. In addition to its sensitivity to mois-

ture, the liquid conductivity can be dominated by the effects of trace

materials, so once the liquid has been filtered and sealed, pumps are

avoided, as are materials containing plasticizers, antioxidants, etc. In

successive experiments the conductivity is gradually raised by the

addition of an antistatic agent, Ethyl Corporation's DCA-48 (42) (also

available from Mobil). Very small additive concentrations are involved

(see Fig. 3.6) so the additive is diluted with Freon TF before being

injected by syringe through a small port in one of the pressure vessels.

The conductivity as a function of additive concentration is shown in

Fig. 3.6 where the linear dependence suggests a bimolecular dissociation

reaction (Sec. A.2) that is not uncommon in hydrocarbon liquids (43).



89

TABLE 3.1

Room Temperature Data for Freon TF

formula

11/E

b

Dm*

Sc

Xm

CC2 2F-CC2F2

2.4

6.8 x 10

1565.0

4.4 x 10

3. x 10
- 8

8.0 x 1 - 1 0

550.0

1.3 x 10-10/

*f
calculated as in Table 2.1
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This is consistent with the polymeric structure of the additive mole-

cules which contain 24 to 28 amine - carboxylic acid functional groups,

and are thought to produce ions by a proton transfer reaction (44). This

structure and ionization process make it plausible that positive and

negative ions have similar mobilities, because their molecular weights

will typically differ by that of the transferred proton which is small

compared with the total molecular weight (6000). Perhaps more likely is

a spectrum of molecular weights and mobilities, which may still imply

similar effective mobilities for positive and negative ions.

3.3.2 Close Fittinq Sleeve

In the arrangement shown in Fig. 3.1, the electrometer (E) measures the

influent current I(0,t) while the charge amplifier (C) records the net

charge on sleeve (= -Qt). As a check on the instrumentation prior to the

formal experiments, the second electrometer shown in Fig. 3.5 aids in a

demonstration that the relation

dQt

dt = I(0,t) - I(L,t) (3.45,

is satisfied instantaneously, as required by the law of charge conserva-

tion. Subsequently, only two of the quantities in Eq. 3.45, the influent

current and net charge, are recorded.

Table 3.2 summarizes the conditions of two runs for which assumptions

[a] and b] of Sec. 3.2.1 are satisfied. The record of run 36 is shown

in Fig. 3.7, where after an initial transient the measured influent

current tends to a constant value. Two factors suggest that the

transient in I(O,t) reflects a temporal development of the convection

current generated in the upstream metallic section. First, the same

transient is observed in experiments in which there are no insulating

sections, like those reported in Sec. 2.2.3. Second, the fixed rate of

change of Qt following the transient indicates that conduction driven by
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TABLE 3.2

Experiments with Close Fitting Sleeve

Parameter

Run Number:

Measured: a (mm)

L (m)

a9. (pS/m)

U (m/s)

I(0,t) (nA)

Qt/t (nC/min)

Calculated: p(0, t)b/a

Ry

Xm (in)

8 (wU)

x1 (min)

Qt/t (nC/min)

Adjusted: Qt/t (nC/min)

36

1.3

0.38

4.7

0.66

-0.15

-1.42

-0.3

3900.0

60.0

14.0

6030-1.10

-1 .1

-1.47

37

1.3

0.38

4.7

1.60

-0.7

-4.0

-0.5

9450.0

60.0

6.2

6030.0

-2.1

-3. 0

Equation

3.46

3.1

2.9

3.3

5.30t

3.35 & 3.46

3.5 & 3.35

with data from Table 3.1

I

t ith w = .3 mm and -- 2.6co
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Fig. 3.7 Experimental results with close fitting sleeve configuration
of Fig. 3.1. Conditions are given in Table 3.2 as run 36.
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Fig. 3.8 Experimental results with capped cylinder configuration of
Fig. 3.2. Conditions are given in Table 3.3 as run 60.
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the generated field does not yet contribute significantly to the

influent current. Thus, the ordering of times 1 >> ex and the assump-

tion of an imposed volume charge distribution, both of which underlie

case B of Sec. 3.2.5, are confirmed. Calculated values of r1 given in

Table 3.2 are also consistent with the assumed ordering of times. Re-

sults in Sec. 3.3.3 indicate that surface conduction is negligible, at

least in relatively fresh tube samples used here, and thus T is

calculated from Eq. 5.30 with Os = 0 (and w e
).

With axial conduction negligible, the volume charge density at the inlet

follows from Eq. 3.8b (with eEz 0) as

(0,t) I(.t) (3.46)
na2 U

Because I(0,t) and hence (0,t) vary slowly on the scale of the

residence time L/U, Eq. 3.35 applies even through the transient, but is

most easily applied where I(0,t) is constant. Table 3.2 indicates that

agreement between the measured dQt/dt and that calculated from Eq. 3.35

is improved by adjusting the latter to take account of the slightly

enhanced conductivity at the interface. This is consistent with the

integral approach used to arrive at Eq. 3.9, which actually calls for

the conductivity at the interface (Eq. 3.5) when is evaluated for Eq.

3.35.

3.3.3 Capped Cylinder

The external conductor in Fig. 3.2 is large enough to accommodate field

probes that "view" the interior through flat tips mounted flush with,

and held at the same potential as, the inside surface of the enclosure.

Thus, the probes do not distort the local field, and because they are

situated in regions of relatively low field intensity, discharges can be

permitted to develop in the vicinity of the insulating tube without

jeopardizing the instrumentation. Experiments consist of initiating the
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flow and recording the inlet current I(O,t) and the normal fields inci-

dent on the probes, E(R,L/2,t) and -Ez(R/2,0,t). Just before the liquid

inventory is exhausted, the flow is interrupted by a downstream valve,

leaving the insulating tube full of liquid and allowing the accumulated

surface charge to relax in a controlled way.

Results are found to be fairly reproducible provided that successive

runs are initiated from the same electrical conditions by allowing

surface charge to relax completely prior to commencing a new experiment.

Table 3.3 summarizes the conditions of selected runs, and tabulates the

two lowest order (and hence longest) relaxation times as calculated from

Eq. 3.26 with s = 0, making these values upper limits. Provided that

p(0,t) varies on a longer time scale than r1, the latter characterizes

both the charging and relaxation transients (see Sec. 3.2.5).

Relaxation Transient: Calculated values of T1 and x2 are disparate

enough that the exponential form of the fundamental mode should be

discernible in recordings of the probe responses following interruption

of the flow, and this is the case. With the amplitude A(to) and slope

m(to) of either probe response measured after a time to ( 2 2) has

elapsed since interruption of the flow, the fundamental mode relaxation

time is determined from x1 = -A/m. Indicative of the agreement between

calculated and measured values of 1 in Table 3.3 are the small values

of 2os/a (from Eq. 3.28) compared with the bulk conductivities. Thus, at

least for the materials and conditions investigated here, surface con-

duction is unimportant.

Charqinq Transient: The solid lines in Fig. 3.8 represent the charging

transient of run 60, with flow conditions as given in Table 3.3. The

calculated fundamental mode time constant ( 1) is comparable to the

duration of the natural transient in the influent convection current

discussed in connection with Pig. 3.7. Thus, the latter will tend to

interfere with the exponential form of the charging transient, and the

analysis of case A in Sec. 3.2.5 cannot be applied. An alternative to
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TABLE 3.3

Selected Experiments with Capped Cylinder

R (m)

0.076

0.051

0.076

0.076

0.076

2.4

2.4

41.0

47.0

52.0

Im

173.0

202.0

12.0

8.0

8.6

arc
1

176.0

192.0

10.3

9.0

8.1

C
2

48.0

50.0

2.8

2.4

2.2

12%c/aI

0.043

0.12

5.8

5.8

2.9

notes:

time constants are in minutes; conductivities are in pS/m

superscripts 'm' and 'c' denot& measured and calculated values,
the latter from Eq. 3.26 with = 0

for all runs, tube radius a = 1.3 (mm) and tube length L = 0.3 (m)

Flow Conditions for Run 60

x1 = 20.0 (rn)

Run

48

51

59

60

62

- sI l

Ry =12000. 0 18 = 5. ( NWn
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the procedure given as case C of Sec. 3.2.5 is a direct numerical

integration of Eqs. 3.6 and 3.8, as outlined in (38), with the results

shown as broken lines in Fig. 3.8. As in case C, the measured influent

current I(I,t) supplies the upstream boundary condition. While better

agreement might be obtained from more refined experimental or numerical

procedure, there is strong encouragement from the favorable comparison

between the experimental time scale discernible in Pig. 3.8 and that

calculated for xi.

3.4 Discussion

The experiments tend to support a model in which the flow-induced elec-

trical stress arises from a surface charge distribution determined by

competing charge accumulation and leakage processes. The former is

driven by the space charge field of charge entrained in the liquid; the

latter is controlled by geometric factors and the conductivities of the

liquid bulk and liquid-solid interface. The fundamental mode relaxation

time 1 emerges as the time scale on which the surface charge and

electrical stress tend towards a steady state where the axial component

of the generated field drives a conduction current through the liquid

that offsets the local rate of change of surface charge due to the space

charge field. It is to enhance the axial field at the expense of the

radial field in the tube wall that the external conductors should be

configured to support image charges primarily near the ends of the tube

rather than along the transverse boundary. Thus, the sleeve configura-

tion of Fig. 3.1 illustrates to an extreme the "hotspot" created by a

conductor in close proximity to the tube as it shorts out the local

axial field.

The ultimate stress is that of the steady state, so Eq. 3.40 can be the

basis for suggesting other steps to avoid flow-induced insulation

failure. Because the bulk conductivity helps determines en in the

numerator as well as (0,t) as discussed in Sec. 2.2, its appearance in
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the denominator in Eq. 3.40 (through the effective conductivity) is

deceptive, and further discussion is reserved for Sec. 7.1. Also left to

Sec. 7.1 is a clarification of the apparently complicated dependence of

the ultimate stress on tube radius (with the volume flow rate fixed).

However, the surface conductivity appears only in the denominator

(through e), and to the extent that it exceeds a/2 it tends to reduce

the ultimate stress. The proportionality between the stress and the

influent volume charge density (0,c) is also notable because of the

leverage over the latter afforded by the antistatic additives.

It is because of side effects implied by the gradual depletion (44) of

the additive from the liquid bulk that an alternative way to limit

p(0,o) would be desirable. Thus, in the next chapter, the subject is the

charge trapping tendency of an expansion volume when inserted in the

flow just upstream of the insulating tube. To be effective, its own

characteristic time must be short compared with that which governs the

transient in the insulating tube (1). The rest of what is required for

the expansion to be effective is an indication that the accumulating

charge originates primarily upstream of the insulating tube, as already

suggested by previous work (Sec. 2.3.5). Thus, in Chapter 5 the sleeve

configuration is taken up again, but now an expansion volume at the tube

entrance limits the influent current to reveal convection currents gen-

erated within the insulating tube itself.
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Chapter 4

CHARGE TRAPPIVC AND GENERATION IN FULLY MIXED FLOWS

4.1 Introduction

In the sense that the mean flow is obscured by essentially random turbu-

lent motions, the flows in pumps and perhaps heat exchangers and certain

other practical flow elements are best characterized as fully mixed.

Much like the radial charge density profile in the fully developed pipe

flow, species concentrations and the net charge density tend to be uni-

form in a turbulent core, while suffering variation across a diffusion

sublayer at the solid boundary. This chapter explores the behavior of an

expansion region where the resident liquid is presumed to be entrained

and mixed by the influent liquid jet. When the diffusion sublayer thick-

ness exceeds the Debye length the expansion region is shown to function

as a charge trap, in the sense that the effluent convection current is

less than that at the inlet. As discussed in Sec. 3.4, such an element

inserted in the flow just upstream of an insulating tube can help limit

the flow-induced electrical stress within the tube wall.

Limits to the trapping tendency are anticipated when the energy of the

influent liquid jet increases to the point where the turbulent motions

approach within a Debye length of the expansion wall. Under this condi-

tion, double layer charge is swept into the turbulent core and withdrawn

by the effiuent liquid stream, rendering the expansion volume a charge

generator in that the effluent convection current can exceed that at the

inlet. Thus, the ratio of the diffusion sublayer thickness to the Debye

length plays a role here that is analogous to that in the charge genera-

tion process in a conducting tube (Fig. 2.3).

Without specifying whether the expansion wall is conducting or insula-

ting, Sec. 4.2 develops an expression for the effluent convection cur-

rent in terms of the influent convection current and the volumeicharge:
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density at the liquid-solid interface. This general result is.the basis

for associating charge trapping and generating behavior with the appro-

priate limits of the ratio of diffusion sublayer thickness to.Debye'

length. In experiments reported in Sec. 4.3, liquid-filled expansions

uniformly exhibit charge trapping behavior, while those filled with

porous media permeated by the liquid generally behave as charge genera-

tors. To show that these results are consistent with the model, empiri-

cal mass transfer correlations are invoked in Sec. 4.4 to relate the

Sherwood number (diffusion sublayer thickness) to the mechanical power

input and to a characteristic dimension of the expansion. The discussion

in Sec. 4.5 recognizes that the trapping tendency of the liquid-filled

expansion does not rule out charge generation in a pump where the me-

chanical power is supplied externally, and proposes modifications of the

liquid-solid interface intended to inhibit charge generation for any

power input.

4.2 Charge Distributions

Based on assumptions summarized next, an expression is derived in Sec.

4.2.2 for the resident volume charge in terms of the influent convection

current and material and flow parameters. In Sec. 4.2.3 the electrical

stress within the wall of an insulating expansion, pictured in Fig. 4.1,

is related to operating conditions, but is shown to be controlled inde-

pendently of the volume charge by proper design.

4.2.1 Assumptions

[a] The net charge density p is uniform in a turbulent core region that

essentially fills the expansion volume. This presumes that turbulent

motions in the core are intense enough that a Debye length based on the

turbulent diffusivity (Xt vD t ) exceeds the characteristic linear

dimension of the expansion (Le).' Thus, in the corO' = (t), a function

of time alone.
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Fig. 4.1 Insulating expansion with internal volume V, bounded by the
surface S. At the outer surface of the insulating wall is a
grounded conducting layer. Two types of leakage channels are
shown: the dead-end type containing stationary liquid in con-
tact with the conducting layer, and those carrying the influ-
ent and effluent liquid streams.
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[b] The turbulent core is bounded by a diffusion sublayer of uniform

thickness that is small compared with t local radius of curvature of

the expansion wall. The molecular diffusivity is assumed to dominate the

turbulent one throughout the sublayer.

[c] Convection is negligible within the sublayer so that charge trans-

port there is entirely by diffusion and migration.

[d] The charge density remains small (in the sense of assumption [e] of

Sec. 3.2.1) so that the liquid conductivity lg is essentially uniform

throughout the expansion volume and close its value where the net charge

density vanishes.

[c] The influent, convection current pi Q varies slowly on the scale of

the charge relaxation time xc (- e/or). This is consistent with obser-

vations. With the lowest conductivity in the vicinity of 1.0 pS/m (see

Sec. 3.3.1) the longest relaxation time is of the order of 20.0 seconds.

Meanwhile, transients in the flow-induced convection currents are char-

acterized by time constants of the order of minutes (see Sec. 3.3.2).

4.2.2 Volume Charge

With assumption [d], the term in Eq. A.9 containing the gradient of the

conductivity can be neglected, and with Gauss' law, this equation can be

written in a form more convenient for present purposes as

= -v.vp - V.J (4.1a)
at

where

= - DeVP (4.lb)

is the net current density, in which De is the local diffusivity. The

convection of charge by the turbulent velocity fluctuations is accounted

for by the diffusion term in Eq. 4.1, while the explicit convection term
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involves the mean velocity v which is presumed to be negligibleevery-

where except at the ports.

Core Region: With assumption a] the effluent liquid contains volume

charge of the uniform density (t) pevailing through out the expansion,

and carries a convection current Q, where Q is the volume flow rate.

Integration of Eq. 4.1a over the volume V enclosed by the surface S in

Fig. 4.1 yields

dt (J.)da r- (5·n)da + X ; ~ s - (4.2)dt S-vf, r Q

where is the outward directed normal vector, r is the liquid resi-

dence time in the expansion, iQ is the influent convection current and

Gauss' theorem was used to convert the volume integral to one over the

bounding surface. It remains to relate the normal current density J.-

to by solving Eq. 4.1 for the volume charge distribution p(x,t) in the

diffusion sublayer.

Diffusion SublaYer: With the surface S in Fig. 4.1 coincident with the

edge of the diffusion sublayer at x = 8, the surface integral in Eq. 4.2

can be elaborated using Eq. 4.lb

(jI )da ( + Dm(S))da = J A (8s)da (4.3)
S S max IT 9. S ax

where x is defined within the sublayer as the distance measured from the

interface into the liquid (Fig. 4.1), and Gauss' law was used to write-

the second equality. With assumption e], the time derivative in'Eq.-4;1

can be neglected compared with the conduction term. To specialize'Eq.

4.1 for the diffusion sublayer, the convection term is also neglected.

(assumption [c]) and De Dm (assumption [b]):
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- _ P ; p = p(x,t) (4.4)
2 2

where Xm is the Debye length given by Eq. 2.9. With.P(S,t) = p(t) the

solution to Eq. 4.4 is expressed in terms of the values of-p' at the

boundaries of the sublayer as

p(x (t) - (=,ticosh(8/Xm)

sinh(8/m) sinh(x/Xm)
(4.5)

+ p(0,t)cosh(x/Xm)

With Eq. 4.5 substituted, Eq. 4.3 yields

(J.)da = (t) T + Sm coth($/xm)

- p(0,t) Xm csch(8/ (4.6)

where the uniformity of 8, (0,t), and (t) on S allowed immediate eval-

uation of the surface integral.

Effluent Convection Current: Substituting Eq. 4.6 into Eq. 4.2 yields a

differential equation for volume charge in the turbulent core

dp+P = Pi P(O't) (4.7a)
dt +a r + b

where

aand (4.7b) + + coth(8/

and (4.7b)

Tb X£L csch(8/m)
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where Le V/S is the linear dimension of the expansion. Although p(0,t)-

remains to be specified, it does not vary independently 'of p or Pi.

Thus, the particular solution of Eq. 4.7a prevails because the homo-

geneous solution is characterized by a time a < rn, while Pi(t) varies

slowly on the scale of 't (assumption [e]). In the limit Xm << 8, and

exploiting the inevitable inequality Xm << Le, the particular solution

reduces to

Pi(t)
pit) 5L 1+r/(4.8)

1 +

Because this limit implies a short charge relaxation time () compared

with a diffusion time (82/Dm) based on the sublayer thickness, it is not

surprising that Eq. 4.8 is what would result if diffusion is neglected

at the outset. In this migration limit the effluent convection current

(pQ) is less than that at the inlet (piQ ) and a trapping efficiency can

be defined:

Pi - p(t) 1
E - (4.9)

Pi

which increases as the ratio of the residence to relaxation times

increases. In the opposite limit (Xm >> 8) the particular solution to

Eq. 4.7 reduces to

Pi(t) + (/8Le)P(0,t)

Unless the two terms containing the Debye length are significant, this

result is no different from the migration limit Eq. 4.8. Thus, the con-

dition >> 8 is evidently a necessary but insufficient one.for charge.

generation. An additional condition emerges in Sec. 4.4 where a boundary
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condition is suggested for p(0,t), and empirical mass transfer correla-

tions are invoked to relate 8 to the power in the influent liquid jet.

4.2.3 Surface Charge in Insulating Expansions

As long as the steady state influent and effluent convection currents

differ there will be a tendency for the inner surface of the insulating

wall to collect a surface charge. The surface charge generates both an

electrical stress within the insulating wall and a leakage current

through conduction paths in the liquid that tends to reduce the surface

charge density. If the dielectric strength of the wall permits, both the

electrical stress and the leakage current increase until the latter off-

sets the difference in convection currents. The objectives of this sec-

tion are to relate the ultimate electrical stress to operating condi-

tions, and to show how that stress can be rendered tolerable regardless

of the required trapping efficiency by creating additional leakage paths

through the insulating wall.

In the configuration shown in Fig. 4.1, a conducting layer applied di-

rectly to the outer surface of the wall plays the role of the sleeve in

Fig. 3.1 by constraining the electric field in the wall E to be essen-

tially normal to the wall. The same layer seals and terminates the dead-

end liquid channels that form leakage paths of predictable conductance.

The resistance encountered by the net leakage current (IN) is assumed to

be dominated by that of the channels, and thus the variation in the

potential over the inner surface of the insulating wall is small com-

pared with the potential drop across the wall. With the potential re-

garded as essentially uniform over the inner surface, the net leakage

current is given by

N (FfA

IN E ®Gi = NG =N-J (4.11)
i

where the summation is over N channels, and Gi is the conductance of:the
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ith channel. For simplicity, all channels are taken to be identical,

each with cross sectional area A and length w equal to the wall

thickness (Fig. 4.1). Of course, the channels that carry the influent

and effluent liquid contribute to the total conductance as well.

An estimate of the steady state stress is obtained by equating the-net

leakage current IN to the difference between the steady state convection

currents (pi - P)Q. Then from Eqs. 4.2 and 4.11

E ne NA 1 (f)da (4.12)

where the condition is implicit that the typical radius of curvature

(Le) greatly exceeds the wall thickness (w). With Eq. 4.6 substituted,

and in the migration limit Xm << where Eq. 4.8 applies, the steady

state stress is given by

_piV (piQ)E
w ~ NAY( + r/1Q ) NA (13

Here, the inequality Xm << Le was used again, and the efficiency.E was

introduced using Eq. 4.9. The result indicates that, for a given

efficiency and influent convection current (PiQ), the stress can always

be reduced by increasing either the number (N) or the cross sectional

areas (A) of the dead-end channels. It is this leverage over the leakage

process that makes it possible to regard the efficiency (Eq. 4.9) and

the steady state stress (Eq. 4.13) as independent design issues. If it

is of interest, the steady state stress generated in the thin sublayer

limit (Xm > ) can also be obtained from Eqs. 4.6 ahd 4.12.

While the transient in the electrical stress is of no practical conse-

quence, it provides additional basis for testing the model. The rate of

change of the average stress is related to that of the average surface

charge density () by Gauss' law applied to the closed surface r in Fig.
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4.1:

dE 1J dF1 (I(J.)da I(4.14)
dt e dt eS N (4.14

The first equality recognizes that the volume charge typically makes a

negligible contribution to a stress that is significant on the scale of

the dielectric strength. The time that plays the role here that 1 plays

for the insulating tube in Chapter 3 is identified from Eq. 4.14 by

using Eqs. 4.11 and 4.12 to express IN and E in terms of the potential

0. The result

1 t.NAagJ M(4.15)

is written so as to make clear its origin in the "lumped" resistance

associated with the N chaninels, and capacitance formed by the liquid and

the outer conducting layer as electrodes and the wall as the dielectric.

This time, which characterizes the transient in the electrical stress,

is longer than that characterizing the transient in the effluent convec-

tion current (a E < ) essentially by a factor of

T1 S w 1

Ta NA 9 E

that is, the ratio of the surface area of the expansion to the net cross

sectional area of the channels, multiplied by two factors that are close

to unity.
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4.3 Experiments

There are two ways in which the experiments can lend support to the

model of the preceding section. First, at issue for both insulating and

conducting expansions, is whether the influent and effluent convection

currents conform to or depart from the migration limit (Eq. 4.8) under

the conditions consistent with those identified by the model. Second,

for the insulating expansion, an indication that the ultimate electrical

stress is correctly represented by Eq. 4.13 can come from comparison of

the observed time constants with those predicted by Eq. 4.15.

4.3.1 Arrangement and Procedure

Experiments were conducted with five cylindrical expansions, two with

insulating, and three with conducting walls, as described in Table 4.1.

In the 2-port expansions, liquid is injected and withdrawn through ports

at opposite ends of the cylinder axis. Mixing is likely to be more com-

plete in the 3-port expansions, like that illustrated in Fig. 4.2, where

liquid is injected through ports at both ends of the cylinder axis, and

withdrawn through a port on the curved part of the cylinder midway be-

tween the ends. For the insulating expansions, a close fitting conduc-

ting enclosure at the outer surface of the insulating wall is maintained

virtually at ground potential by a charge amplifier. There are no dead-

end channels like those illustrated in Fig. 4.1, so the controlled leak-

age paths include only those channels through which liquid enters and

exits the expansion. The expansions are either filled with liquid or

packed with a biphasic material such as steel wool or fiberglass perme-

ated by the liquid. In the latter case, the packed expansion:is flushed

with samples of the liquid under study before installation in the flow

loop.

The experimental arrangement is essentially that described in Sec. 33.1

but with the insulating tube replaced by an expansion volume, as shown

in Fig. 4.3. The tubes that communicate liquid to the expansion are'

electrically .isolated from the latter (conducting expansion) or itscon-
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TABLE 4.1

Descriptions of Experimental Expansions

material

Teflon

Plexiglas

Brass

Brass

Brass

volume (m3)

3.3 x 10
- 5

1.0 x 10-3

3.3 x 1-5

3.3 x 10 5

1.0 x 10 

-2.0 x 1-8

-1.2 x 1-7

notes:

Tlo9 is calculated from Eq. 4.15

tubes connected to the expansions have radii a = 1.3 (mm)

expansion

A

B

C

D

E

inlet
ports

1

2

1

2

2

outlet
ports

1

1

1

1

1

J I II __

-



110

tU

insulating wall

Fig. 4.2 Three-port insulating expansion corresponding to expansion B
in Table 4.1.

U

Fig. 4.3 Experimental arrangement showing three-port expansion, elec-
trometers E and charge amplifier C. The stainless steel tubes
are electrically isolated from the expansion or its conducting
enclosure.
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ducting enclosure (insulating expansion). Three measurable quantities

are the net influent and effluent currents and either the current drawn

by a conducting expansion or the net charge on the conducting enclosure'

of an insulating expansion. As a check on the instrumentation, these

three quantities are shown to be consistent with a statement of charge

conservation like Eq. 3.45, after which only two (typically the influent

current and the expansion charge or current) need be recorded. With no

dead-end channels in the insulating expansions, and provided that the

wall is perfectly insulating on the time scale of the experiment, all of

the leakage current (IN ) reaches ground through the electrometers via

the stainless steel tubes. Thus, all of the charge on the conducting

enclosure is "counted" by the charge amplifier which then indicates the

(negative of the) net charge within the insulating expansion and, with

Gauss' law, the electrical stress in the wall. Because charge convection

and leakage proceed through common channels, the convection currents can

be isolated oaly for times much shorter than the time constant x1 iden-

tified in Sec. 4.2.3. Meanwhile, for both the conducting and insulating

expansions, the quasistationary charge densities in Eqs. 4.8 to 4.10.can

only be measured after a time a (Eq. 4.7b) has elapsed since commence-

ment of the flow.

4.3.2 Results

Results for the expansions described in Table 4.1 are arranged in[Table

4.2 according to their letter designations. Along with the influent and

-effluent currents, Ii and Io, the Reynolds number Ry of the flow.in the

stainless steel tubes is tabulated to give an idea of the relative

residence times, as well as for reference in Sec. 4.4 Measured and

calculated efficiencies, Em and Ec, are determined respectively from the

first and second expressions for E in Eq. .4.9 using

; P= I/QPi = Ii/Q
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TABLE 4.2

Selected Experiments with Expansions

7300. 0

11000.0

14000. 0

16000. 0

16000. 0

16000. 0

6500.0

11000. 

14000. 0

12000.0

18000.0

12000.0

18000. 0

12000.0

18000.0

12000.0

12000.0

12000.0

1.0 x 10- 8

1.0 x 1S- 8

1.4 x 10 - 8

0.5 x 10

4.1 x 1g-7

3.1 x 1-7

-Ii

0.35

0.65

0.90

1.1

2.1

0.9

0.6

1.1

1.5

0.62

1.1

0.44

0.85

0.55

0. 88

-I0

.0.15

0.35

0.60

0.75

0.i

0.1

0.23

0.48

0.70

0.3

0.68

0.32

0.65

2.4

4.0

0.015

0. 002

0.004

Em

0.57

0.46

0.33

0.32

0.95

0.90

0.62

0.56

0.53

0.52

0.38

0.27

0.24

steel

steel

subscripts '' and 'c' denote me
oU in pS/m ; .la in s-pS/m ; I i

asured and calculated efficiencies
and Io in nA

' letters identify corresponding entry in Table 4.1

Runt

31 A

32 A

33 A

34 A-

69 B

81 B

21 C

22 C

23 C

151 D

152 D

153 D

154 D

155 D

156 D

134 E

138 E

142 E

4.7

4.7

4.7

4.7

47.0

130.0

4.7

4.7

4.7

7.6

7.6

3.3

3.3

7.6

7.6

1.4

7.0

17.0

0.54

0.44

0 .38

0.36

0 .99

0.998

0.56

0.45

0.40

0.54

0.44

0.34

0.26

wool

wool

*

--
. . . . .

1°Q Ec
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For the insulating expansions these currents are measured at a time such

that a << t << l, while for the conducting expansions only the condi-

tion t >> a is required. Much as in experiments with the insulating

tube (Sec. 3.3.3) 1l is calculated from the amplitude and slope of the

charge amplifier response following interruption of the flow by a valve

downstream of the expansion. Three features of the results are notable:

First, for the runs with liquid-filled expansions (that is, excluding

the last five entries in Table 4.2) the satisfactory agreement between

Em and Ec is evidence that the migration limit Eq. 4.8 applies, either

because m << S or because the terms containing the Debye length in Eq.

4.10 are sufficiently small. Agreement is found for both conducting and

insulating expansions, consistent with the absence of any wall parameter

in Eq. 4.8. For one of the runs with an insulating expansion, the record

shown in Fig. 4.4 illustrates (1) the expected transient in the effluent

current characterized by a time of the order of rTa (2) the transient in

the influent current generated upstream that is familiar from Sec. 3.3.2

and (3) the relaxation of the accumulated surface charge (following in-

terruption of the flow) from which l1 is calculated.

Second, for the runs in which steel wool fills the expansion (155 and

156) the effluent current exceeds that at the inlet, indicating that Eq.

4.8 does not apply. As illustrated in Fig. 4.5 for one of these-runs,

the effluent current is not characterized by a single value, so those

reported in Table 4.2 are final values. Results for expansions packed

with fiberglass were too erratic to characterize, but for at least some

of these runs the effluent current was the larger.

Third, the measured values of .'ldr are in fair agreement with the ap-

proximate calculated values in Table 4.1, lending support to the simple

picture in Sec. 4.2.3 of the surface charge evolution. The consistency

between runs 69 and 81 with significantly different conductivities gives

some confirmation that leakage through the insulating wall does not com-

pete with that through the liquid.
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time (min) -

1 2 3 4

t -0.5

I
(nA)

-1.0

-1.5

I5 6
5 6 -- __ 9

Fig. 4.4 Experimental results with liquid-filled insulating expansion.

Qe is the net charge within the expansion. Conditions are giv-
en in Table 4.2 as run 34. Residence time r = 2.5 s and re-

laxation time T = 4.5 s.

time (min)

1 2 3 4 5 6 7 8 9 10

-1.0

I
(nA)

-2.0

-3.0

Fig. 4.5 Experimental results with conducting expansion packed with
steel wool. Conditions are given in Table 4.2 as run 155. Res-
idence time r = 3.2 s and relaxation time = 2.8 s.

10

-40.0 t

Qe

(nC)

-80.0

-120.0
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With a view towards experiments discussed in Chapter 5, which call for a

negligible current at the entrance to an insulating tube, the objective

in the runs with the liquid-filled expansion E was to minimize the ef-

fluent current. Accordingly, an effort was made to minimize the current

generated upstream of the expansion, much as for the test section in the

experiment of Sec. 2.2.3. Because that influent current was not meas-

ured, there is no comparison of efficiencies in Table 4.2. Nevertheless,

the effluent currents are given for comparison with the typically much

larger currents encountered in the experiments with insulating tubes in

Sec. 3.3.

4.4 Criteria for Trapping and Generation

The particular solution of Eq. 4.7 is a general result whose usefulness

is compromised by uncertainty about the wall charge density p(,t) and

by the tenuous assumption of a well-defined diffusion sublayer of uni-

form thickness . Nevertheless, when $ is large enough to justify the

migration limit (Eq. 4.8), neither (,t) nor 8 enters explicitly, which

ultimately accounts for the satisfactory agreement between measured and

calculated efficiencies in experiments with liquid-filled expansions. In

the next two subsections, values are suggested for (0,t) and with the

limited objectives of clarifying the condition under which Eq. 4.10

reduces to Eq. 4.8, and of showing that this condition is satisfied for

the liquid-filled expansions but not for those packed with steel wool.

4.4.1 Conditions on the Sherwood Number

To exploit mass transfer correlations reported in the literature, 8 must

be eliminated from Eq. 4.10 in favor of the Sherwood number. From the

definitions of the mass transfer coefficient km and the Sherwood number

Sh (45) the latter is related to the effective diffusion sublayer thick-

ness 8 by

k mLe _ rmLe Le
Sh Dm (ac)Dm (4.16)



116

Here, rm is the flux density due to diffusion,.ac is the concentration.

difference between the interface and the solution bulk, and.8.isassumed

to characterize the concentration gradient so that m (c)Dm/8. Intro-

ducing this relation into Eq. 4.10 yields

P(t) ~ 3tt 1 2-] ; a << Xm (4.17)
tr 1+ /r + (Xm/Le)2Sh

To draw conclusions from this result, it is postulated that the wall

charge density remains close to its value for an undisturbed double lay-

er, so that p(0,t) N oP where Pw is given by Eq. 2.12. To be definite

about the influent volume charge, which is supplied by a conducting tube

in the experiments, the associated convection current iQ is identified

with the fully developed convection current given by Eq. 2.11 in the

limit of highly turbulent flow ( < < Xm) in the tube:

P i Q S ' 1 + 2I-
Pi Q Pw~l 2 (4.18)

The subscript 'u' identifies the variable with the upstream tube. It is

omitted from P and m because their magnitudes are independent of both

flow conditions and the solid phase, by assumption in the case of Pw.

For the experimental conditions of Sec. 4.3, the factor multiplying'.p

in Eq. 4.18 ranges from about 0.1 to unity, the upper limit correspond-

ing to the lowest conductivities. With these characterizations of-p(0,t)-

and Pi, Eq. 4.17 reduces to Eq. 4.8 when

Sh or << 1 (4.19)

Thus, Eq. 4.19 is one of two sufficient conditions for.validity of.the.:.X
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migration limit (Eq. 4.8), the other condition being >> xm. Accord-

ingly, there are two necessary conditions for departure from charge

trapping behavior: << Xm and

h ( X ] p(t) p(0,t) PW (4.20)

for which the effluent convection current (w Q) is of the order of the

fully developed convection current predicted for a conducting tube, in-

dependent of conditions upstream of the expansion. To assess the practi-

cal importance of these limits it remains only to relate the Sherwood

number to flow conditions.

4.4.2 Mass Transfer Correlations

In a large number of empirical studies involving agitated liquids, the

Sherwood number has been found to be proportional to the product of pow-

ers of other dimensionless numbers that characterize the configuration,

liquid properties and flow conditions. The conditions which justify the

Chilton-Colburn analogy (46, p. 645) are not too restrictive, so the

mass transfer counterparts of the heat transfer correlations developed

from related studies (47) can be cited as well. In the majority of these

studies the mixing is induced by a driven impeller, so the correlations

as formulated are most directly applicable to pumps. Nevertheless, when

the condition for local isotropic turbulence (45, p. 20) is satisfied,

these correlations can be expressed in terms of the mechanical power

input per unit volume, permitting application to a jet-mixed expansion.

The mass transfer correlations proposed for a variety of configurations

are similar enough that the magnitude of Sh can be estimated without

specifying details of the configuration. An expression for the mass

transfer coefficient that has successfully correlated data on heat and

mass transfer to fixed bodies (e.g. heat transfer jackets) submerged in

agitated liquids is (45, p. 78)
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km 0.13 (S )-2/3 (P/V)n 1/4
PM~2

S --CDM

where P/V is the mechanical power input per unit volume and n, v and Pm

are, respectively, the absolute and kinematic viscosities and the mass

density. The Sherwood number follows from Eq. 4.16 as

Sh = 0.13 (Sc) Le 1/4 (4.22)

where the relation V L3 was used. For the jet-mixed expansion, the

power input is expressible in terms of the the volume flow rate Q and

the pressure drop from the inlet (i) to the outlet () channel (48, p.

176):

P = (ap)Q ; p pi -Po (4.23)

With the expansion dimension (Le) large compared with the channel radius

(a), the contraction at the outlet accounts for practically the entire

pressure drop, which is approximately (49, p. 67)

hp 0.75PmU2 (4.24)

With Eqs. 4.23 and 4.24 substituted, Eq. 4.22 becomes

Sh X 0.1 (Sc)l/3 (Ry)3 / 4 (Le/a)1 / 4 R = 2aU
y -v (4.25)

For the expansions in Table 4.1 the factor involving Le/a ranges from

about 2.4 to 3.2, and thus Eq. 4.25 is essentially the same as:the-cor-

relations proposed for heat transfer to jacketed walls in impeller-mixed 

(4.21)
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vessels (47, p. 284), if the Schmidt number is replaced by the Prandtl

number and the Reynolds number is replaced by one based on the impeller

dimension and angular velocity. As noted, use of Eq. 4.21 is justified

only under conditions of local isotropy, that is, when the scale of the.

primary eddies (Le ) vastly exceeds the Kolmogoroff scale (Lk):

(n)3/4 (a)1 / 4 (Le)3/4
Lk 12 4 3/ ( Le (4.26)

/ P/V)(Ry)3/ 4

where Eqs. 4.23 and 4.24 have been used, and the final inequality holds

in view of the high Reynolds numbers involved (Table 4.2).

With the Schmidt number of Table 3.1, Eq. 4.25 specializes to

Sh n (Ry)3 /4 (Le/a)1/ 4 (4.27)

For the experimental conditions summarized in Tables 4.1 and 4.2 (Le 

0.1, a 10g- 3 Ry < 2 x 1) Sh is at best of the order of 104. With 

obtained from Eq. 4.16, andX m from Table 3.1, the ratio 8/Xm ranges

from less than to greater than unity. However, the inequality Eq. 4.19

is easily satisfied which is sufficient to validate Eq. 4.8, consistent

with the experimental results for the liquid-filled expansions.

The charge, trapping tendency of the liquid-filled expansions does not

preclude charge generation in a pump for which the Sherwood number given.

by Eq. 4.22 must be re-evaluated based on the externally supplied me-

chanical power. It is also tempting to apply the developments of Secs.

4.2 and 4.4 to the expansions packed with steel wool (and to some prac-

tical filter elements) by recognizing that the characteristic length

(Le) emerges in Eq. 4.10 from the ratio of the liquid volume to the area

of the liquid-solid interface. Relative to the liquid-filled expansion,

th&t volume is decreased while the surface area is vastly increased by.
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the inserted material, leading to a much smaller characteristic length

and a greater likelihood that the conditions for charge generation are

satisfied. ere again, the power input must be re-evaluated, but more

important is the recognition that as long as the liquid "ports" are lo-

calized, the flow and hence the mass transfer process are now likely to

be highly nonuniform.

4.5 Discussion

Two aspects of the behavior of the liquid-filled expansion render it a

candidate for use in the coolant circulation system. First, both of the

sufficient conditions for charge trapping (Xm << 8 or Xm2 << Le) and

the condition for high trapping efficiency (r >> T) are consistent in

their dependence on dC, Le and Ry, and one of the sufficient conditions

was easily satisfied with modest experimental volumes. Second, Eq. 4.7

indicates that the expansion operates at full efficiency within a.time

(-a < ) short compared with that which characterizes the charging

transient in the insulating tube ( 1 >> a, Sec. 3.2.5).

As noted in Sec. 4.4.2, charge generation is more likely in both filters

(due to the small characteristic length) and in pumps (due to the ex-

ternally supplied mechanical power). In the case of the pump, an alter-

native to trapping the generated charge by means of a downstream liquid-

filled expansion, is to circumvent a necessary condition for charge gen-

eration (8 < Xm) by displacing the edge of the diffusion sublayer

relative to the interface from which m is measured. Thus, the solid

surface could be "extended" into the liquid in the form of a "web" or

"tangle" of the solid material tenuous enough to allow the liquid and

ions to permeate, but dense enough to exclude the turbulent liquid

motions. To prevent re-entrainment of the "trapped" ions and allow their

escape to ground by conduction along the interface, the extended surface

layer must be thick compared with X,. The suitability .of an adsorbed

polymer layer as the extension of the solid surface is demonstrated by.
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its ability to reduce the electrophoretic mobility of host particles,

indicating displacement of the plane of shear (50,51). That such layers

can extend the region at the interface within which molecular diffusion

dominates is also demonstrated by the attendant reduction in the

Sherwood number measured for a rotating disc in turbulent flow (52). It

is to preserve flexibility in the choice of the solid "substrate" for

the polymer layer that insulating walls are accommodated in the devel-

opment of Sec. 4.2 by evaluation of the generated electrical stress in

Sec. 4.2.3.

Apart from anticipating the behavior of practical elements where the

flow is well mixed, there are two ways in which the developments in this

chapter relate to phenomena in the insulating tube. First, the migration

model of Chapter 3, whose range of validity has yet to be defined, has

its parallel in the migration limit represented by Eq. 4.8; this paral-

lel is formalized in Sec. 5.5.2. Second, outside the range of validity

of the migration model, a boundary condition involving the wall charge

density must be specified for both the expansion and the insulating

tube. To the extent that flow conditions are uniform over a section of

the expansion wall serving as an electrode, and to the extent that those

conditions can be controlled by an external energy source, the expansion

offers the possibility of a relatively direct empirical investigation of

that boundary condition.
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Chapter 5

FLOW-INDUCED CHARGING OF THIN INSULATING TUBES:
DIFFUSION EFFECTS

5.1 Introduction

It is the premise of the model of Chapter 3 that practical situations

exist for which diffusion makes a negligible contribution to the normal

current density in the liquid at the liquid-insulating solid interface.

In these situations, where space charge entrained in the influent liquid

drives the charging process in the insulating tube, a charge trapping

expansion is usefully inserted at the tube inlet. In this chapter, the

importance of the diffusion current is demonstrated in experiments in

which an insulating tube acquires a net charge in the absence of a sig-

nificant influent convection current. The results motivate a revised

model which, despite its more tentative character, serves as the basis

for defining the range of validity of the migration model. A consistent

argument that this range includes practical conditions must reconcile

with the charge generation process in a conducting tube (Sec. 2.2) where

the normal diffusion and migration current densities are generally com-

parable.

Like the experiments of Sec. 3.3.2, those reported below in Sec. 5.2

incorporate a close fitting sleeve to attenuate the axial conduction

current so that measurements will reflect primarily the radial current

density in the liquid and bear more direct comparison to processes in

conducting tubes. Now, however, a large expansion volume at the entrance

to the insulating tube limits the influent current, while the sleeve is

split into electrically isolated segments to reveal distributed aspects

of the phenomena. The observed effluent current is generated within the

insulating tube itself, and differs from that generated by conducting

tubes in at least two respects. First, whereas Abedian and Sonin's theo-

ry appears to overestimate the spatial development length for streaming

currents generated by the Freon TF/DCA-48 combination in stainless steel
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tubes (Sec. 2.2.3), it appears to underestimate that length for Tefzel

tubes. Second, there is a history dependent transient response to the

flow that suggests an uncontrolled leakage process driven by the small

axial electric field within the tube.

The model developed in Sec. 5.3 incorporates diffusion in a way that

closely parallels the model of Sec. 4.2.2 for the expansion region. The

long spatial development length is accounted for with a revised boundary

condition on the volume charge density within the diffusion sublayer

that no longer regards radial charge transport through the liquid bulk

as the rate limiting step of the spatial development. Time constants

characterizing the observed temporal transients are too short to be

accounted for by bulk conduction driven by a quasi-one-dimensional axial

electric field. Thus, the model allows for a significant surface conduc-

tivity at the liquid-insulating solid interface, which is regarded as

fixed and uniform for the duration of a single experiment, but which

evolves over a much longer time scale as indicated by a gradual shorten-

ing of the observed time constants. While the role of surface conduction

in the experiments remains a matter of contention, an important implica-

tion of the model is that a controlled surface conductivity tends to re-

duce the ultimate' ectrical stress regardless of whether the accumulat-

ing charge originates upstream or within the insulating tube itself.

5.2 Experiments

The main purpose of the experiments described below is to qualitatively

characterize the charging process internal to the insulating tube within

the framework developed for conducting tubes (Sec. 2.2). Viewed in.their

entirety, the experimental observations are sufficiently rich in infQr-

mation that experiments are most helpful the greater their simplicity

and degree of repetition. A preliminary interpretation i Sec. 5.2.3 of

certain features of the results guides the development of the model in-

Sec. 5.3,



124

5.2.1 Arrangement and Procedure

With details as given in Sec. 3.3.1, the experimental arrangement is as

shown in Fig. 5.1. The electrometer connected to the expansion (or its

conducting enclosure) also constrains to ground potential the liquid

reservoir (not shown) and the stainless steel tube that feeds the expan-

sion. Thus, the indicated current is identified as the net axial current

I(0,t) at the entrance to the insulating tube. A second electrometer

virtually grounds the receiver and the communicating stainless steel

tube to indicate the net axial current I(L,t) at the outlet of the insu-

lating tube. In most of the experiments the close fitting sleeve illus-

trated in Fig. 3.1 is split into electrically isolated segments; in Fig.

5.1 seven segments are shown. These are grounded directly or virtually

through a third electrometer which monitors, on a time-sharing basis,

the currents flowing to ground from the individual segments.

The current Ii flowing from the ith sleeve segment can be related to

quantities of interest by recognizing that to zero order the electric

field within the tube is entirely radial (see Sec. 5.3.2 below). Thus,

over the entirety of surface S1 in Fig. 5.2 the normal component of the

(zero order) field vanishes, and by Gauss' law, so must the net charge

enclosed and its rate of change:

AiI(z,t) + Ii(t) = (5.1)

where

AiI(z,t) I(i,t) - I({i-}Q,t)

and I(z,t) is the local axial current and .is the length of each seg-

ment. To check the instrumentation and verify that the impedance levels

of uncontrolled current paths are sufficiently high, the formal experi-

ments are preceded by a demonstration that at any instant the summation

over all N sleeve segments

-- -- II- I II 1� 31
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Fig. 5.2 Section of the insulating tube showing generators of the
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N N

E (AiI + Ii) 0 I I(,t) - I(Lt) gIi(t)
i=l i=l

as required by Eq. 5.1. Experiments consist of initiating the liquid

flow and monitoring the currents I(0,t), I(L,t) and Ii(t) as functions

of time, with liquid conductivity and mean velocity as parameters. The

,axial current in the insulating tube at a distance z = k (k = 1,2,...,

N-l) from the tube inlet is deduced from the measured-values of I(0,t)

and Ii and repeated application of Eq. 5.1 with i ranging in succession

from 1 to k. Finally, a smooth axial current profile is drawn through

the discrete data points along the z-axis.

5.2.2 Results

Experimental results are divided into three groups. With the first group

the objective is simply a clear demonstration of an internal charging

mode that is independent of the original double layer; here a single

sleeve segment suffices. The objective with the second group is to char-

acterize the spatial development of the convection current; at least two

segments are needed to reveal this distributed process. The third group

spans the largest number of runs with a single tube sample, and it is

here that axial conduction first comes into evidence.

Evidence of Internal Charging Mode: With expansion B of Table 4.1 at the

inlet to the insulating tube (sample D; used in runs 90 through 109) the

measured influent currents, summarized in Table 5.1, are small compared

with those typical of experiments discussed in Sec. 3.3. Nevertheless,

the characteristic form of the response, illustrated in Fig. 5.3 for run

106, is essentially the same as that in Fig. 3.7 and is subject to the

same interpretation: the observed currents are due entirely to convec-

tion. The influent and effluent currents in Table 5.1 are the steady

state values measured at the end of the run. A comparison of these cur-

rents for any given run indicates a departure from the migration limit

which requires, according to Eq. 3.9, that the convection current de-

crease in magnitude in the flow direction.
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TABLE 5.1

Evidence of Internal Charging Mode

U

1.2

1.2

1.7

1.15

1.67

1.15 

1.2

1.7

I(0,t)

-0.008

-0.013

-0.004

-8.8037

-0.B5

-0.028

0(-8.801)

-0.015

I(L,t)

+0. 057

+0. 045

+08.805

+0.89

+0.09

+0.09

+0.20

+0.15

0.23

0.23

0.17

0.58

0.42

0.58

0.62

0.45

o I in pS/m ; U in m/s ; I in nA

tube radius a = 1.3 (mm) and length L = 0.67 (m)

subscript 'c' denotes a calculated value

t letter Identifies tube sample

Runt

102 D

103 D

104 D

105 D

106 D

187 D

108 D

109 D

13.6

13.6

13.6

81.0

82.0

82.0

99.0

99.0

dc/L

2.2

2.2

3.0

0.43

0.61

0.42

0.37

0.52

0.31

0.26

0.18

8.17

0.10

0.17

0.32

0.14

*
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Fig. 5.3 Experimental. results with the arrangement of Fig 5.1. Condi-

tions are given in Table 5.1 as run 106.

insulating
tube

I(O,t)
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I (L, t)

(t)I.

I (., t)

AId - I(L,t) - I(,t) = -Ii(t)

AI I(L,t) - I(0,t)

Fig. 5.4 Definitions of current differences whose ratio is tabulated in

Table 5.2. Flow is from left to right.
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I I t . I 

!

L - k ----



129

A calculation of the charge contained in the diffuse part of the origi-

nal double layer within the insulating tube now serves two purposes.

First, for the conditions of run 106, Eq. 2.16 gives

Qdl n 2.0 x 10 1 0 (C)

while Eq. 2.18 gives for the amount by which the charge accumulated at

time t 540.0 (s) exceeds that supplied at the tube inlet

t t
f I(,t) - I(L,t)ldt - II(0,t)ldt a 5.0 x 10-8 (C)

indicating that departures of the steady state convection currents from

the migration limit are not attributable to the original double layer.

Second, a comparison of the result for Qdl with the area between the

transient portion of either curve in Fig. 5.3 and the steady state por-

tion extrapolated back to the time origin supports an interpretation of

the transient as a sweeping out of the original diffuse layer. Consist-

ent with this interpretation is an evaluation from Eq. 6.11 of the

liquid transit time based on the length of the insulating tube and the

velocity at the edge of the diffusion sublayer (which characterizes the

velocity of the original diffuse layer). The result for run 106, 8 k

4.4 (s), is of the order of the time constant of the observed transient.

A more successful attempt to account for the steady state convection

currents in Table 5.1 is based on Eqs. 2.11 and 2.15, which were applied

to stainless steel tubes in Sec. 2.2.3. In the limit of 8 << Xm and

identifying the convection current Is(z) with the measured current

I(z,t), elimination of Is(m) between these equations yields

Pw Q 2Xm2J 1 - exp(-L/d)
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where the development length d is given by Eq. 2.15b. The normalized

wall charge density Pwb/o is calculated from this equation and tabu-

lated in Table 5.1 for each run. Three observations are pertinent: (1)

the tabulated values are consistent with Eq. 2.12, (2) they are fairly

consistent with each other, and (3) they are of opposite sign to, and an

order of magnitude smaller than, the experimental value for the stain-

less steel tube (-3.0; Fig. 2.5).

If this account of the steady state convection currents has merit, the

results given in Table 3.2 must be reinterpreted. There, diffusion was

neglected, and an adjustment of the calculated rate of change of net

charge within the tube was based on a normalized wall charge density of

Pwb/o m 1.0 and an enhanced liquid conductivity near the wall. However,

with the values of the normalized wall charge density given in Table

5.1, the conductivity enhancement, according to Eq. 3.5, is negligible.

Here, a further test of Eqs. 2.11 and 2.15 (in the limit 8 << Xm ) is

applied by combining them with Eq. 3.45 to yield

dQt
dt (I(0,t) - I(0,t)}(l - exp(-L/d)3

where

I(0,t) PwQ +>

Now, using pwb/r, m 0.1, the mobility from Table 3.1, and other pa-

rameters from Table 3.2 this equation yields Qt/tlm -1.65 (nC/min) for

run 36 and Qt/t -4.36 (nC/min) for run 37, which agree better with the

measured values in Table 3.2 than do the originally calculated values.

Evidence of Long Development Length: As discussed in Sec. 2.2.2, 'Eqs.

2.11 and 2.15 are based on a limiting form (p(az) P.) of the general

boundary condition Eq. 2.10. That limit is applicable either'where.elec-

trical conditions are fully developed (Sec. 2.2.1) or where the exchange ...
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current density J is much greater than the normal current density at

the wall Jr(a,z). An indication of whether Eq. 2.15b correctly estimates

the development length is based on the experimental arrangement shown in

Fig. 5.4 and the results summarized in Table 5.2. The form of the re-

sponse is still typified by that shown in Fig. 5.3, so the measured cur-

rents are regarded as due entirely to convection. The ratio tabulated in

the last column is calculated from

Id _ exp(-%/d) - ex2(-L/d) 
t EIJc t1 - exp(-L/d)

which is just an application of Eq. 2.15. Measured values of the same

ratio are tabulated in the penultimate column, and are consistently

larger than the calculated values. Because the calculated ratio is a

monotonically increasinq function of d, these results indicate that if

a fully developed convection current exists, the associated development

length is longer than that given by Eq. 2.15b. What makes this a fairly

sensitive test is the condition satisfied in most of the runs that the

value of d calculated from Eq. 2.15b is close to the length of the

upstream sleeve segment. An implication of these results is that if the

general boundary condition Eq. 2.10 is appropriate for the combination

of materials under study, then the condition Jr( a,z) << Jw implicit in

Eq. 2.15b is not generally satisfied. A revised development length based

on the general boundary condition is obtained in Sec. 5.3.1 below.

Evidence of Evolving Surface Conductivity! Currents measured in the two

groups of experiments summarized in Tables 5.1 and 5.2 are regarded as

entirely convective because their evolution is characterized by the

single short transient attributable either to a process upstream of the

insulating tube (Sec. 3.3.2) or perhaps to the original double layer in

the insulating tube itself (see above). It was this circumstance that

permitted a direct comparison with expressions for the streaming current

developed for conducting tubes. In the group of experiments described

next, there is evidence that conduction contributes significantly to the

, \ X 
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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TABLE 5.2

Evidence of Lona Develooment

aI

120.0

120. 0

120. 0

120. 0

120. 0

120.0

120.0

U

1.40

2.13

2.15

2.08

2.47

1.30

1.65

L

0.74

0.74

0.74

0.74

0.74

3.35

3.35

0.56

0.56

0.37

0.37

0.37

3.20

3.20

L
Lenath

0.24

0.36

0.36

0.35

0.41

0.22

0.28

0.13

0.14

0.36

0.35

0.38

0.036

t0. 41

aId]l' Ic

0.05

0.09

0.26

0.26

0.29

10- 7

Ia in pS/m ; U in m/s ; L. I and dc in m

tube radius a = 1.3 (mam)

subscripts 'm and 'c' denote measured and calculated values

t letter identifies tube sample

Rune

111 E

113 E

114 E

115 E

116 E

117 F

118 F

I ~ ~ ~ ~ ~ J .......

w - - - I ! _ _
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axial current. This evidence takes two forms: the temporal response

illustrated in ig. 5.5, and the steady state current distribution

illustrated in Pig. 5.6.

Because liquid is not continuously recirculated (Sec. 3.3.1) it must be

periodically recycled back to the reservoir. Each segment of the

temporal response of Fig. 5.5 corresponds to the flow time dictated by

the size of the reservoir and the volume flow rate; the gaps between

segments correspond to the time required to recycle the liquid.

Commencement of the flow initiates a transient in the influent current

I(0,t) that is short enough to be completed before the liquid inventory

is exhausted; this transient accounts for the "hook" shaped segments in

Fig. 5.5 and may be associated with a process upstream of the insulating

tube. If the flow segments are viewed as a continuous sequence a

transient on a much longer time scale, about 60.0 minutes, is dis-

cernible, perhaps more clearly in the effluent current I(L,t) than in

the influent current. This slow exponential variation in the terminal

currents contrasts dramatically with their rapid convergence to steady

state values in Figs. 3.7 and 5.3, and strongly suggests that axial

conduction is now competitive with convection. In support of this

interpretation is the observation that the slow variation in the

terminal currents is such as to reduce their difference, and hence

reduce the rate of change of net charge given by Eq. 3.45. Moreover, the

continuity of the flow segments evident in Fig. 5.5 is observed only if

interruptions of the flow are short on the scale of the long.transient;

if the (liquid-filled) tube is left idle for longer periods the long

transient is reinitiated when the flow commences again.

The sequence of runs shown in Fig. 5.5 is designated run 141, and bears.

comparison to similar sequences designated 133, 137, 145, 170, and.187

in Table 5.3. Anticipating a parallel with the charging transient

described in Chapter 3, the time constants of these sequences are tab-

ulated under the heading 1. :In view of the decreasing value of sl-in

successive sequences, it is pertinent to note that a single tubeiis
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Fig. 5.5 Temporal evolution of measured influent and effluent currents.
Conditions are given in Table 5.3 as run 141.
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-0.02 t

I
(nA)

-0.04
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TABLE 5.3

Evidence of Evolving Surface Conductivity*

U

1.7

2.1

2.4

1.1

1.6

2.1

2.5

1.0

1.7

2.1

2.4

1.1

1.7

2.1

2.4

1.1

1.4

1.6

1.9

1.0

-1

70.0

70.8

60.0

25.0

14.0

2.0

I ( ,o)

-0 .009

-8.015

-0.023

-0.002

+0.002

-0.001

-0.001

+90.005

+0.008

+0. 004

0.000

+0.010

+90.120

+0.125

+0.130

+0.110

-0.265

-0.345

-0. 44

-1.150

I(L,m)

+0. 016

+0.012

+0. 008

+0.015

+0. 029

+0. 030

+0.031

+0. 022

+0. 036

+0. 037

+0. 037

+0. 030

+0.250

+0. 280

+0. 300

+0.185

-0. 180

-0.250

-0.330

-0.875

a I in pS/m ; U in m/s ; 1 in min. ; I in nA

tube radius a = 1.3 (mm) and length L = .89 (m)

subscript 'c' denotes a calculated value ; 8/Xm <.0.7 in all runs

letter identifies tube sample

in runs 133-136 & 170-173 pure (undoped) Freon is used

runs 133-148 are with a liquid-filled expansion

in runs 170-173 expansion is packed with 3 mm diameter TFE spheres

in run 187 expansion is packed with fiberglass

RunT

133 H

134 H

135 H

136 H

137 H

138 H

139 H

140 H

141 H

142 H

143 H

144 H

145 H

146 H

147 H

148 H

170 H

172 B

173 H

187 H

a

1.4

1.4

1.4

1.4

7.0

7.0

7.0

7.0

17.0

17.0

17.0

17.0

110.0

110., 

110. 0

110. 0

7.6

7.6

7.6

57.0

dc/L

7.0

7.4

7.7

5.9

3.4

4.0

4.5

2.4

1.9

2.2

2.5

1.3

0.35

0.43

0.49

0.23

2.9
3.2

3.6

0.40

Pwb/a

0.55

9.48

0.48

0.57

0.14

0.12

0.11

0.16

0.97

0.06

0.96

0.09

0.20

0.16

0.14

0.32

0.05

0.01

0.01

-1.8

*n

. . ..
.

--
.

.-

i
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involved: sample B which was used in runs 122 to 192. Runs listed in.

Table 5.3 for which no time constant is given represent segments at.the'

tail end of the preceding sequence, where the steady state has already

been established. Thus, for example, runs 142, 143, and 144 immediately

follow the last segment in Fig. 5.5, with the liquid velocity set to the

given values. In all of these runs the expansion in Pig. 5.1 is that

designated E in Table 4.1.

The form of the axial current distribution illustrated in Fig. 5.6 is

typical of the steady state distributions deduced from the currents from

the seven sleeve segments shown in Fig. 5.1 by the procedure outlined in

Sec. 5.2.1. The essential feature is the inflection point, which is

absent if the current is entirely convective, regardless of whether it

given by Eq. 2.15a or Eq. 3.9. A demonstration that the inflection point

is consistent with an axial conduction process is given in Sec. 5.4.1

based on the model developed in Sec. 5.3.

Finally, as in Table 5.1, the normalized wall charge density is calcula-

ted from the measured currents in Table 5.3. However, that calculation

can be meaningful only if the measured currents are entirely convective.

Thus, a further indication that currents given in Table 5.1 represent

convection alone while those of Table 5.3 include conduction is the

slightly better consistency among Pb/0 in the former table, even if

runs with undoped liquid are excluded from Table 5.3.

5.2.3 Preliminary Interpretation of the Temporal Transient

If axial conduction is an essential feature of the results summarized by

Table 5.3 and Figs. 5.5 and 5.6, it is necessary to ask why convection

currents were isolated in the experiments summarized in Sec. 3.3.2 and

in Tables 5.1 and 5.2. As suggested in Sec. 3.3.2 and demonstrated in

Sec 5.4.1, bulk conduction is negligible for the sleeve configuration;.

the relaxation time '1 based on bulk conduction alone'is found .tobe

much longer than the times identified in Table 5.3. Thus, the importanca.
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of axial conduction stems from the presence of a significant surface

conductivity os. That surface conduction is not an intrinsic feature is

indicated by the results of Sec. 3.3.3, but that it evolves under

appropriate conditions is indicated by the decreasing time constants in

Table 5.3. Finally, the fact that a steady state -is eventually

established (Fig. 5.5) indicates that the surface conductivity evolves

over a longer time scale than the course of an experiment. A specific

objective of the model developed next is a numerical evaluation of the

surface conductivities implied by the observed range of l.

Further insight into what is required of a model can be obtained by re-

writing Eq. 5.1 as

(-) dz (5.2)

(i-1)% az

where in view of Eq. 3.8b

atIa 2 aUp E z (5.3)
az az e azj (5-3)

It is already clear from Eq. 5.3 that axial conduction may explain the

inflection point in Fig. 5.6. The steady state sleeve currents Iit) in

Fig. 5.6 are finite, so Eq. 5.2 implies that the two terms on the right

in Eq. 5.3 sum to a constant in the steady state. As in case B of Sec.

3.2.5, the convection term is regarded as imposed, and thus the two

terms are individually constant. In Sec. 5.3.2 the axial electric field

is shown to be proportional to the local axial derivative of the surface-

charge density (z,t), so it remains to reconcile the steady state

distribution (z,w) with the finite difference between the steady state

influent and effluent currents in Table 5.3. In the model developed

next, the tendency of the finite steady state net influent current to

increase the surface charge density is balanced by a process of charge

transfer across the liquid-insulating interface.
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5.3 Model for the Temporal Transient

The model of this section is developed with two objectives. The first is

to lend support to the contention in Sec. 5.2.3 that surface conduction

is important, by showing that axial conduction is consistent with the

inflection point in Fig. 5.6 and that bulk conduction is insufficient to

account for the time constants in Table 5.3. The second is to identify

conditions under which migration can be expected to dominate the normal

current density at the liquid-insulating solid interface.

For the external conductor configuration the close fitting sleeve is

retained to facilitate comparison with the experiments of Sec. 5.2, but

three features are introduced into the present model that are omitted

from the model of Sec. 3.2.5 (case B). First is the contribution of ion

diffusion to the normal current density at the liquid-insulating solid

interface. Second is the axial conduction process that is rendered

important on the time scale of the experiments by a significant surface

conductivity. Third is the finite conductivity of the tube wall. As

discussed in Sec. 5.2.3, it is necessary to admit a current across the

liquid-insulating solid interface to reconcile the steady state surface

charge distribution with the finite difference between the steady state

currents at the inlet and outlet of the insulating tube. In the absence

of specific information, only the simplest description of charge

transport in the wall is justified. Thus, the wall is assigned an ohmic

conductivity which is low enough that (1) the wall carries a negligible

fraction of the axial current, and (2) the wall can still be regarded as

insulating on the time scale of the experiments of Sec. 3.3. Then with

the exception of [d] and [f], the assumptions of Sec. 3.2.1 are

retained.

5.3.1 Volume Charge Distribution

With the normal diffusion current included, the purpose of this section

is to develop the counterpart of Eq. 3.9 for the volume charge distribu-

tion in the liquid along the axis of the tube. When the boundary
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condition p(a,z) Pw is appropriate, the result is already given by

Eq. 2.15. However, as discussed in Sec. 5.2.2, Eq. 2.15b underestimates

the spatial development length for the materials under study, and this

motivates use of the more general boundary condition Eq. 2.10.

Conservation of net charge is expressed by Eq. 4.1:

a = -vVp - VJ (5.4a)
at

where v is the mean liquid velocity and the net current density

J(r,z) = E - DeVP (5.4b)

is expressed in terms of the uniform bulk conductivity 6c (assumption

(e] of Sec. 3.2.1) and the local diffusivity De. As illustrated by Fig.

4.1 for the expansion region, Fig. 5.7 illustrates a turbulent core

(0 < r < a-S) bounded by a diffusion sublayer (a- > r > a). Equation

5.4 is specialized to these two regions by recognizing that turbulent

diffusion renders the volume charge essentially uniform in the core

while molecular diffusion dominates in the sublayer.

Core Region: With the differential form of Gauss' law inserted, and ne-

glecting axial diffusion (in view of the large Peclet number LU/De) Eq.

5.4 becomes

BP_ v aa _ 1 a[ rD ] c-X (5.5)at zaz T + r rDes 

Following the development in Sec. 3.2.2, the time derivative in Eq. 5.5

is neglected in comparison with the convection term. Then integrating

Eq. 5.5 over the cross section of the core region, where the mean veloc-

ity is essentially the superficial velocity, yields
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velocity profile is shown and coordinate systems are defined.
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U3zP E - + r=a- (5.6)

where (z) is the net volume charge density averaged over the cross sec-

tion of the core, and the diffusivity at the edge of the diffusion sub-

layer is approximated by the molecular diffusivity Dm . The second term

on the right in Eq. 5.6 can be expressed in terms of (z) and parameters

characterizing the interface by solving Eq. 5.4 within the diffusion

sublayer.

Diffusion Sublayer: Equation 5.4 is specialized to the diffusion sub-

layer by neglecting the time derivative, inserting Gauss' differential

law, and using the molecular diffusivity for De. The sublayer thickness

is small compared with the tube radius, so the result is written in

terms of the planar sublayer coordinate x = a - r which measures

distance from the interface into the liquid (Fig. 5.7):

Vz(X)a P + D_ p = p(X,Z) (5.7)
z 8Z T

+ Dmx2

To justify neglect of the convection term, it is enough to show that the

liquid transit time, based on the velocity at the edge of the sublayer

(vs in Fig. 5.7) and whatever length characterizes the axial derivative

in Eq. 5.7, is much longer than the relaxation time ~T. That length is

the development length d which, according to Sec. 5.2.2, is at least as

large as that (dc) calculated from Eq. 2.15b. Thus

s >d = ! Lc ' 11.0(L/U dc
8 vs v L ) 

As given by Eq. 6.10, the proportionality factor between v and U is

only weakly dependent on Reynolds number, so the final approximate

equality applies to all of the experiments of Table 5.3. With dc/L, ori,

U, and L given in Table 5.3 it is readily confirmed that . 8 easily

exceeds . Thus, Eq. 5.7 becomes
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sDm3 - 0 0 (5.8)

With the turbulent diffusivity Dt given by Eq. 6.9 and a Reynolds number

typical of the experiments of Table 5.3 (Ry a 10 ), it may be shown that

the turbulent Debye length (Xt i7Dt ) is typically about two

hundred times greater than the Debye length based on the molecular

diffusivity, and that Xt is comparable to or greater than the tube

radius for these experiments. Thus, net charge in the turbulent core is

essentially uniformly distributed and its value at the edge of the

diffusion sublayer approximates the average value:

P(S,Z) P o(z) (5.9)

The solution of Eq. 5.8 expressed in terms of the values of p at the

boundaries of the sublayer is now

p(z) - p(,z)cosh(8/Xm)]
P(xZ) = ( - sinh(8/m) )sinh(x/Xm) (5.10)

+ P(0 ,z)cosh(x/Xm)

where Xm is the Debye length given by Eq. 2.9. Once P(0,z) is determined

from the boundary condition, the second term on the right in Eq. 5.6 can

be obtained from Eq. 5.10 and the relation between derivatives!

=a -a ap (5.11)
arlr=a-8 axlx=8

consistent with the definitions of the coordinate systems in Fig. 5.7.

Boundary Condition: The general boundary condition Eq. 2.10 can be writ-

ten in sublayer coordinates as
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.o(O) -

As discussed in Sec. 2.2.2, the limiting form Jw >> Jx,(,z ) (0,z) 

Pw leads to a satisfactory description of the streaming currents

generated by conducting tubes. There are two issues to address if Eq.

5.12 is to be applied to-the insulating tube:

First, to account for the results of Table 5.2, it is necessary to re-

tain the general form Eq. 5.12 because it leads to a longer development

length than the limiting form. Some justification for this is available

in the literature (53,54) where it is suggested on theoretical grounds

that the exchange current density J should be lower for insulator

electrodes than for metal ones. Experimental values of Jw for Teflon in

contact with various redox systems in 2SO4 solutions range from less

than 108 to better than 10- 5 A/m2 (55). While there is no basis for

assuming that the same range applies to the present experiments, it is

encouraging to compare this with the observed average current density

<Jx(0,z)> = II(0,t) _ I(Lt)
'J,(B~z)) 2aL

This expression is valid only if surface conduction is excluded from

I(0,t) and I(L,t), so these currents must be taken from Table 5.1 rather

than Table 5.3. With the difference in currents typically .1 (nA) the

average current density is 2.0 x 10- 8 (A/m2), which lies within the

given range of exchange current densities.

Second, steady state conditions prevail in the conducting tube, so it is

reasonable to regard pw and J as fixed material parameters. In

contrast, the accumulating surface charge and the evolving electric

fields imply changing conditions at the interface between the liquid and

the insulating tube. To make it plausible that these parameters remain

fixed in the face of the accumulating surface charge it is necessary to

show that only a small fraction of the available interfacial surface
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area may be occupied. If only one ionic species accounts for the surface

..---char-ge, the minimum area occupied per (monovalent) ion is

e 1.6 x 1 9 4 2
~ 10 A

£w(E:rmax (2.3 x 10-11)(5.0 x 107)

where the maximum electric stress is taken to be of the order of the

dielectric strength of the insulating wall. This area is probably large

enough compared with the actual area of the surface in contact with an

ion to justify the use of Eq. 5.12 with fixed parameter values. However,

if the same net surface charge arises from a small difference in the

surface concentrations of two ionic species then the area occupied per

ion is smaller. Moreover, parameters characterizing the interface may

depend on the evolving electric fields or the evolving surface

conductivity, so Eq. 5.12 is used with less confidence in the insulating

tubes than in the conducting ones.

Solution for the Volume Charge Distribution: To apply the boundary con-

dition Eq. 5.12, an expression for the normal current density within the

sublayer is needed. From Eq. 5.4b

Jx(xz) = 1Ex- Dma (5.13)

Substituting Eq. 2.31 for -Ex yields

Jx(X,z) = - + z - (5.14)

In Sec. 5.3.2 the axial field term is shown to be negligible compared

with the first term on the right, so that with Eq. 5.10 substituted Eq.

5.14 yields
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(5.15)

where

ax 2 DM

or in the limit 8/X m < 1

ii = el 2X2 M = I 1 + -aj 9 X13 T Ias J (5.16)

Eliminate J(0,z) between Eqs. 5.12 and 5.15 and obtain

p(0,z) = (5.17)
3J(% /!pl ) + (a/2)(z)

Jw/iPw + a/2

Substitute Eqs. 5.10 and 5.17 into Eq. 5.11, and insert the result into

Eq. 5.6 to yield

uS = (-aL + sp) + 2JX

This has the solution

5(z) = (0)exp(-z/d) + (0)(1 - exp(-z/d))

8
MpW

U aBI.
d = + -2J.r[la+lp.!

Note that the development length d in Eq. 5.20 is greater than that

given by Eq. 2.15b by the factor in parentheses which tends to unity in

the limit of large Jw. Also the fully developed charge densityp(M) is

(5.18)

where

(5.19)

(5.20)

jxfZ) 5, 2(-M + OP(OZ)

~~~~ I~ ~ ~ · �� ----

-- - ·----.

8 a~2Dm cothaS/XmOL = 'CIi +
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the same as that given by Eq. 2.11 in the limit 8 << Xm, consistent with

the fact that the boundary condition on P(x,z) (Eq. 5.12) is independent

of Jw in the fully developed region.

In case B of Sec. 3.2.5, the volume charge distribution is regarded as

imposed if the inlet value (0) is independent of the generated fields.

Experiments discussed in Sec. 3.3.2 and in Chapter 6 indicate that this

is so, at least for the close fitting sleeve configuration. Here, in

addition to regarding (0) as imposed, parameters characterizing the

transverse boundary condition (Pw and J) are also considered inde-

pendent of the surface charge transient, as discussed above. The volume

charge distribution of Eqs. 5.19 and 5.20 plays the role of that given

by Eq. 3.9 by driving a surface charge transient that is described in

the following sections by an equation analogous to Eq. 3.10.

5.3.2 Axial Electric Field

As in Sec. 3.2.3 for the capped cylinder configuration, the objective

here for the close fitting sleeve is a relation between the axial elec-

tric field within the liquid and the surface charge distribution at the

liquid-solid interface. The first application of this relation is to

justify neglect of the axial field term in Eq. 5.14. The second is in

Sec. 5.3.3 where the axial field enters into an equation expressing

conservation of surface charge.

A quasi-one-dimensional approximation (14, Sec. 4.12) for the radial

electric field in the wall is motivated by the extreme aspect ratio of

the tube and the proximity of the equipotential sleeve. The integral

form of Gauss' law applied to the surface S2 in Fig. 5.2 yields for the

zero order field in the wall

Ew(z, t) N _ + a(z, t) + p(z) (5.21)r SW )IM i .21

The first term represents the field of the fixed charge associated with
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the original double layer (Eq. 2.17), while the second and third terms

arise from the surface and volume charge distributions induced by the

flow. As implied by Eq. 5.21 and illustrated in Fig. 5.8, E is

essentially independent of radial position. This is a consequence of the

small wall thickness (w) compared with the radius of curvature (a) and

the absence of space charge within the wall.

The first order axial electric field component follows from the require-

ment that the field be curl-free within the tube wall:

w 3Ew

8~~Ez =_~ 2 8 ~Er~~i 8~ E(5.22)
%r az ~ Ez (r- (a + w)) (5.22)

The integration constant is adjusted to be consistent with the equi-

potential surface at the outer surface of the wall (Fig. 5.8). Neither

the fixed double layer charge (see Eq. 2.17) nor the space charge (z)

contribute significantly to electrical stresses approaching the

dielectric strength of the wall, so for most of the charging transient

the surface charge density is the dominant term on the right in Eq.

5.21. Then combining Eqs. 5.21 and 5.22 yields

-w aj
Ez n · r = a (5.23)

for the axial field at the interface. The axial field profile sketched

in Fig. 5.8 reflects both the continuity of this component across the

interface and the symmetry condition on the axis of the tube. The

approximate uniformity of Ez in the liquid is justified as follows. The

field must be curl-free in the liquid as well as the in wall, so a

relation analogous to Eq. 5.22 applies with E replaced by Si, the

radial field in the liquid. Then the fractional change in Ez between the

tube axis and the interface is approximately
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a 8Ez a Er

Ez(a) ar w Ew
r

where Eq. 5.22 was used with r = a. The ratio of lengths on the right is

about five, while the ratio of fields is small as soon as the surface

charge density dominates the right side of Eq. 5.21. Thus, for most of

the transient, the axial field is essentially uniform in the liquid.

To justify neglect of the axial field term in Eq. 5.14 it is enough to

compare

P , I(L,-) >

el - a2Ue

5. x 10 11

(10-5)(2.1 X 1 1 1 )

2w
BEz(a,z,t) a Er w 7

az - < 2(10 ) = 5.0 x 10
az L

A typical velocity of U = 2.0 is used, and to get a conservative test,
w

the minimum I(L,0) from Tatle 5.1 and a value for E that approaches the

dielectric strength are used.

5.3.3 Conservation and Relaxation of Surface Charge

Exploiting the uniformity of the axial field in the liquid, an equation

expressing conservation of surface charge is obtained from Eqs. 3.7 and

3.8:

-J w 1 aI
Bt r 2na z

(5.24a)

where

I - a2(UP + cE2) ,e - + s) (5.24b)

with

= 2.0 x 10

I -1 - -~~-~· r
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The additional term Jw is the radial current density in the insulating

wall evaluated at the liquid-solid interface. The time rate of change of

the volume charge density is neglected in Eq. 5.24a because that term is

small compared with the convection term retained as long as p(0) changes

slowly on the scale of the liquid residence time L/U.

As discussed at the beginning of Sec. 5.3, the tube wall is assigned an

ohmic conductivity w so that using Eq. 5.21

,r =awv(az) ; xw (5.25)w r 'w w 

Substituting Eqs. 5.23 and 5.25 into Eq. 5.24 yields

aT C+ y 8
2 = aU ap (5.26)

at W 2EwJaz2 2 z

which is the counterpart of Eq. 3.10. -

Surface Charge Relaxation: The homogeneous form of Eq. 5.26 governs the

surface charge relaxation that ensues when the flow is interrupted. As

in the Sec. 3.2.4 the objective is an expression for the surface

conductivity in terms of the time constant of the fundamental spatial

mode. The series solution

d(z,t) = £ n(t)sin(knz) ; k = 5.27)

n

guarantees that the integral constraint on the axial field

Ez(z)dz = (Lt)- = 0 (5.28)

is satisfied. The first equality follows from Eq-5.23,.while the

integral constraint is due to the grounded terminations of the
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insulating tube. Substituting Eq. 5.27 into the homogeneous form of

Eq. 5.26 yields

dt+ n 0 ; °n(t) = n(0)exp(-t/n) (5.29a,b)

where

1 (W M n [L (5.30)
Tn ew aP_ L 2

The relaxation time 1 of the fundamental spatial mode is evidently the

longest and hence corresponds to the observed time constants listed in

Table 5.3. With n = 1, and recalling the definition of e (Eq. 5.24b),

Eq. 5.30 yields for the surface conductivity

w 2 1 1
w IF W 1 II a

as ='E (5.31)

It is clear from Eq. 5.30 that w > 1. Thus, a lower limit on Tw is the

maximum value of r1 in Table 5.3: zw > 70.0 minutes, corresponding to a

bulk conductivity of ow < 5.5 x 10- (S/m). Now Eq. 5.31 can be applied

to get an estimate of os without specifying w, by neglecting its

reciprocal compared with 1/X1. This estimate becomes better as the

smaller values of 1 from Table 5.3 are used. This upper limit on w

justifies the assumption implicit in Eq. 5.24 that the wall carries a

negligible fraction of the axial conduction current.

5.3.4 Charging Transient and Electrical Stress

To facilitate application of the initial condition, the right hand side

of Eq. 5.26 is written in the form of a Fourier series using Eqs. 3.29

and 5.19:
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-2 U = Ansin(knz)
2 3zn

k nn
kn L

-aUn () - (0)]enAn- 2d

(5.32)

(5.33)

with d (which also enters en) now given by Eq. 5.20. Substituting Eqs.

5.27 and 5.32 into Eq. 5.26 and solving the resulting ordinary

differential equation subject to the initial condition c(z,0) = 0 yields

a

= F [nAsin(knz )

n odd
(1 - exp(-t/Tn))] (5.34)

The electrical stress

Er = [(TnAn/w)sin(knz)(1 - exp(-t/n))]
n odd

follows from Eqs. 5.21 and 5.34.

5.3.5 Terminal Currents

Combining Eqs. 5.23 and 5.24b gives for the net axial current

(5.35)

(5.36)I(z,t) = a2 ( (z)U - We a )
-W 3 I

and with Eq. 5.34 inserted

I(z,t) = ra2 {(z)U _ e i n nAnkncos(knz) (1 - exp(-t/An)]
w n(5.3 odd

(5.37)

where (z) is given by Eq. 5.19. The terminal currents follow as

where
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WE takI~~~I(O) = na2 v - e Ir n n- -(a()U - c nAnkn(l - exp(-t/ n))j
w n odd

I(L) = na2{PL)U + £ E nAnkn(l - exp(-t/n)])I(L) = .a2 ~(5)U + -~w nodd

[

(5.38)

(5.39; )

Finally, the currents drawn from the individual sleeve segments can be

obtained from Eqs. 5.1 and 5.37. It can be shown that the net current

given by Eq. 5.37 in the steady state is independent of axial position

unless Tw is finite. Thus, the experimental observation that the steady

state axial derivative aI/az(z,m) is nonzero (Fig. 5.6) justifies the

allowance for a nonzero wall conductivity in the model.

5.4 Comments on the Model

5.4.1 The Surface Conductivity

As discussed in Sec. 5.3.3, the surface conductivities can be estimated

from

wn2Os ~ , _ V

With w 2 2.6%, w 3.0 x 10-4 and other parameters as given in Table

5.3, the range of surface conductivity in (S) is

1.5 x 10-12 < < 5.1 x 1 1

while

9.1 x 1l 6
< (av,/2) < 7. x 10 14

and

. . , ,I i 

I



153

indicating that bulk conduction does not compete with surface conduc-

tion. Further evidence is available in Table 5.3 where the trend towards

shorter time constants continues regardless of the direction of change

in bulk conductivity.

In the steady state Eq. 5.37 yields

a I a2j U "e E Ancosk nZ]

8Z2 32 n odd

The convection term on the right has an exponential z-dependence, and by

itself cannot account for the inflection point in Fig. 5.6. With the

conduction term included the right hand side does have a zero, which

cannot be specified, however, without information about the interfacial

parameters pw and J,

Depending on one's picture of the origin of the surface conductivity,

one may or may not expect it to be uniform over the entire tube as

assumed in the analysis. It is not expected to be uniform if the rate of

evolution is dependent on the local normal current density at the

interface. However, the fact that a steady state is reached at all (Fig.

5.5) suggests that the surface conductivity is fixed for the duration of

an experiment. Additional evidence that it evolves over a much longer

time scale is provided in Chapter 6. If this is the case, then the rate

of evolution must be independent of the normal current density which

vanishes while the liquid is left stationary between experiments. Thus,

the surface conductivity appears to originate simply in the long-term

exposure of interface to the doped liquid, and the assumption of its

uniformity is then reasonable.

5.4.2 The Continuum Approximation

In describing the charge distribution within the diffusion sublayer in

terms of a smoothed volume density (Sec. 5.3.1), there is the implicit
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assumption that the dimensions-over_ which variations in the density

occur are large compared with the mean separation between ions. To

examine this assumption, the mean ion separation

i = 'e 3 (eb/j] 1l/3

should be compared with the smaller of the Debye length and the diffu-

sion sublayer thickness. For simplicity the former length is used:

(EDml 1/2

m l at

To justify the continuum treatment the ratio i/Xm must be less than

unity. Using the Einstein relation this ratio is

s = (e) /3(sEvt)-1/2(o /bj1/6

With e = 1.6 x 10 (C), e = 2.1 1 11 (F/m) and a room temperature

thermal voltage of vt 0.027 (V), this ratio is tabulated in Table 5.4

with ion mobility and liquid conductivity as parameters. For the

mobility of Table 3.1 (b 3.0 x 1 0
- 8) and the conductivity range of

interest (1-100 pS/m) the approximation appears justified. In defining

the range of validity of the Debye-Huckel theory of the ionic

atmosphere, the same criterion is usually expressed in terms of solute

concentration rather than bulk conductivity (56).

5.5 Engineering Implications

There are two issues to disuss: first, how would the analysis of the

capped cylinder configuration in Sec. 3.2 be revised to reflect the nor-

mal diffusion current, and second, when can that current be neglected in

comparison with the migration current.

__ I___�



155

TABLE 5.4

Ratio of Mean Ion Separation to Debye Lenqth

ao (S/m)

1.0 x 1 - 1 2

3.2 x 1 1 2

1.0 x 10- 11

3.2 x 10-11

1.0 x 110

3.2 x 10 1.0 x 19

3.2 x l- 11.9 x 1 - 9

3.2 x 1-9

b (m2/V-S)

1.0 x 110 1.0 x 1 - 9

0.33

0.40

0.49

0.59

0.72

0.87

1.1

1.3

0.23

0.27

0.33

0.40

0.49

0.59

0.72

0.87

1.0 x 10 - 8 1.0 x 1 - 7

0.15

0.19

0.23

0.27

0.33

0.40

0.49

0.59

0.11

0.13

0.15

0.19

0.23.

0.27.

0.33

0 .40

0.72 0.49

- - -

1.0 x 1- 1.5 1.1
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5.5.1 Charging Transient with Capped Cylinder

The counterpart of the master equation (Eq. 3.10) of the migration model

is obtained by substituting Eq. 5.19 into Eq. 3.8 with the result

z =ia 2U t-
at + (na2 ce a(a,z,t) = a ((0t) - P(0)Jexp(-z/d) (5.40)

where (a) and d are given by Eq. 5.20. Thus, all of the results of Sec.

3.2 can be generalized to include diffusion by making the replacements

p(,t) (p(,t) - (w)) ; rU - d (5.41)

In particular, the revised steady state result (Eq. 3.40)

~n= enU 2(°(,x) - p- (5.42)aedBn(R ,a)kn

where en is given by Eq. 3.30, is called for in Sec. 7.1.1. As in Sec.

3.2.5, however, the assumption that p(z,t) is independent of the

generated fields is now more difficult to justify than in the case of

the close fitting sleeve.

5.5.2 Range of Validity of the Migration Model

Conditions under which Eq. 5.40 reduces to Eq. 3.10 define the range of

validity of the migration model of Chapter 3. These conditions are

p(-) << (O,t) (5.43)

8 << xm (5.44)

2Xi/a8 < 1 (5.45)

Dm1P,1/s <( Jw (5.46)
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The first of these conditions ensures that most of the entrained charge

originates upstream of the insulating tube. The last three conditions

are just those for which d U, where d is given by Eq. 5.20. The

inequality of Eq. 5.44 is also assumed in the model of Chapter 3. The

inequality of Eq. 5.45 implies that the diffusion time (aS/Dm) is long

compared with the charge relaxation time (). Finally, the inequality

of Eq. 5.46 ensures that charge transport through the liquid bulk is the

rate limiting step in the spatial development. Of course, in the

experiments reported in Sec. 5.2, the inequality of Eq. 5.43 is

deliberately circumvented by means of the expansion element at the inlet

to the insulating tube. However, Eq. 5.45 is satisfied for all of these

experiments, except for those involving the lowest conductivities.

There are at least two situations where the normal diffusion and migra-

tion current densities may be comparable in an upstream metallic section

while migration dominates in a dowstream insulating section!

Equal Tube Radii and Unequal Wall Charqe Densities: With equal tube ra-

dii, the left side of Eq. 5.45 has the same value in both the metal and

insulating sections, and this inequality is satisfied to the same degree

in both. If diffusion and migration are in approximate balance near the

outlet of the upstream metal section, then (0,t) is essentially the

fully developed volume charge density given by Eq. 5.16 and 5.20:

P(0,t) (,) 2 (5.47)
1 + a8/2Xm2 1 + a8/2Xm 2

where the subscript 'u' associates the variable with the upstream sec-

tion. Now, Eq. 5.43 is satisfied if (Pw)u > > Pw. This is consistent with

the results of Sec. 2.2.3 and those of Table 5.1 which suggest that

(pw)u -3.0(a%/b) for stainless steel while Pw 0.1l(6a/b) for Tefzel.

Unequal Tube Radii and Equal Wall Charge Densities: Even if (pw)u and Pw

are comparable, Eq. 5.43 will still be satisfied if the radius of the

insulating tube exceeds that of the metal tube (see Sec. 7.1.1).
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Chapter 6

STANDING-WAVE INTERACTION WITH IMPOSED FLOW

6.1 Introduction

There are both scientific and engineering incentives for the development

of the technique described in this chapter. On the scientific side, the

model of Chapter 5 remains tentative for lack of a physicochemical

description of the liquid-solid interface. Thus, an independent experi-

mental approach to the study of the surface conduction and the boundary

condition on the volume charge would be of value. From the engineering

standpoint, a comprehensive program for controlling the flow-induced

electrical stresses should include real-time monitoring of the processes

that are precursors of a hazardous condition.

The technique described in this chapter is one for probing the processes

of interest near the liquid-insulating solid interface through capaci-

tive interaction with the convecting part of the charge distribution. As

analyzed in Sec. 5.3.1, the density of the naturally occuring volume

charge in the liquid varies across the diffusion sublayer. This implies

a variation in the liquid conductivity that is readily characterized

where chemical equilibrium prevails, and makes it possible for an

applied normal electric field to induce additional charge in the

sublayer. Thus, a standing wave of potential imposed at the outer

surface of the tube by means of an electrode structure like that

pictured in Fig. 6.1 will induce a standing wave of perturbation charge

within the sublayer where the liquid velocity is finite. The extent to

which convection shifts the spatial phase of the induced charge

distribution relative to the fixed electrode structure is a reflection

of both the competition with conduction and the velocity profile within

the sublayer. As in previous work (57) where the convecting charge was

confined to a free liquid surface, the spatial phase shift is detected

as an imbalance in image charges induced on segments of the same
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electrodes

x

p Re{Voei wcos(kz)}

Fig. 6.1 An electrode structure on the outer surface of the insulating
wall imposes a potential distribution there that approximates
a standing-wave distribution. Typical velocity and conductivi-
ty profiles are as shown.

Pig. 6.2 Experimental configuration. Numbered circles identifywires of
the helical winding. L = 0.33 (m),;..X_ .01 m), a = 1.3 (mm),
w = .3 (mm) and R = 1 . . ..

9
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electrode structure that imposes the standing wave.

Section 6.2 describes the experimental device for implementing this

technique, and presents experimental results for the magnitude of the

imbalance in image charges as a function of liquid velocity and standing

wave frequency and amplitude. The frequency response predicted by the

model developed in Sec. 6.3 exhibits the same trends discernible in the

observed response. This success encourages use of the results to address

two issues confronted in Chapter 5: the time scale for evolution of the

surface conductivity, and the dependence of the convection current on

the evolving surface charge. In addition, the sensitivity of the

predicted response to the convection current suggests application of the

technique to noninvasively monitor conditions in operating equipment.

6.2 Experiments

6.2.1 Arrangement

The most convenient form of the external electrodes to be used with the

insulating tube is the helical winding illustrated in Fig. 6.2, which

consists of eight individual wires. Exciting four adjacent electrodes

(numbered 5-8) with an AC potential while the other four remain

virtually grounded sets up a standing-wave of potential at the outer

surface of the tube, with the wavelength of the spatial fundamental

component as indicated in the figure. In the diffusion sublayer where

the conductivity gradient is finite, a standing-wave component of net

charge is induced, which in turn induces image charges on two of the

unexcited electrodes (2,3). These image charges are detected as charging

currents drawn primarily through bridge resistances across which the

potential drop remains small compared with the excitation amplitude. To

limit direct capacitive coupling between the excited and sensing

electrodes, the intervening electrodes (1,4) are grounded, and a

grounded shield encloses the winding.

With the initially liquid stationary, the charging currents are balanced
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by bridge adjustments. Then with the flow established, the standing wave

distribution of induced charge is displaced downstream relative to the

sensing electrodes, and the resulting imbalance in induced image charges

is detected as a difference in the respective charging currents. The

recorded experimental response is the magnitude u of the fundamental

frequency component of the differential voltage across the resistances,

as measured by a lock-in amplifier. Because flow-induced distension of

the tube would modify interwinding capacities and produce a response

that is independent of processes in the liquid, the tube and winding are

clamped between v-grooves cut into plexiglas blocks which are rigidly

attached to the grounded enclosure. No response is measured when the

pressure in the tube is raised while a downstream valve blocks the flow,

indicating that the response measured subsequently with the valve open

can be attributed to convection effects.

6.2.2 Experimental Results

Experiments with Freon TF in turbulent flow through Tefzel tubes exhibit

reproducible behavior. Figure 6.3 shows the typical response as a

function of time. The observation of a steady signal indicates that the

parameters that determine the response evolve over time scales much

longer than the duration of an experiment. (However, as is readily

demonstrated by circulating warm air against the grounded shield, this

important feature can be obscured by temperature variations which

slightly modify interwinding capacities.) Next, with the standing-wave

amplitude Vo fixed, the response is measured as a function of frequency

with the results shown in Fig. 6.4. Note that as the mean velocity

increases, the frequency that produces the peak response shifts towards

higher values while the resonance broadens. Finally, Fig. 6.5 indicates

a linear response as the standing-wave amplitude is varied with

frequency fixed.
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6.2.3 Interpretation

The observed temporal (Fig. 6.3) and amplitude (Fig. 6.5) responses have

simple interpretations that form the basis of a model for the frequency

response. Once it is recognized that the unexcited helical winding must

exert the same effect on the charging process as the close fitting

sleeve (Fig. 3.1), it becomes clear that a charging transient like that

shown in Fig. 3.7 is in progress even as the steady response shown in

Fig. 6.3 is observed. Yet the reconciliation tends to support the

pictures that underlie models for both of these experiments. With the

charging process driven by a steady distribution of entrained volume

charge, the observed transient reflects only a rate of change of the

surface charge density at the liquid-solid interface. With the response

u o attributed to convection effects, the result in Fig. 6.3 indicates

that electrical conditions are steady in the liquid volume where the

velocity is finite, even if they are unsteady at the interface.

The linear dependence of the response on standing-wave amplitude (Fig.

6.5) indicates that, at least for the amplitude range investigated, a

perturbation theory is appropriate in which the applied field induces

charge in the diffusion sublayer by virtue of a conductivity gradient

that is independent of that field. Thus, the conductivity gradient can

be regarded as imposed by the steady distribution of the flow-induced

volume charge.

6.3 Model

Consistent with the interpretation in the previous section, volume

charge in the moving liquid is regarded as having two components: the

background charge induced by the flow (Sec. 5.3.1), and the perturbation

charge induced by the standing wave of potential. Once the assumptions

and turbulent flow model are outlined, the response u o is determined in

two steps. First, the chemical equilibrium assumption is invoked to

relate the conductivity gradient to the distribution of background

charge within the diffusion sublayer (Sec. 6.3.3). Second, the radial
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component of the perturbation electric displacement induced within the

tube by the applied potential is determined from the electroquasistatic

field equations, and evaluated at the point of contact between the tube

and the helical winding (Sec. 6.3.4). Gauss' law converts this result to

expressions for the perturbation image charges induced on the winding

and, in turn, for the charging currents drawn through the sensing

resistors.

6.3.1 Assumptions

[a] The flow is turbulent and fully developed. Fully turbulent flow

occurs for hydrodynamic Reynolds numbers in the approximate range

Ry 2aU > 4000 (6.1)

while fully developed flow prevails beyond about 100 tube radii from the

inlet.

[b] The Schmidt number is much greater than unity,

S c V >> 1 (6.2)
C D

This is characteristic of the semi-insulating liquids of interest (see

Tables 2.1 and 3.1).

[c] The Debye length exceeds the diffusion sublayer thickness,

2 >> 82 (6.3)

The Debye length and diffusion sublayer thickness are defined by Eqs.

2.9 and 3.3, respectively. As a consequence of this inequality, the

background volume charge distribution extends into the core region where.
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the turbulent diffusivity is significant.

[d] The Debye length based on the turbulent diffusivity exceeds the

tube radius,

t > a (6.4)

That is, the diffusion time based on the tube radius and the turbulent

diffusivity (a2/Dt) is exceeded by the charge relaxation time (), and

thus net charge in the core region (0 < r < a - ) will be essentially

uniformly distributed.

[el Within the diffusion sublayer the continuum approximation is valid

(Sec. 5.4.2) and chemical equilibrium prevails for the unperturbed dis-

tribution of ions (Sec. A.2). Thus, the local conductivity within the

sublayer is given by Eq. A.11:

oC(x,z) = 1 + (P(x,z)b/) 2 (6.5)

Implicit in Eq. 6.5 is the assumption of equal ion mobilities, which is

reasonable for the antistatic additive of interest (Sec. 3.3.1). Also

implicit is a condition on the strength of the applied fields (Sec. A.4,

Eq. A.37c).-As discussed in Sec. 6.2.3, experimental results suggest

that the conductivity gradient is independent of the applied field. This

implies a negligible contribution to the local conductivity from the

perturbation charge, so there is no need to assume that perturbations of

the background charge are consistent with chemical equilibrium. Thus, in

the necessary condition for chemical equilibrium (Eq. A.73) is taken

to be the liquid transit time based on the velocity at the edge of the

diffusion sublayer (Sec. 6.3.2) rather than the period of the standing

wave excitation.
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6.3.2 Turbulent Plow Model

Accurate specification of the mean axial velocity profile is necessary

only within the diffusion sublayer where the conductivity gradient, and

hence the perturbation charge, is finite. While correctly representing

the volume flow rate, the simplified profile based on the Blasius

friction-factor correlation (18)

U 0 < r < (a - a) (6.6a)

V = (0.02 R 3 /4 x/aU 0 < x < (6.6b)

is most accurate near the wall (x << a). The viscous sublayer thickness

is given by (18)

A = (118 Ry 7/ 8)a (6.7)

The thickness of the diffusion sublayer is given by (18)

= (SC-1/3 ) = S/ = (118 Ry-7/8 Sci/3)a (6.8)

Thus, << in view of the high Schmidt number (assumption [b]), while

a << a for the high Reynolds numbers (assumption [a]). Outside the

diffusion sublayer (x > ), eddy diffusion dominates the thermal

process, the eddy diffusivity being given by (22)

Dt = (0 01 Sc Ry7/8)Dm (6.9)

As in Sec. 5.3.1, this expression for Dt can be used to show that Eq.

6.4 is generally satisfied for the experimental conditions. The velocity

at the edge of the diffusion sublayer follows from Eqs. 6.6b and 6.8 as
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Vz(8) = (2.36 Ry - 1 / 8 Sc-1/ 3] U (6.10)

The liquid transit time based on this velocity and the length L of the

helical winding

L = (0. 42 Ryl/B Scl/
3)(L/U)

'tS 
=

z(
(6.11)

easily exceeds the charge relaxation time x ( 0.05 s) for the exper-

iments of Sec. 6.2.2) and thus the necessary condition (Eq. A.73) for

application of Eq. 6.5 is met.

6.3.3 Conductivity Gradient

By assumption d], charge outside the diffusion sublayer is essentially

uniformly distributed. Within the diffusion sublayer, the background

charge density is distributed according to Eq. 5.10. Thus, in the limit

where 8 << Xm

(6. 12a)p(x) 0 < r (a - )

, (z) - (0,z)) + P(0,Z) 0 x < 

Figure 6.7 illustrates the velocity and charge density profiles

represented by Eqs. 6.6 and 6.12. Substituting Eq. 6.12b into Eq. 6.5

yields

cO(x,z) 2 (z) + (z)x (6.13a)

where

E(z) = o 1 + P0 o J )3 (6.13b)

and

I _

(6.12b)
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-_oP(. z)b]2 [P(0z) - (z) Y(Z) o p(, (6.13c)
- 8 Co I P (0, Z)

to linear terms in the fractional change in p(x,z) across the sublayer.

To apply the boundary condition Eq. 5.15 it is necessary to revert from

boundary layer coordinates to cylindrical coordinates, so that po(,z) 

P(a,z). Two cases are considered. First, suppose the convection current

is still developing, in which case (a,z) is expressed in terms of p(z)

by Eq. 5.17:

Jw(pw/lpwl) + (aa/2)p(z)
p(a,z) = . (a/2(6.14)

Jw/Ipwl + a/2

where and 8 are given by Eq. 5.14. In the second case, the convection

current is fully developed so that Jr(a,z) = 0 (see Sec. 2.2.1) and now

Eqs. 2.10 and 5.20 give

p(a,z) = >(X) = PW (6.15)

In the fully developed case Eq. 6.13c becomes (with 8 << Xm)

...Oo b 2 2 -1
= T-O + j (6.16a)

8 -h1 0 as-

Where electrical conditions are still developing, and if Jw is suf-

ficiently small that p(a,z) pw, the conductivity gradient becomes

Y0or~wb2 (T= - ( do 1 -PI - (6.16b)

If the development length d (Eq. 5.18) is long compared with the axial

extent of the interaction region defined by the length L of the helical



170

winding, then the conductivity gradient is essentially uniform along

the axis, in addition to being independent of time (Sec.6.2.3).

6.3.4 Perturbation Analysis

To determine the response uo (defined in Fig. 6.2), it is convenient to

divide the tube cross section into three coaxial regions, within'each of

which the perturbation potentials and normal components of the electric

displacements are governed by equations specialized to the given region.

The outermost region is the tube wall, with bounding surfaces denoted

'a' and 'b' in Fig. 6.6. Innermost is the core region bounded by the

surface 'e' which lies at the radius r = (a - 8). In between lies the

diffusion sublayer with bounding surfaces 'c' and 'd' adjacent to the

wall and the core regions, respectively. In what follows, superscripted

variables are evaluated at the surface (in Fig. 6.6) corresponding to

the superscript.

The spatial harmonics associated with the actual square-wave potential

distribution imposed at surface 'a' by the electrodes do not contribute

significantly to the potential at surface 'b' (and hence within the

interaction region) partly because their amplitudes at surface 'a' are

reduced relative to the spatial fundamental component, and partly

because the amplitudes fall off more rapidly with distance from the

electrodes. With harmonics neglected, and with one half of the

electrodes per wavelength remaining virtually grounded (Fig. 6.2), the

potential imposed at 'a' is

2V° (2V
,a - Re(t -exp(jit)cos(kz) - Re--- xp(jwt) (6.17)

Implicit in this axisymmetric form is a neglect of winding pitch that is

justified as long as the circumference of the tube exceeds the

wavelength of the excitation. Because the second term in Eq. 6.17

represents a uniform distribution, it makes no contribution to the
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potential within the liquid. Thus, only the first term is retained, and

this is represented as the sum of two traveling waves!

= Re( V(exp(jwt-jkz) + exp(iwt+jkz)) (6.18)

Because the potentials are described by linear equations, the responses

to these two traveling-wave components can be-found independently and

then superposed. The response to the forward traveling wave

0a = Re($aexp(jwt-jkz)) ; 3a = Vo/ (6.19)

is sought first. Since they are solutions to linear equations, the

perturbation displacements and potentials assume the same traveling-wave

form. The present objective is to express the normal displacment at the

surface 'a' explicitly in terms of that part of the imposed potential

given by Eq. 6.19.

In the insulating tube wall, the potential is governed by Laplace's

equation. With the wall thickness small compared to the tube radius, the

region can be regarded as electrically planar so that the complex

amplitudes of the perturbation potentials ($) and normal displacements

(Dx = -ca8/ax) evaluated at the boundaries of the region are related by

(14, Sec. 2.16)

[ j coth(kw) -csch(kw) a (6.20)

Dxb sch(kw) -coth(kw)J 4b

Within the liquid core there is no conductivity gradient, and hence no

perturbation charge. Thus, the perturbation potential there is also

governed by Laplace's equation, and perturbation amplitudes at the
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boundary of the core region are related by the cylindrical harmonic (14,

Sec. 2.16)

De = -De = Iki(k a) = k (ka) e (6.21)D 6 k ek I6.21)

where In is the nth order modified Bessel function of the first kind,

and the prime denotes differentiation with respect to the argument.

Although Laplace's equation no longer applies, relations analogous to

those obtained for the wall and core regions are sought for the

diffusion sublayer. Axial diffusion of perturbation charge arises from

spatial variations on the scale of the wavelength (x) and hence is

characterized by the a diffusion time (X2/Dm) that is long enough on the

scale of the charge relaxation time () that axial diffusion can be

neglected. It is left to the Sec. 6.3.5 to show that diffusion of

perturbation charge in the direction normal to the phase boundary can be

neglected as well. Then using Poisson's equation to convert Eq. A.9 to

an equation for the perturbation potential yields

Eat + (vz) z + 1]v2o + v .v g (6.22)

which is linear in 0 because o, is regarded as independent of the

applied field (Sec. 6.2.3). Substituting the traveling-wave form (see

Eq. 6.19), and again regarding the layer as electrically planar yields

an ordinary differential equation for the complex amplitude:

(j¢Q( - kvz) + 1o)D2$ + DDO 2 = 0 (6.23)

where D 8/ax. Neglect of the term k2 compared with D2$ is justified

as long as the wavelength X is much greater than the diffusion sublayer

thickness 8, and leads to a first order equation for the normal electric
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displacement. Substituting Eqs. 6.6b and 6.13a into Eq. 6.23 and noting

that D = -Dx/¢E yields

DD + DX(A + Bx- 1 = 0 (6.24a)

where

+ j 0.02 kUR 3/4
A - . ; B _ 1 - j a J (6.24b)

and Z and Y are defined by Eq. 6:.3. _Equation 6.24 is separable and

readily integrated to yield

Dx(x) Dc(l + Sx/A)-'/" (6.25)

Evaluated at x = 8, Eq. 6.25 yields the first of two relations that play

the role for the diffusion sublayer that Eqs. 6.20 play for the wall:

Dd = D(1 + B/A - /B (6.26)

It can be shown that the differentiation involving complex constants

needed to verify that Eq. 6.25 satisfies Eq. 6.24a can proceed as though

the constants were real (58). To complete the electrical description of

the diffusion sublayer, the relation

$d $c (6.27)

is added which recognizes that in the long wave limit (X >> 8) only a

small fractional change in potential across the diffusion aublay is

possible. Together with Eqs. 6.20 and 6.21, these last two equations

complete specification of the bulk equations for the three regions,

which must be supplemented by boundary conditions at the interfaces
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between regions. At the d-e interface

Ad e
DX DX

(6.28)

The first condition expesses continuity of the potential as required by

Paraday's law, the second reflects the absence of a charge singularity

at the d-e interface. Next, the boundary conditions at the b-c interface

= $b (6.29a)

a = - _3(OEz ) - -_

c iw Xb, _k 2af 2 Ab

x - 1 + j 
(6.29b)

express, respectively, continuity of the potential and conservation of

perturbation surface charge. Solving Eqs. 6.20, 6.21, and 6.26-6.29 for

the complex amplitude of the normal displacement at surface 'a' in terms

of the potential at the same surface yields 

D = T+$a (6.30)

where

_(ewk ) 2 csch2(kw)
T+ = (wk)coth(kw) ++ + k)coth(kw)

P+ + (wk)coth(kw)

and

I 1 + jp 'eskIl(ka), f vll/B k2as
P+ jwrtJ I0(ka) J + AJk

The response to the backward traveling-wave component in Eq. 6.18 can be

found from Eq. 6.30 simply by making the replacement k .- k, which

amounts to replacing B by its complex conjugate. Denoting the resulting

and
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coefficient by T, superposing the two responses, and recalling Eq. 6.19

to express a in terms of the standing wave amplitude gives for the

normal component of the electric displacement at surface 'a'

Dx = Re -(T+exp(-jkz) + T_exp(+jkz)]exP(iut) (6.31)

Because the spacing between the wire electrodes is small compared with

their distance from the grounded enclosure (Fig. 6.2), the electrodes

intercept all of the normal flux at surface 'a.' Thus, the wire

electrodes can be regarded as flat, as pictured in Fig. 6.1, in applying

Gauss' law to express the charging currents defined in Fig. 6.2:

In( aD

i2 = at d(kz) + id(t) (6.32a)

5n/4 3aD
i3 = j at d(kz) + id(t)(6.32b)

where because of the balancing procedure, the current id(t) associated

with any direct coupling between the excited and the sensing electrodes

is identical for each of the latter. Finally, upon substituting Eq. 6.31

into Eq. 6.32, and carrying out the indicated integrations, the response

(in volts) follows as

Uo = Rli 2 _ i31 = (2 -V2) wR IT - T_IV (6.33)100 = i2 - i3 k IT+ - T_IV

Once it is recognized, either by inspection or by physical argument,

* e.g. Eqs. 6.20 and 6.21 apply for any frequency (within the

quasistatic limit), including zero frequency in which case the normal

electric displacements arising from an applied potential of the:form of

Eq. 6.19 are clearly invariant under the replacement k b -k.
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that the coefficients of in Eqs. 6.20 and 6.21 are even functions of

k, it is easily shown that P+ = P_ when U = 0. It quickly follows that

uO = 0 when U = 0, indicating that the response is generated by the

flow. A computer program performed the complex algebra called for in

Eq. 6.33, and yielded the theoretical frequency response curves shown in

Fig. 6.7 with fixed and U as a parameter, and in Fig. 6.8 with U fixed

and as a parameter (59). For these figures, do is taken to be

negligible, while the conductivity gradient is essentially that given by

Eq. 6.16b.

6.3.5 Diffusion of Perturbation Charge

Neglect of diffusion in Eq. 6.22 is justified here in retrospect by

showing that the magnitude of the omitted term is typically much less

than that of the conduction term retained. The equation in question

equates the time rate of decrease of the local net perturbation charge

density to the divergence of the perturbation current density where

= PVzj z - v - DmVp (6.34)

with 4z representing the axial unit vector. As noted in connection with

Eqs. 6.22 and 6.23, the axial components of the last two terms on the

right do not contribute significantly to the divergence, and so it is

appropriate to focus on the normal component of J which has the complex

amplitude

i C Dr - kx D]]X F Dm DX (6.35)

Here, the potential nd the charge density have been expressed in terms

of the displacement, the first as in Eq. 6.24a, and the second using

Gauss' law. The second approximate equality recognizes that space

derivatives must be characterized by lengths scales shorter than.the

excitation wavelength- in order to be significant. To assess the
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importance of diffusion, Eq. 6.25 is substituted into Eq. 6.35 and the

ratio of the magnitude of the diffusion current to that of the

conduction current is formed!

211 I 2A, (6.36)

This has a maximum M at x = 0 given by

M = ll 4. AR (6.37)
JA21

Substituting Eqs. 6.13b and 6.24b yields

M =2 i (6.38)
II + j l 12 j

where the approximation Z doo used is justified as long as P(0,z)b/%o

is of the order of or less than unity (see Eq. 2.12). For hydrodynamic

Reynolds numbers of the order of 183 to 1 4,

0.02Ry3 / 4U 2.4Ry- 1/ 8 U U
__ _7_ _8 _c A(6.39)
a 118Ry7/ 8a

where Eq. 6.7 was used. Furthermore, since an upper bound for M is

sought, w-r can be neglected in the denominator in Eq. 6.38. Thus, with

Eq. 6.39 substituted and with as given in Eq. 6.13c, Eq. 6.38 becomes

M 4 []( 52 (+ j [b/io) (6.40)
0. 

, , ' 
°

:
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Now-according to Eqs. 2.12 and 6.3, the leading factor on the right in

Eq. 6.40 is much less than unity, and thus to determine whether M

approaches unity, it is enough to examine the magnitude of M' where

M < , b4 2 ( U 91k x 2 (6.41)

In view of the high Schmidt number (Eq. 6.8) and for the present

experimental conditions,

8 < ; TkU = 0(1)

Then since the leading factor on the far right in Eq. 6.41 is of the

order of or less than unity (see for example Table 5.1), so is M'. Thus,

the correction that would be introduced by including diffusion in

Eq. 6.22 would be small.

6.4 Discussion

The temporal and amplitude responses illustrated in Figs. 6.3 and 6.5

respectively are perhaps most valuable because they can be interpreted

without reference to the model, and because they tend to support some of

the assumptions invoked Chapters 3 and 5. Without a free liquid surface,

the observation of a response to liquid convection (see Sec. 6.2.1) is

clear indication that the technique is sensitive to conditions in the

liquid bulk. The steady temporal response and the linear amplitude

response reveal three aspects of the phenomena initiated the flow:

(1) As long as chemical equilibrium can be assumed to prevail in the

diffusion sublayer, the electrically-induced charge corresponds to a

specific distribution of flow-induced net volume charge. Thus, the

steady temporal-response (Fig. 6.3) reveals this distribution to be_.
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imposed, at least for sleeve configuration, in the sense assumed in

Secs. 3.2.5 and 5.3.1. The linear amplitude response (Fig. 6.5) confirms

that at least for the modest applied voltages used here, the volume

charge distribution is determined by the flow conditions and not the

external field.

(2) Regardless of the electrical description of conditions in the liquid

bulk, the response (see Eq. 6.30) is attenuated by a significant surface

conductivity at the liquid-solid interface (surface 'c' in Fig. 6.6)

because it will tend to exclude the applied field from the liquid bulk.

Thus, if a significant surface conductivity is present, the steady

response of Fig. 6.3 indicates that it does not evolve on the time scale

of the experiment (consistent with assumption in Sec. 5.3).

(3) Though not independent of (1), it is worth emphasizing that since

the steady temporal response overlaps a charging transient like that

illustrated in Fig. 3.7, the latter is attributable entirely to surface

charge accumulation.

Two factors prevent a quantitative comparison between the experimental

(Fig. 6.4) and theoretical (Fig. 6.7) frequency responses. First, the

experimental Debye length Xm and diffusion sublayer thickness 8 are of

the same order in conflict with a condition of the theory (Eq. 6.3). To

be consistent with this condition, the model (Eq. 6.33) is applied with

the flow rates indicated in Fig. 6.7 and a value of the bulk

conductivity that is an order of magnitude less than the experimental

value. Second, the influent convection current I(0) = Q(0) needed to

determine the background charge density was not recorded. The value

for indicated in Fig. 6.7 is based on measurements under corresponding

experimental conditions (see Chapters 3 and 5). Despite the use of

parameter values to evaluate Eq. 6.33 that differ from experimental

values, a qualitative correspondence between the theoretical (Fig. 6.7)

and experimental (Fig. 6.4) frequency responses is clearly discernible.

Both exhibit a resonance which broadens and shifts towards higher

frequencies with increasing superficial velocity. Furthermore, the



181

theoretical results indicate resonant frequencies in the same range as

those observed experimentally, and peak amplitudes of the same order of

magnitude.

This qualitative correspondence encouraged an examination of the depen-

dence on convection current at fixed flow velocity. Figure 6.8 indicates

that while the shape and position on the frequency axis remain

unchanged, the amplitude of the response varies essentially as the

square of the convection current at a given flow rate. Although this

quadratic relation is not evident in the expressions for the response,

it appears to hold for a wide range of hypothetical conditions. Thus,

the interaction could provide the basis for sensitive detection of

convection current levels downstream of current generators or upstream

of insulating elements that tend to collect charge.

The standing-wave technique is useful as a means for studying the

natural processes in the volume because the induced charge constitutes

only a perturbing influence on the original charge distribution within

the sublayer. Thus, the applied fields are typically much smaller than

those that can be generated by the flow and which would be expected to

account for charge injection across the liquid-insulating solid

interface from one bulk region to the other. To investigate the

injection process, much higher potentials are applied when the external

electrode structure is exploited again in Appendix B. There, to help

distinguish injected charge from that induced by the flow, the liquid is

initially stationary, and then it is the mechanical response elicited by

an imposed traveling-wave of potential that is of interest.
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Chapter 7

ENGINEERING IMPLICATIONS

By confirming expected trends of the time ( 1) that characterizes the

charging transient (see Sec. 2.1) the experimental results of Chapters

3, 4 and 5 tend to support the picture of the flow-induced electric

field generation in the insulating tube wall as the result of charge

generation and accumulation processes as they are opposed by charge

leakage. While the clearest support for the basic ideas comes from study

of the transient, design issues are best addressed in terms of the

ultimate electrical stress which results when these competing processes

reach a balance. Thus, the objectives of Sec. 7.1.1 are to sort out the

dependencies of these processes, and hence of the ultimate electrical

stress, on system parameters, and to clarify the implications for

configurations other than the capped cylinder. Of particular interest,

is the dependence on parameters that can be controlled, namely, the bulk

and surface conductivities, the tube radius, and the influent convection

current. In Sec. 7.1.2 the conclusions of Sec. 7.1.1 are consolidated

and phrased in the form of design suggestions.

7.1.1 Dependence of Ultimate Electrical Stress on System Parameters

For the capped cylinder configuration, the steady state wall stress EW

(see Fig. 3.3) is given in the form of a superposition of spatial modes

by the combination of Eqs. 3.22, 3.23 and 5.42. Examination of the mode

amplitudes (see Eqs. 3.19, 3.26, 3.30 and 3.32) indicates that the

magnitude of the stress is essentially that of the fundamental mode.

Thus, for discussion purposes, only the first term of the series need be

retained, and this is evaluated at z = L/2 to yield the maximum stress:

EN " _ eL UC(R,a)j (-Er(L/2,co) t SOeC(R*a) (q(0,=) (7.1)
r SW edB1 (R,a)kl

The usefulness of this result is hampered by the inclusion of phenomeno-
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logical parameters (the wall charge density pw and the exchange current

density J which enter p(m) and d, Eq. 5.20) and a parameter which

refers to a specific external conductor configuration (the cylinder

radius R). In what follows these parameters are eliminated in exchange

for an upper limit to the stress that will be remain useful provided

that limit is not too conservative. From Eq. 3.30

e 2 1 + exp(-L/d) (7.2)
1 + L/d)2

In the limit kla << 1 implicit in the model (see footnote to Eq. 3.24)

and provided that klR is not too small, 'it can be shown that

Cl(R,a) -1/2 (7.3)
Bi(R,a) (kla/2)1n(kla/2)

where B1 and C1 are given by Eqs. 3.17 and 3.20 respectively. While the

condition on klR excludes the impractical case of the sleeve (Fig. 3.1),

the condition on kla (which amounts to a << L) is fairly unrestrictive.

The ratio in Eq. 7.3 is independent of R, and decreases with kla in the

range 0 < kla/2 < l/e ( 0.37). Finally, from Eqs. 5.16 and 5.20 in the

limit < Xm

d = t1 + 2Jw1 > xU( + s- (7.4)

Once Eq. 7.2 is inserted into Eq. 7.1, the development length d appears

only in the denominator, so a lower limit on d is appropriate. Thus, pw

and Jw are readily eliminated because the shortest development

corresponds to a process limited by transport through the liquid bulk,

while these parameters enter only when Jw is small enough that the

spatial development is controlled by an interfacial process. In view of

the last three equations an upper limit for the stress is
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Lw 2" 1so + 2/a 6 ) (o
E (L/2,w) < (7.5)r w.1 + 2s/ac*jr(-kla/2)2n(kla/2)J

where the definition of e from Eq. 3.8b is recalled. Because the

insulating tube makes only a small contribution to the total length of

the coolant flow path, the volume flow rate Q is perhaps best regarded

as constrained, so the liquid velocity (U) is not independent of the

tube radius (a). Hence, the design parameters remaining in Eq. 7.5 are

the radius (a), the bulk (c,) and surface (as) conductivities, and

perhaps the tube length (L) which enters both the leading factor and kl

(- n/L). It remains to estimate the influent and fully developed volume

charge densities, (O,c) and (m), in order to apply Eq. 7.5 and to

determine whether the former is sufficiently greater that an expansion

section (Chapter 4) will be effective.

Volume Charge Densities. To make the discussion concrete, two

assumptions are made. First, the influent convection current Qp(0,*) is

fully developed near the exit of the upstream charge generating element,

and is governed by Abedian and Sonin's theory (Eq. 2.11). This envisions

an upstream element such as a heat sink with the liquid flowing through

a winding channel that is long compared with the development length d.

Second, the channel radius is much less than that of the insulating

tube. This is motivated by the expectation that the liquid velocity is

much greater in the upstream element where heat is being transferred to

the liquid. Then given that the inequality 8 << Xm is satisfied in the

insulating tube (see Sec. 3.2.1), it is also satisfied in the upstream

section because at fixed flow rate varies essentially as the square of

the tube radius (see Eq. 7.8 below). In this limit, Eq. 2.11 yields

P(0.a)) (7.6)

2xm2J

where the subscript 'u' associates the variable with the upstream sec-
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tion. For the fully developed convection current in the insulating tube

Eqs. 5.16 and 5.20 yield in the same limit

Pa. s X (I + (7.7)

Regarding Pw and (Pw)u as generally comparable and of the order given by

Eq. 2.12, it remains to determine the dependence of the quantity (as) on

tube radius at fixed flow rate. In view of Eq. 3.3

,s 1 2 Ry7/8 ay a3v
as a Ry 7 / 8 ' a - 2Q (7.8)

Then with the given assumptions a > (aS)u, and because a/ 2Xm is

typically greater than unity Eqs. 7.6 and 7.7 indicate that

This result completes the discussion of Sec. 5.5.2 by showing how Eq.

5.43 can be satisfied even when the metallic and insulating sections are

characterized by comparable wall charge densities (pw), Thus, either of

the conditions (w)u >> P or au << a imply that p(0,o) >> p(s), that

is, the generated electrical stress (Eq. 7.5) is due to charge that

originates primarily upstream of the insulating tube. As long as the

influent convection current (p(0,w)Q) dominates in Eq. 7.5 an expansion

volume (Chaptar 4) will be effective in reducing the generated stress.

Now the upper limit Eq. 7.5 can be further clarified using Eq. 7.6:

P(0,w) - p() E P(0.0) N (w)u[l + (as)u] (7.9)

Then taking (w)u to be of the order of od/b (Eq. 2.12) Eq. 7.5 becomes

E'w o2Lsod (1 + 2 /aS)/( + (a8)u/2Xm2)
Ew (L/2,a) < 9 2(7.10)
r ' 6.wbl( 1 + 2c5/acd2)(-kla/2)2n(kla/2).
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With typical parameter values and with kla/2 l/e the right side of Eq.

7.10 is 0(1018 d V/m), or 0(108 V/m) for the largest bulk conductivity

(Cy 9 10 10 S/m) consistent with the limit 8 << Xm under the present ex-

perimental conditions.

7.1.2 Control of Ultimate Electrical Stress

The following strategies are suggested by the development of the pre-

vious section:

Inhibit Charge Generation. To the extent that conditions are electri-

cally developed (Sec. 2.2) in the flow element immediately upstream of

an insulating tube, that element determines the convection current

supplied to the tube. Thus, one approach to limiting the convection

current at the inlet to the insulating tube would be a modification of

the surface of the upstream element (typically a heat sink), perhaps in

the manner described in Sec. 4.5. But now the side effects of the

modified surface on heat transfer become a concern. An alternative is to

use an antistatic agent in sufficient concentration that the operating

point is to the right of the peak in the "bell" curves in Pig. 2.5. (The

eventual decrease in convection current with increasing liquid conduc-

tivity is not reflected in Eq. 7.6 because only the limit 8 << Xm has

been considered.) However, it is preferable to avoid the addition of a

substance that may be taken up by solid surfaces in the flow loop with

as yet unknown side effects.

Charge Trapping. There are two contributions to the charge that accumu-

lates at the inner surface of the insulating wall: that which originates

upstream of the insulating tube (external mode), and that which

accumulates in the absence of upstream sources (internal mode). It is

the first contribution that is emphasized by the migration model of

Chapter 3, and which can be diverted from the insulating tube by means

of an expansion section operating as a charge trap (Chapter 4).

Conditions under which the external mode is dominant are identified in

. . ~~~~~~~~~ , . . . . .. . .~~~~~~~~~~~~~~~~~~~~~~~~
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Secs. 5.5.2 and 7.1.1, and are likely to be met in practice. When a

charge trapping expansion section is inserted at the inlet to the

insulating tube, the expression for the ultimate electrical stress (Eq.

7.10) must be multiplied by a factor of (1 - E) where E is the trapping

efficiency given by Eq. 4.9.

Enhance Leakage. As discussed in Sec. 3.4 the external conductor config-

uration must be tailored to avoid "hotspots" where a conductor in close

proximity to the insulating tube attenuates the local axial electric

field and the associated leakage current. In contrast to the bulk

conductivity, a controlled surface conductivity (oC > ad,/2) at the

inner surface of the insulating tube enhances the leakage proceess with-

out influencing the charge generation process in the upstream element.

This accounts for the single occurence of 5 in the denominator of Eq.

7.10.

Enlarge Insulating Tube Radius. Unless the surface conductivity is sig-

nificant, the right side of Eq. 7.10 decreases as the radius (a) of the

insulating tube increases in the range 0 < kla/2 < l/e ( 0.37). There

are two issues to bear in mind as the radius is increased (with the

volume flow rate fixed). First is the possible transition to laminar

flow conditions, due either to the reduction in Reynolds number or to

the increase in diffusion sublayer thickness (relative to the Debye

length). Second is the greater energy stored by the accumulated charge

when the electric stress equals the dielectric strength. That is, while

the ultimate field is expected to be smaller in a larger insulating

tube, physical damage is more likely in the larger tube if the dielec-

tric strength is exceeded.
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Appendix A

CHEMICAL EQUILIBRIUM

A.1 Introduction

A theme of Secs. 1.3 and 2.2 is the existence of ionization equilibrium

in the liquid bulk where electrical conditions are fully developed (Sec.

2.2.1), and the departures from equilibrium that characterize the region

of spatial development (Sec. 2.2.2). There it is stressed that treatment

of the nonequilibrium process calls for additional specific data in the

form of rate constants. Section A.2 shows how this distinction has its

origin in the smaller (by one) number of partial differential equations

needed to describe the conservation of reacting species in the

equilibrium case. It is this analytical simplification that provides the

strong incentive to clarify the conditions under which chemical

equilibrium may be assumed to prevail.

Classical studies of chemical rate processes have their empirical basis

in experiments that ideally maintain homogeneous distributions of the

chemical reactants. Following a disturbance, equilibrium sets in after a

transient having a duration tcr that can be expressed in terms of the

chemical rate constants and the equilibrium concentrations (60). In

convective systems, the inhomogeneous and dissimilar distributions of

ionic reactants imply additional rate processes (diffusion and

migration) that may inhibit the local chemical equilibration even if

processes in the liquid bulk remain stationary as viewed in the

laboratory frame. Nevertheless, Sec. A.3 argues that in the region of

fully developed electrical conditions chemical equilibrium prevails

regardless of the time scale Tcr- However, Sec. A.4 shows that if

treatment of the electrical developmert is to avail itself of the

analytical simplification outlined in Sec. A.2, this time scale must be

short relative to those that characterize diffusion and migration.

The condition on time constants that justifies the assumption of local
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chemical equilibrium is expressed in Sec. A.4 as a lower limit on the

ion recombination rate kR. Section A.5 identifies an upper limit on kR

that is approached when diffusion is the rate limiting step in the

recombination process, and which is independent of specific chemical

attributes of the reactants. It is left to Sec. A.6 to compare for

dielectric media this upper limit kl2 with the lower limit of Sec. A.4.

Thus, the price paid for neglecting specific aspects of the reaction is

a condition for chemical equilibrium that is necessary but not

sufficient.

A.2 The Chemical Equilibrium Assumption

If only three reactive species, two ionic and one neutral, are present

in significant concentrations, the two simplest ionization reactions are

A+ + B- - iC ; i = 1,2 (A.1)

where i = 1 or 2 for a uni- or bimolecular dissociation process, respec-

tively. The conservation equations that govern the associated charge

densities and neutral concentration attribute local time rates of change

to divergences of diffusion, migration and convection flux densities:

at -oe + G - R ; + =+p.+ b+p+E- D+VP+ (A.2)

ap
at= +J_ + G - R ; _ J -P_v,+ b-_PIE + DQv_ (A.3)

at 7r (G - R) e r ='n.- Dnvn (A 4)
at n e n n '

These equations are coupled through Gauss' law and the generation (G)

and recombination (R) terms which reflect the rates of the homogeneous

reaction Eq. A.1. To ensure charge conservation, the same net generation

rate (G - R) appears in both of the ion conservation statements. It is
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to satisfy mass conservation that the same net rate, multiplied by i/e

(for monovalent ions), enters into Eq. A.4 for the neutral species.

Appropriate forms for the generation and recombination terms follow from

inspection of the homogeneous chemical rate equations

d rA+1 = d D = - krddA+1rB1 ~ dij4
d[A] = dt(-] R= (k[Ci - kR[A+]B-])'= dt il (A.5)

With the identifications (for monovalent ions)

n = C] ; P+ = eA +] ; p_ =e[B-] (A.6)

the generation and recombination terms must be

G = ek ni R = ee
(A.7)

where kD and kR are the effective dissociation and recombination rate

constants, respectively.

The chemical equilibrium assumption regards the generation and recombi-

nation terms (Eq. A.7) as large enough compared with other terms in the

conservation equations that they balance separately, with the result

P+P_ e 2 Kni K kD/kR

where K is the equilibrium constant. In Eq. A.8 the approximate equality

means the difference between the two terms is small compared with either

individual term. To exploit this independent algebraic constraint among

the dependent variables, the conservation equations A.2-A.4 must be used

in combinations for which the net generation rate ( - R) does not

appear. Thus, subtracting Eq. A.3 from Eq. A.2 and inserting the:

(A.8)

--

I

I,.
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differential form of Gauss' law yields

R _,vov -k V + V(Dp) a v(Aot = - e atDt V (A.9)

where

P S P+ - p_ and aI b(p+ + P_) (A.10)

are the net charge density and the local conductivity, and for simplici-

ty equal ion mobilities (see Sec. 3.3.1) and incompressible flow are

assumed. Eliminating the individual charge densities from Eqs. A.8 and

A.10 leaves the conductivity expressed in terms of the net charge den-

sity

ai = 0o 1 + (pb/ 0 ) 2 ; o 2be K (A.ll)

Here o is the conductivity where the net charge vanishes. The

generation term in Eq. A.4 can likewise be expressed in terms of the

neutral density and the new dependent variables and ai. Ne the

simplification achieved: the three original partial differential

equations are replaced by the two partial differential equations A.4 and

A.9 supplemented by the algebraic equation A.11.

Further simplification is possible for dielectric media where ionizable

solutes remain so weakly dissociated that the neutral density suffers a

much smaller fractional departure from its equilibrium value than do the

ions. Then n can be approximated as fixed and uniform so that the

conservation equation for the neutral species is extraneous. Now when

Eq. A.8 is justified, the original three partial differential equations

are replaced by the single partial differential equation (A.9)

supplemented by a single algebraic equation (A.11). Note also that the

rate constants do not enter, only the equilibrium constant does through

Eq. A.11.
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A.3 Fully Developed Electrical Conditions

The demonstration that Eq. A.8 holds where electrical conditions are

fully developed regardless of the reaction rates is based on three

assumptions:

1. Total solute concentration is fully developed. This is consistent

with the fully developed electrical condition.

2. Ion generation and recombination processes are confined to the

liquid bulk. That is, the reactions of Eq. A.1 do not take place at

the interface, and any transformation of one of the species A+, B-

or C at the interface results in a different chemical species. For

example, the polymeric neutral solute of Table 1.1 is thought to

undergo a proton transfer reaction of the form of Eq. A.1 with i = 2

(44). If the resulting ions individually participate in electron

transfer at the interface, the neutral entities so produced will

have lower molecular weights than the original neutral form.

3. Rate constants of the ionization reaction are uniform. Because kD

and kR are temperature dependent this assumption presumes isothermal

conditions, certainly reasonable in a convecting turbulent liquid.

Furthermore, if the recombination process is diffusion controlled,

then the mean separation between reactants must be small relative to

the scale of the turbulence so that the uniform molecular diffusivi-

ty is controlling regardless of the local turbulence intensity (61).

A corollary is the demonstration that radial ionic flux densities vanish

identically.

Equation 2.7 implies the first of the two equalities among the radial

flux densities

r+(r,) = r(r,w) = -i(r, " ) r(r,) (A.12)

where i = 1,2 for uni- and bimolecular dissociation, respectively (see

Eq. A.1). If the net generation rate (C - R) is eliminated between the
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steady, fully developed forms of Eqs. A.3 and A.4 the result

1 d(rrnr =)rr (A.13)

shows that r and rn can differ only by the term A/r where A is a
r r

constant. However, to avoid a singularity on the axis, A must be

identically zero, and the second equality in Eq. A.12 follows

immediately.

In view of the first two assumptions above the individual flux densities

in Eq. A.12 must vanish at the interface: rr(a,0) = 0. Otherwise, the

finite value of rr(a, ) would, by the second assumption, imply a change

in form of the solute, which the first assumption precludes. Then

integrating the steady, fully developed form of any one of Eqs. A.2 to

A.4 over the tube cross section yields

f(G - R)2nrdr = 0 (A.14)

The stronger statement that the integrand vanishes identically is based

on manipulation of the expressions in Eqs. A.2 to A.4 for the radial

flux densities:

dc d (A.1abc)
rr(r) = ±bc+Er - De dr ; i (A.15a,b,c)

where the definition in Eq. A.12 has been used, and the same De appears

in each case reflecting the dominance of the nonspecific eddy

diffusivity over most of the cross section. Multiply Eqs. A.15a and

A.15b by c_ and c+ respectively and sum the results to obtain

(c+ + c_)rr'= c+crE(b - b _)-Der(C.._), (A.16)
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Now, multiply Eqs. A.15c and A.16 by kD and kR respectively and sum the

results to yield

kR(c+ + c_ + iK)rr = De[kDn - kRc+c_] + (A.17)

.kRc+cEr(b+ - b_)

where K kD/kR is the equilibrium constant. Note that the third

assumption above has been invoked to bring the rate constants inside the

derivative to form the net generation rate in the first term on the

right.

To argue that r (r,x) and the net generation rate vanish for < r < a,

it is enough to show that otherwise Eq. A.17 is generally violated.

First, suppose the ion mobilities are identical, to eliminate the second

term on the right in Eq. A.17. If rr > 0 (say) then there is net

generation in the core of the flow and, to satisfy Eq. A.14, net

recombination near the wall. But this implies a negative radial

derivative of the net generation rate, while the left hand side of Eq.

A.17 is positive by assumption. The same contradiction arises if rr < 0

is assumed. To allow for a difference in ion mobilities it must be shown

that the previously neglected term remains much less than one of those

retained. The ratio of the two terms in Eq. A.17 that contain the

product c+c_ is

aEr(b+ - b_) (A.18)

VTb(Dt/Dm)

where the tube radius a is assumed to characterize the radial

derivative, b is the average ion mobility, and T is.the thermal voltage

introduced by the Einstein relation. Prom Sec. 3.2.2 the ratio of the

turbulent to molecular diffusivities is of the order of 1 4 for Schmidt

and Reynolds numbers of the order of 1l3, :while the fractional
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difference in mobilities is at most of the order of unity. Finally, with

the typical space charge fields (ap/2e.) encountered in the experiments

of the previous chapters, the typical potential drop between the tube

axis and inner wall does not exceed the thermal voltage by nearly as

much as Dt exceeds Dm . Thus the ratio Eq. A.18 is small, and the

original conclusions holds that the approximate equality Eq. A.8 is

satisfied in the sense that both sides vastl--exceed their difference.

A.4 Chemical Equilibrium in Inhomogeneous Systems

The simplification of the coupled conservation equations (A.1-A.3)

outlined in Sec. A.2 hinges on the assumption that the generation (G)

and recombination (R) terms are individually much greater in magnitude

than any other term. To investigate this assumption without actually

solving the equations requires that they be cast into normalized form.

This section addresses the questions: what characteristic times are

implicit in the normalized conservation equations, how can they be

specialized to dielectric solvents, and what ordering of these times

justifies the equilibrium assumption.

Define a characteristic length and time scale of interest so that

r = ; t = ; v = v(I/T) (A.19)

It will be supposed that the net charge density is small in the sense

that differences between instantaneous ion concentrations and their

respective equilibrium values remain small compared with those values, a

condition usually satisfied in practical bipolar systems. Thus, o

(defined with Eq. A.9) is the characteristic conductivity, o/2b is the

typical value for P+, and the typical neutral density is determined.from

the equilibrium condition Eq. A.8.
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a ka 2
= ad o ;+ = P+ 2 . n i = n i (A.20)-2b 4e

where i = 1 or 2 corresponding to the uni- or bimolecular reactions of

Eq. A.l. The absence of an applied potential, and the contribution of an

evolving surface charge distribution to the electric field make it

difficult to to specify a typical field strength. For purposes of nor-

malization, the characteristic field is taken to be that associated with

one species of ion when the counterions are discharged. From Gauss' law

E = E .,So (A.21)
-cS2b

However, because the two ion cncentrations are in fact comparable, the

normalized field is likely to satisfy

E << 1 (A.22)

In normalizing the conservation equations to these characteristic values

the rate constant

e(b+ + b) (A.23)
kL (m /s)A.23)

emerges, which is the recombination rate constant predicted by Langevin

for gases at high pressure (62).

Given this normalization, what characteristic times emerge, and for what

ordering of these times will an observer following a liquid element

through the region of interest find that chemical equilibrium is

maintained in the approximate sense of Eq. A.8? The answers are

discerned from a normalized equation for the convective derivative of.
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the net generation rate (G - R). Multiplying Eqs. A.2 and A.3 by p_ and

p+, respectively, substituting Eq. A.7, and adding the results yields

Dp+P = E .t 
2kR i

t = B,(P+VP - P2+) Vo(n - +p_)Dt ce 2 + , -p - +) + l kL 

+ p + P V2 p+)TD
; i=1,2 (A.24)

where for simplicity incompressible flow and equal ion mobilities are

assumed, and the underlined equation number indicates that all variables

in the equation are normalized to the characteristic values defined in

Eqs. A.19 to A.21. The relaxation and diffusion times are defined by

(A.25)
TD- /e= O

Because of the exponent i in Eq. A.7, the uni- and bimolecular reactions

must be considered separately when normalizing the conservation equation

for the neutral species.

Unimolecular Dissociation: With i = 1, Eq. A.4 has the normalized form

Dt -tkD(n - +p_) + zV2nEt D + To~~~Ti

d=_ 2

'r Dn
(A.26)

Subtracting Eq. A.24 from Eq. A.26 yields the convective derivative of

the normalized net generation rate

Dc- ) = - - ' +
cr~~~~~

(A.27)- (P2P + p V 2p+) + V 2n 

where
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2 kR be 2 kR K

= -R (be K+1) + 1) (A.28)
cr T kL o t0kL 2fs

where Eq. A.23 and the definition of.t were used, and both n and i were

approximated by unity. The equilibrium degree of dissociation was

introduced by recognizing that o = 2eb[A+] = 2ebs, where s is the

total solute concentration. To specialize the chemical relaxation time

to dielectric media it proves convenient to eliminate K from Eq. A.28

and express the chemical relaxation time in terms of kR and alone. To

that end note that

[A+ ] = [B-] = s ; [C] = (1 - )s (A.29)

and that in equilibrium Eq. A.5 (with i = 1) requires that

y2 (s/K) + 1 -1 = 2 + 1 = 1 - (A.30)
2-fs l-Y

where the second relation follows after some algebra. Now Eq. A.28

becomes

= R . " Tk (1 - ) (A.31)
Tcr = kL kL. 9- kL

The approximate equality recognizes that (1 - /2) = (1) since

0 < < 1.

Bimolecular Dissociation: After multiplication by 2n, and with i =.2,

Eq. A.4 assumes the normalized form

Dn2 _ (2 p_) 2nv2 n.A.32)
Dt ~ i~-~kkD(n - P)+ d (A.32)

Subtracting Eq. A.24 from Eq. A.32 yields for the convective derivative
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of the net generation rate

n2 - ) = _ 2 r_ 5tDn P+P-2-( - P- - -9 <p.
'tcr + I 

_ 2p_ + p 2 p+) + 'n2n 2

where

2- kR
/= ~k2K i+ l

c/~r 'r 9kL 

(A.33) 

(A.34)

As before K is eliminated in favor of kR and . The equilibrium implied

by Eq. A.5 with i = 2 is

2 _ K(1 - )2 = 2ffi + 1 = + YI (A.35)
- y

where the second relation follows after manipulation of the first. Now

Eq. A.34 becomes

2 'kR 2 
2 rkR't/TCC t 1 _-Y : - (A.36)

where the fact was used that (1 + Y) = (1). Note that Eqs. A.31 and

A.36 are the same.

In view of Eqs. A.27 and A.33 the same criterion for maintenance of

chemical equilibrium applies in both the uni- and bimolecular cases:

;' (-/r)_ i 0(1) (A.37a,b,c)

(A.38)

1/1D 0(1)

while

; /' d < (1)

1t >>
Tcr
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Note that as long as q. A.22 holds, Eq. A.37c will be met for a wide

range of T/T. Thus, the "universal" criterion for chemical equilibrium

in dielectric media for which << 1 is

2-kR

k> 1 (A.39)
9 L

Given and -x, this is a lower limit on the recombination rate kR.

A.5 Physical Significance of the Rate Constants

If the criterion for chemical equilibrium Eq. A.39 is to be applied to

poorly characterized solutes, it is natural to ask what can be said

about the recombination rate constant kR without referring to specific

reactants. In this section the reaction of Eq. A.1 is resolved into two

component steps, one of which is identifiable as a diffusion-controlled

process, and the other a chemical transformation. The overall reaction

proceeds more slowly than any of its component steps, and thus the

apparent recombination rate kR is bounded from above by the forward rate

of the diffusion step k1 2. It is left to Sec. A.6 to compare Debye's

prediction for the limiting recombination rate k1 2 with Langevin's rate

kL.

As the basis for a description of macroscopic effects, Eqs. A.2 to A.4

imply an ionization process in which only two ionic and one neutral

species have significant concentrations. The identification of component

reaction steps introduces a fourth reaction participant that helps

elucidate the mechanisms implicit in the overall reaction Eq. A.1, but

also serves notice that Eqs. A.2 to A.4 are not always adequate.

Equation A.1 is elaborated as follows:
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step 1 step 2

k12 k2 3

A+ + B- CE 3 iC T (A.40)
k2l 'k 32

free ions encounter transformed
complex complex

where i = 1 or 2 for uni- or bimolecular dissociation, respectively. The

encounter (CE) and transformed (CT) complexes are neutral species in the

sense that they make no contribution to conduction.

With nothing implied regarding its stability, the encounter complex is

defined here as what results from the mutual approach of two oppositely

charged ions and contact between their solvation shells, before any

change occurs in the solvation pattern or any other structural feature.

The transformed complex is defined as any neutral species, present in

significant concentration, that results from modification of the

encounter complex. Defined this way, the encounter complex is the

product of Coulomb interactions in competition only with the thermal

energy, while production of the transformed complex generally involves

Coulomb and short-range interactions and a desolvation process.

Whether Eqs. A.2 to A.4 remain sufficient hinges on whether Eq. A.5 can

represent the two-step reaction. The present objective is to identify

limiting cases where this is so, and to express the effective rate

constants (kD and kR) and the concentration of the "observable" neutral

species [C] in terms of the rate constants and concentrations of neutral

complexes defined in Eq. A.40. The relation between the overall forward

rate constant (kR) and that of the first step (kl2) is of particular

interest because the former enters into the equilibrium criterion (Eq.

A.39) while the latter is the subject of the theory of Debye.

For the homogeneous chemical reaction Eq. A.4g, the two ion concentra-

tions remain equal (A+] =- B-] _ [I]), and the rate equations are
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dt[I] = - k12[I] + k2l[E] (A.41)

dt[C] = k2[I] - (k2 1 + k23)[CE] + k32[CT] i (A.42)

dt[CT] = i(k2 3[CE] - k32[CT]i (A.43)

This set of equations can be reduced to the two represented by Eq. 5

dtrI] = (k[C]i - [Idt2) =_ (C/i) (A.44)

in three of the four limiting cases considered below.

(A) Negligible concentration of transformed complex: [CE] >> [CT]

The identifications

kD = k2 ; kR = k12 ; [C] = [CE] (A.45)

are the obvious ones. It is tempting to anticipate the relative concen-

trations of the encounter and transformed complexes by comparing the

free energy gained upon desolvation to the loss in free energy secured

by minimizing the coulombic potential as a result of removing

intervening solvent molecules. This would suggest that case A refers to

solvents of moderate to high polarity, but the possibility that specific

solvation effects and short-range interactions may be important

precludes generalization. Nevertheless, in one case a more definite

statement is possible: bimolecular dissociation is clearly excluded

because by the definition of the encounter complex it is produced at the

rate of only one per encounter.

(B) Negligible concentration of encounter complex: [CE] << [CT]

In the case of bimolecular dissociation, an encounter between two free

ions produces two neutral entities. Thus charge transfer must be

involved, and the neutral status is maintained by covalent bonds rather
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than Coulomb attraction. Here, the ion pair represents-an intermediate

form, present in small concentration, that is still produced at the rate

of one per encounter. For unimolecular dissociation, this ordering of

concentrations reflects an instability of the encounter complex, and is

perhaps more typical than case A when the solvent polarity is low.

A common and generally successful approximation in chemical kinetics is

the Bodenstein steady state approximation (63) for which Hirschfelder

(64) has provided justification. In this, the relatively small

concentration of an unstable intermediate species is approximated as

constant. Thus with dCE]/dt 0, Eq. A.42 yields

k12I]2 + k32CTi
[C = k3 (A.46)
[CE] = k21 + k2 3

Using this to eliminate [CE] from Eqs. A.41 and A.43 leads to equations

of the form of Eq. A.44 if the identifications are made

k21 k32 k12k23
kD k2 1 23 kR = 2 1 k [C] = [CT] (A.47)

in agreement with Eigen et al (65). Note that'kR k12 with the equality

approached only in the limit of k2 3 >> k21 when the forward rate of the

transformation step is fast enough that production of the transformed

complex is limited by the forward rate of the first step.

(C) First step is rate limiting

Now allowance is made for significant concentrations of both neutral

complexes, and it is striking that a single effective neutral species

can be identified. Only for unimolecular dissociation (i = 1) can Eqs.

A.41 to A.43 be reduced to Eq. A.44. On the relatively slow time scale

of changes in the ion concentrations [I], the two neutral species remain

in instantaneous equilibrium:
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k23
[CT] K2[CE] ; K2 k2 (A.48)

This relationship can be inserted in Eq. A.41, but not in Eq. A.42 where

the faster time scale is also implicit. To obtain equations of the form

of Eq. A.44, Eqs. A.42 and A.43 are summed yielding (with i = 1)

dt(CE + CT) = k12 ]2 - k21[CE] (A.49)

which is -d(I]/dt as required by mass conservation. Next, advantage is

taken of Eq. A.48 to write

k21[CE] = 1 + 2(CT] (A.50)

Substituting Eq. A.50 into Eq. A.49 shows that the desired form has been

obtained if the identifications are made

kD 1 + K2 kR = k12

and (A.51)

[C] = [CE] + [CT] = [CE](1 + K2 )

In the analysis of case B, the small concentration of the intermediate

form was assumed to remain constant. Here, the intermediate participates

in the fast second step, and its rate of change cannot be neglected.

Thus, at least as analyzed here, cases B and C are mutually exclusive.

On the other hand, when K2 << 1 cases A and C are indistinguishable, and

tney remain so as concerns the equilibrium criterion (Eq. A.39) even

when 2 is not small.

(D) Second step is rate limiting

Now the concentrations of the two neutral forms are not instantaneously
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coupled as in case C, and two independent conservation equations are

required in addition to those for the ionic species. Now Eqs. A.2-A.5

are insufficient. This case may have practical importance when the ions

have localized or inaccessible charge groups. In the former case the

transformation step may involve a reorientation process that is

inhibited by the confining effects of the solvent molecules.

In summary, Eqs. A.2 to A.5 represent the two-step reaction (Eq. A.40)

in three limiting cases, and in general kR < k12. Because kR enters into

the equilibrium criterion (Eq. A.39) and is bounded from above by k1 2,

the rate of formation of the encounter complex is of special interest.

Portunately, as discussed in the next section, k1 2 represents a process

that is amenable to a simple model.

A.6 Limiting Recombination Rate

The equilibrium criterion Eq. A.39 calls for a lower limit on the

overall recombination rate constant kR, while Sec. A.5 identifies the

forward rate constant of the first step (Eq. A.40) k2 as an upper limit

for kR, Thus, a necessary condition for Eq. A.39 to hold is

2rk12
>> 1 (A.52)e

This section reviews the classical theory of Smoluchowski and Debye for

the diffusion-controlled encounter frequency, with a view towards a

comparison of k12 and kL for dielectric solvent media.

For the purpose of modeling its rate of formation, the definition of the

encounter complex given in Sec. A.5 yields two benefits, even if the

concentration of that complex (so defined) is negligible. First, because

the complex is the initial product of an encounter between solvated

ions, the constant (k1 2) that governs this rate reflects a diffusion

process and not any specific chemical attributes of the reactants or the



206

solvent. Thus, provided the average initial separation between ions

equals many solvent molecule diameters, a continuum description of the

solvent, though provisional, ought to suffice. Second, the probability

that an encounter complex will result from the mutual approach of and

contact between two solvated ions is unity, and thus the rate of

formation of the encounter complex is identical to the frequency of

encounters. In contrast, models for the transformation step in Eq. A.40

cannot be phrased in terms of macroscopic parameters because specific

short range forces and the discreteness of the solvent come into play.

Smoluchowski's model for the frequency of encounters between uncharged

particles in thermal motion (66) was developed to describe the rate of

coagulation in colloidal systems. As discussed by Overbeek, the original

model does not account for double layer repulsion forces, evolving

particle size, and the spectrum of particle sizes. The simplicity of the

original model proved a virtue, however, for the omission of refinements

pertinent only to the colloidal system encouraged its adaptation to

other physical contexts. Not surprisingly, Debye's adaptation of the

model to ionic reaction rates in solution by including a general

long-range interaction between reactants raises a different set of

issues. These issues are identified by the subheadings in the overvieA

of Debye's theory given below.

Boundary Condition at the Reaction Radius: The Smoluchowski-Debye arti-

fice designates one member of one of the reactive species, A+ (say), as

a reference ion, and represents its reactivity by replacing it with a

sink that consumes members of the B- species when the latter encounter

the edge of the sink. The diameter of the sink corresponds to the

distance between centers of the reactants when they form an encounter

complex, while its charge and diffusivity are those of the reference

ion.

In the frame of the sink, the B- species diffuse and migrate in

spherically symmetric fashion with diffusion coefficient D_. This
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isotropy on the molecular scale reflects the continuum approximation. To

exploit this symmetry, the sink is regarded as stationary and situated

at the center of a spherical coordinate system, and its thermal motion

is accounted for by replacing the diffusivity of the B species by the

sum of the diffusivities 2D = D+ + D_.

The frequency of encounters between the reference ion and the B- ions is

given by the net inward flux -4nr2rb(r,t) of the latter across a closed

surface coincident with the edge of the sink at r = . The net rate of

disappearance of B- ions is the net flux associated with a single sink

multiplied by the concentration [A+ ] of sinks:

ddB-] = [A+]4,2rb(,t) - k 2[A+][B-] (A.53)

The rate constant follows as

4nk2rb(,t)
k12(t) - -

CB-]

(A.54)

The radial flux density rb(r,t) and the local concentration

B- ions are coupled through Fick's first and second laws:

cb(r,t) of

rb(rt) = -2D( r + kT ar

ac
acb -1. a 2rb
- -a - (r2r 3a .t r2 ar b

where U is the potential of the average force between ions. Solutions of

Eqs. A.55 are subject to the boundary-conditions

Cb(a,t) = ; U(,t) = m (A.56a,b)

cb(",t) = [B-] ; U(m,t) = 0

cb(r,U) = [B-]

(A.55a,b)

(A.57a,b)

(A.58)(r > )
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The widely expressed criticism (67,68) of the boundary condition Eq.

A.56a stems from the failure on the part of these authors to define an

intermediate complex consistent with that condition, and their

insistence that the theory apply to the formation of what has been

called here a transformed complex (Eq. A.40). They regard. the

transformed complex as the only reaction product that is present in

significant concentration, a situation modeled here by case B of Sec.

A.5. In order to represent the reaction with one step, they require a

boundary condition that equates the inward flux of B- at the "reaction

radius" r = to a "reaction flux" that reflects a net rate in the

second step in Eq. A.40. The intermediate consisting of a B- ion at the

reaction radius is not identified as a distinct species, and thus

b(Q,t) is nonzero.

With the present definitions (Sec. A.5), cb((,t) must be zero because

the entity formed by two ions with centers separated by a distance 

constitutes an encounter complex which is regarded as distinct. It is

the introduction of such a complex that, despite its relatively small

concentration, permits application of the Smoluchowski-Debye method with

the original boundary condition (Eq. A.56a), while necessitating

separation of the reaction into two steps. Whets case B of Sec. A.5

applies, the two approaches are reconcilable, as they must be since the

negligible concentration of the intermediate complex implies that it has

no unique representation.

Conditions for Quasistationary Reaction Rate: When U = , Eqs. A.55 have

the solution

cb(r,t) = B-] 1 - t erfc(r (A.59)

The rate constant follows from Eqs. A.54, A.55a (with U = ), and A.59
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as

k1 2(t)= 
8i 2D a b D + (A.60)
[B-] a t L n2

Collins and Kimball (69) note that Fick's second law is applicable only

for t >> -1 = <s2 >/6D, where v is the frequency of random "jumps" of

the diffusing molecules and <s2> is the mean square jump length. Thus

the singularity in k1 2 at t = 0 must be ignored. These authors calculate

the initial reaction rate based on random walk diffusion equations, and

find that it does not significantly differ from the stationary rate

(given by Eq. A.60 with t ) when the ratio a/<s> 1. As this ratio

increases, so does the ratio k1 2 (0)/k12(m), and k1 2 can be regarded as a

constant only on time scales long compared with the time

O2
= 2nD (A.61)

that characterizes relaxation of the concentration distribution. In

particular, Tr must be short compared with the time characterizing

changes in the average concentration [B-], which from Eqs. A.53 and A.60

is

·c = (kl2 [A+]-
1 = (8nDA+]) -1 (A.62)

Thus k1 2 is quasistationary if

OL ( < c e < dr (A.63)

where dr - [A+]- 1 / 3 is the mean spacing between reactive ions. Note that

this condition is consistent with the original continuum approximation

for the solvent.
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No solution of the time dependent Eqs. A.55 is available when the

interaction energy U is significant. However, the usefullness of the

long time solution with U = 0 encourages solution of the steady state

equation directly. Thus, with rb regarded as a constant, Eq. A.55a is

readily integrated subject to Eqs. A.57:

[ r2rb(r) dre (UkT
cb(r) = exp(-U/kT) (B- + 2D exp(U/kT) (A.64)

Finally, with Eqs. A.56 applied, Eqs. A.54 and A.64 yield

k12 = Bnaeff eff -t exp(U/kT) d 1 (A.65)

which is Debye's general result. Definition of an effective ion size

aeff points up the similarity between Eq. A.65 and Eq. A.60 when the

quasistationary condition Eq. A.63 holds, and suggests that the latter

be generalized to

%eff << d (A.66)

When the interaction is attractive (U < 0), eff >) , and thus while Eq.

A.66 is more tentative than Eq. A.63, it is also more restrictive.

Application to Turbulent Flows: When the conservation equations (A.2 to

A.4) are applied to turbulent flows, the diffusivities that appear

explicitly in those equations must include the eddy contribution. If the

recombination rate (R) is still to be modeled the question arises

whether Eq. A.65 still applies since a diffusion process is also

implicit in the latter. As in the third assumption in Sec. A.3, the

answer hinges on whether the smallest eddies, within which molecular

effects prevail, are still large enough to contain many reactants (61).

Thus the ordering of lengths

II
I
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aeff < < dr < < turbulence scale (A.67)

appears necessary.

Nature of the Concentration Gradient: Collins and Kimball (67) ques-

tioned the nature of the postulated concentration gradient that helps

maintain a flux of reactants towards the sink. If the gradient develops

because a reaction has depleted the local concentration of reactants,

then the gradient is no longer of interest because the reference ion has

already been discharged. These authors proceed to resolve this dilemma

by showing that the knowledge that a given ion has not yet reacted at a

given time diminishes the probability of a reactive partner being in the

immediate neighborhood. The probable distributions are still governed by

Fick's laws, and in that sense the postulated gradients are real and

must be recognized by treatments of chemical kinetics.

Interaction Enerqy: Equation A.65 expresses the limiting recombination

rate k1 2 in terms of the general interaction energy (U) and the ion size

parameter (). Now U is specified, the rate constant is evaluated, and

the result is compared to Langevin's rate. Consistent with Eq. A.67 the

concentration of reactants is assumed sufficiently dilute that they are

randomly distributed, and thus the time average electric potential in

the vicinity of the reference ion is that of a point charge, so that

(r) = i z e 2

U(r) = - r(A.68)

Debye (70) carries out the integration called for in Eq. A.65 and finds

k12 8"D exp(U()/kT - (A.69)
exp(U(%)/kT) - 1

Inserting Eq. A.68 and the Einstein relations into-Sq. A.69, and forming



212

a ratio with Eq. A.23 yields

k12 1 -zZe 2

kL 1 - exp(-biV)- 4jn/2 kT (A.70)

where bij is the separation between ions of valence zi and zj at which

the coulomb and thermal energies are equal. Note that bij > 0 when

zizj < 0, and that the predicted rate constant exceeds Langevin's rate

to a degree that is significant when

(bij/M) i 0(1) (A.71)

that is, when the coulomb energy of two oppositely charged reactants in

contact has a magnitude of the order of or less than the thermal energy.

To appreciate the reason, it should be noted that both Langevin's and

Debye's rates account for the coulomb interaction, but while Langevin's

evidently represents a point charge solution, Debye models the finite

size of the reactants. That Debye's rate is the larger reflects the fact

that Brownian motion will ultimately bring together two finite-sized

molecules even without the coulomb attraction. However, this additional

mechanism for producing an encounter can only be noticeable when the

coulomb interaction fails to dominate the thermal energy, as is the case

when Eq. A.71 holds.

For a monovalent electrolyte at room temperature, find that

bi = 5.6 x 10-8 (A.72)

t eLr

where er = E/% O is the relative permittivity of the solvent. With of
0

the order of 10 A, Eq. A.72 indicates that the finite size is

unimportant when s r is less than about A.71, and thus k12 X kL for
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dielectric media. For less dilute solutions, the interaction is

screened by the Debye-Buckel ionic atmosphere and k2 kL. Thus, the

necessary condition for chemical equilibrium Eq. A.52 reduces to

I 9 << (A.73)

In Chapters 5 and 6 the characteristic time is a liquid transit time

based on the liquid velocity at the edge of the diffusion sublayer in a

tube and the length of the tube ( 8 = L/vS).
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Appendix B

TRAVELING-WAVE PUMPING OF LOW VISCOSITY LIQUIDS

B.1 Introduction

Like the standing-wave interaction of Chapter 6, the technique described

below for probing the liquid-insulating solid interface avoids direct

liquid-electrode contact by capacitive coupling between excited external

electrodes and an internal charge distribution. Again, the electrical

frequency () and wavenumber (k) are imposed, but now the applied

potential is a traveling wave rather than the superposition of forward

and backward waves that comprise the standing wave (Eq. 6.18). However,

whereas in the induction sensor the flow is also imposed, and the

combined effects of convection and conduction on the field-induced

volume charge distribution are sensed electrically, now the motions of

the initially quiescent liquid are induced by the applied field. The

helical winding remains a convenient way to constrain the potential at

the outer surface of the insulating tube, and in the experiment

described in Sec. B.2 the induced motion is detected as a pressure

difference developed across the ends of the winding. The applied fields

needed to induce observable motion are typically of the order of those

inadvertently generated by an imposed flow (see Chapter 3), and hence

the technique is intended as one for studying natural processes under

controlled conditions.

Like the standing-wave interaction, the traveling-wave pump has its

origins in a study (71) of a free liquid surface. There, the pumping is

accounted for by a model that regards the liquid as having a uniform

conductivity and permittivity, and thereby confines the net charge and

hence the electromechanical coupling to the free surface. In the

presence of thermal gradients in the liquid, which imply gradients.in

electrical conductivity, an ohmic model (72) still predicts pumping even

if a free surface is absent, because the applied field can induce a net
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charge in the liquid bulk.

However, the ohmic model cannot account for the observed bulk electro-

mechanical coupling in a (presumably) isothermal liquid. In a model (73)

for the pumping of relatively viscous liquids, the fundamental species

conservation equations predict that a net charge is induced in a thin

liquid layer at the interface while the bulk of the liquid remains

charge-free. With the thickness of the coupling layer determined by the

migration length (Lm = bEi) based on the .excitation period , applica-

bility is restricted to relatively viscous liquids by the requirement

that Lm be small enough compared with the excitation wavelength to

justify a quasi-one-dimensional description of field quantities and the

neglect of convection effects on the induced charge. For example, with

an absolute room temperature viscosity of n 0.1, a typical ion

mobility in dioctyl-phthalate is b 2 x 10 10 With E and of the

order of 106 V/m and 1.0 s respectively, the thickness of the coupling

layer (Lm 200 mu) is easily exceeded by the wavelength associated with

the wire electrodes used in practice.

In the low viscosity liquids typical of cooling applications the larger

ion mobilities (see Table 3.1) imply migration lengths that may be com-

parable to both the excitation wavelength and the tube diameter. Thus,

the electromechanical coupling is distributed throughout the liquid bulk

and now neither the quasi-one dimensional model nor the neglect of

convection effects is appropriate. The model outlined in Sec. B.3

pictures the net charge in the liquid bulk as being due to ions ejected

from the liquid-solid interface under the influence of the normal

component of the applied field. The ions may originate in a charge

double layer or they may result from charge transfer across the

interface. At least as pictured by the model, the pumping interaction

hinges on the same physical process that underlies electrodialysis,

namely, the passage of ions between the solution and the interface (or

even the solid phase). However, while in electrodialysis the passage is

detected as a current in an external circuit or by an effect on the
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liquid conductivity, in the traveling-wave pump the extent of ion

injection into the liquid bulk is reflected by the electrical force

exerted, and the motion induced, by the tangential component of the

applied field.

B.2 Experimental Arrangement and Preliminary Results

Figure B.1 illustrates the pump experiment. A helical winding on a

section of insulating tube supports a traveling wave of potential that

advances essentially along the tube length. The tube extends beyond both

ends of the winding and rises vertically to contain the liquid in the

fashion of a manometer. Exciting the winding induces a time-average

longitudinal electrical force density in the liquid bulk. The pressure

difference developed as a result between the ends of the winding is then

determined from liquid displacement in the vertical sections.

Figure B.2 illustrates the pattern of response typical of the extensive

data acquired for Freon in Tefzel tubes. Pumping is said to be forward

when the average electrical force is in the same direction as that in

which the traveling wave advances. Backward pumping corresponds to the

force and the phase velocity being oppositely directed. As the phase

velocity and traveling wave amplitude are varied, regimes of both

forward and backward pumping are observed.

Apparatus for the traveling wave pumping of liquid through a two-foot

glass column packed with insulating particles has also been constructed.

Preliminary tests with Teflon particles typically 3mm in diameter

indicate that pressure differences can be developed which are comparable

to those observed for the thirty-foot length of open tube. However,

pumping through the column appears to be significant over a much

narrower range of liquid conductivities.

There are two questions one would like to have answered by the

experiments. First, is the flow the fully developed laminar one assumed
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Fig. B.1 Experimental arrangement for traveling-wave pumping.
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Pig. B.2 Typical dependence of -displacement d (Fig. B.1) on traveling-

wave amplitude and frequency.
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in the model of the next section. Theoretical considerations may

indicate whether the laminar flow i:s likely to be unstable.

Alternatively, an experimental approach is possible using- a. laser

Doppler anemometer to reveal the details of the liquid motions. The

second question is whether there is any evidence of charge injection.

This evidence might take two forms: a threshold field for pumping, and a

qualitative change in behavior when the migration length Lm is of the

order of the tube radius. An unambiguous threshold proved difficult to

observe, partly because the liquid was slow to settle completely after a

disturbance. However, a strong indication that charge injection is

involved is the correlation between the cross-over points in Fig. B.2

and the excitation periods obtained by setting the migration length L =

bkVT equal to the tube radius. Here, k is the wavenumber 2n/X, where X

is the excitation wavelength.

B.3 Model Outline and Preliminary Numerical Results

The simple model for the pumping presented below is intended to apply

when the dominant source of net charge in the liquid bulk is ion in-

jection from the liquid-insulating solid interface. The net charge den-

sity is assumed tenuous enough that the electric field in the liquid is

essentially that imposed by the applied potential. Thus, the injected

ions travel along characteristic lines determined by the imposed field

and an initially unknown velocity profile that must be consistent with

the average tangential electric force density. To specify the net charge

density (and hence the force density) at a given point, the ion

trajectory through that point must be traced back to the interface where

the normal field component determines the magnitude of the injected

charge through a (trial) "injection law." The interface is continually

"replenished' as the ions eventually return to the interface where it

intercepts a characteristic line.

Because the velocity profile is needed to evaluate the force density
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which then determines that profile, a trial profile must be specified to

initialize the analysis. In what may or may not generally be a

convergent procedure, the predicted velocity profile then becomes the

new trial profile in the succeeding iteration. A self-consistent result

is obtained when the trial and predicted velocity profiles agree.

The penetration of injected ions into the bulk of the low viscosity

liquid makes it difficult to develop a model that is "universal" in the

sense of being applicable to a general configuration of the liquid con-

tainer. For its simplicity, and because it represents the tube configu-

ration whenever the tube radius (a) is large compared with the excita-

tion wavelength, a planar half-space of liquid (Fig. B.3) is the context

for presenting the model. Four assumptions are made:

[a] The fluid mechanical response is a fully developed laminar flow of

low enough Reynolds number that the velocity profile satisfies a creep-

flow model. Thus, in the configuration of Fig. B.3 the velocity field

takes the form v = vz(x)z and a stream function can be defined such that

vz(x) d ; (x) = vdx ; (0) 0 (B.l)

[b] The volume charge density remains small enough that the applied

electric field dominates the space charge field. In this weak injection

limit the potential in the liquid half-space satisfies Laplace's equa-

tion subject to boundary conditions that specify the potential at the

interface and require the potential to vanish far from the interface!

$(x,z,t) = Vocos(ky)exp(-kx) ; ky (wt - kz) (B.2)

Without loss of generality, the thickness (w) of the insulating wall is

regarded as small compared with the excitation wavelength (2n/k) so that

the potential at the liquid-solid interface is essentially that at the
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C = V cos (t
a

insulating
wall

- kz)

2a

I
4 = V cos (wt - kz)

0

Fig. B.3 Planar model with channel half-width (a) much greater than ex-
citation wavelength (X).
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electrodes. If kw is not small, the amplitude and phase of the potential

at the interface relative to that at the electrodes is readily deter-

mined from "transfer relations" like those used in Sec. 6.3.4.

[c] Ion diffusion is negligible. This is justified if the diffusion time

(X2/Dm) vastly exceeds the transit time (X/bEo; Eo kVo), a condition

that is equivalent to requiring the applied potential to vastly exceed

the thermal voltage.

[d] The transit time (X/bEo) is short compared with the charge

relaxation time ( = sl/o). Thus, injected ions are not neutralized by

conduction processes. When recombination is Langevin the chemical

relaxation time cr is of the order of the charge relaxation time T1

(see Eq. A.31 with kR 4 kL and 4 0). Thus, the transit time is also

exceeded by the time that characterizes ion recombination, and hence the

injected charge density retains its initial magnitude over the entire

trajectory.

Bernoulli's equation relates the measurable lateral displacement to the

pressure gradient induced by the traveling wave of potential:

ead = ~t~e) cotcot((e8)] cdo

ad = cot(e)Ah = ct(e) ap =cot ) dz (B.3)
Pmg Pmg dz

Here p is the pressure difference between points in the liquid just

beyond the ends of the winding (of length L) where the velocity is

negligble. Consistent with the fully developed velocity profile

(assumption [a]), the final equality in Eq. B.3 implies a uniform

pressure gradient along the excited section of the tube. In the planar

coordinates appropriate to the developed model of Fig. B.3 the

creep-flow limit of the Navier-Stokes equation relates the pressure

gradient to the electrical force density:

d2V=d_ = + d 2 (B.4)
dz dx2

. 4'
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This is to be solved subject to the no-slip condition at the wall and

the condition that the shear stress vanish at the plane of symmetry a

distance from the interface equal to the tube radius (a)!

dvz
vz(0) = ; dx(a) = B.5)

For the static head measurement, there is no net flow across any plane

normal to the z-axis:

rvz(x)dx = 0 (B.6)

Subject to these conditions, Eq. B.4 is integrated twice to give

Z(X) = Fz(x)dx dx' - (ax - x2/2 ] (B.7)

and integrated third time to give

-d = I P z(X)dX dx' dx (B.8)dz 3 J x

The electric force density is the averaged one

FZ(x) = P(y)Ez(x,y)d(ky) = 0 (B.9)

With assumption b], field components in the half-space are consistent

with the Laplacian potential Eq. B.2

; :Ez = -EOsin(ky)exp(-kx) (B.lOa,b)Ex = Ecos(ky)exp(-kx)
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where Eo kVo. In view of assumption c] the inertialess ions are

transported only by migration and convection. Thus, their trajectories

or characteristic lines are described by

dx b(
dt +bEx = ±bEocos(ky)exp(-kx) (B.11)

dt = p - d = (v - v- z(x)+ bE&oi(ky)exp(-kx)) (B.12)

where vp = /k is the phase velocity of the traveling wave and the upper

and lower signs correspond to positive and negative ions, respectively.

If now dt is eliminated between Eqs. B.11 and B.12 the result

dx(vp - Vz(x) bEosin(ky)exp(-kx)) (B.13)

+ dy(T bEOcos(ky)exp(-kx)) = 0

is a perfect differential because the time dependence is eliminated with

the definition of (ky) in Eq. B.2. In what amounts to a determination of

vector potentials (in the frame of the traveling wave) for the solenoi-

dal flow and field, Eq. B.13 is integrated to give

xvp - O(x) (bEo/k)sin(ky)exp(-kx) = C+ (B.14)

where is defined in Eq. B.1 and C.. are integration constants. With a

view towards application of an injection law, these constants are

expressed in terms of the position (x,y) = (g,y±) on the interface where

the characteristic lines are intercepted:

(kx)vp - k(x)) 
(kxv, Jsx + sin(ky)exp(-kx) = sin(ky±) (B.15)~[ ~bE°



224

In general, of the two solutions of Eq. B.15 for y (-1 < y < ) the

desired one is that corresponding to the point of entry of the

characteristic line. Near the interface where the liquid velocity is

negligible, characteristic lines and field lines coincide, and thus

positive (negative) charge can be injected only where the normal field

E:-is directed into (out of) the liquid bulk. However, in the present

case it proves unnecessary to distinguish between the two solutions

because the normal field has the same magnitude where a given

characteristic line both enters and leaves the liquid bulk. Thus, with

the proviso that a charged species can be injected from only one end of

a characteristic line, the injected charge densities have the functional

form

P = f+( IEx(O,yO)I ) (B.16)

where the normal field intensity (Eq. B.1la) evaluated at the point of

entry is

IEX(0,y) = Eocos(ky±) = E(l - sin2 (kyo)1/2 (B.17b)

Thus, given assumption [d] and a trial stream function (x), the charge

density at (x,y) is the algebraic sum of the individual charge densities

Po determined by eliminating Ex(B,y±) and sin(ky±) between Eqs. B.15,

B.16 and B.17.

As might be expected intuitively, there are points (x,y) in the liquid

(different for the two species) for which Eq. B.15 has no (real) solu-

tions. For the planar half-space, this implies that the characteristic

line through that point does not intercept the injecting wall, and it is

expedient to simply set the charge density (and hence the force density)

there to zero. However, with a view towards generalizing the model to

the more complicated case of a liquid channel bounded by two injecting.
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walls spaced closely enough that the characteristic line through a given

point may intercept the more distant wall, it is more instructive to

interpret the absence of solutions in terms of critical points and

critical characteristic lines. Critical points , are points of

zero force, and hence satisfy

(Vz(x) - vp)Z ± bE(x±y±) = 0 (B.18)

Thus while y± = n/2 and -/2, is given implicitly by

(vz(x) - vp) i bEosin(ky±)exp(-x) = 0 (B.19)

Critical characteristic lines are those which pass through the critical

points. For the planar half-space the critical lines (again, different

for the two species) set off regions of the liquid which are not

accessible to injected charge. For the liquid channel with two injecting

and interacting walls, the critical lines define regions of four types

corresponding to combinations of the two possible origins and two

possible destinations of charge on the enclosed characteristic lines.

This situation is complicated by the fact that the critical points do

not lie on the channel plane of symmetry.

With all of the quantities of interest expressed as integrals over space

(Eqs. B.7 to B.9), acceptable accuracy can be expected from evaluation

of the net charge density on a relatively coarse grid of points. Once

the net charge density is determined at each grid point from Eqs.' B.15

to B.17, the average longitudinal force density, the pressure gradient

and the velocity profile are obtained in succession from Eqs. B.9, B.8

and B.7. The predicted velocity profile generates the new trial stream

function through Eq. B.1, and the procedure is repeated until either the

trial and predicted profiles are in satisfactory agreement or it becomes

clear that the two profiles are not converging.
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In a preliminary computer implementation of this procedure, the two

profiles did converge. The results indicate that at least for some

excitation amplitudes and frequencies, both forward and backward pumping

are simultaneously consistent with the model. Because backward pumping

is predicted for the initially quiescent liquid, backward pumping

appears to be the only accessible final state, provided it is a stable

one. There is, however, some suggestion from experimental observation

that backward pumping is not always a stable state, and thus forward

pumping may result even when it is not directly accessible from the

initial state. At excitation frequencies and amplitudes for which

forward pumping is actually recorded, an initial backward displacement

is sometimes observed before the forward pumping sets in, particularly

when the excitation is applied abruptly.
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NOTATION

(MKS units are used unless otherwise noted)

a tube inside radius (m)

A cross sectional area of dead-end channels (Sec. 4.2.3)

A (Sec. 6.3.4)

A+ positive ionic species (Sec. A.5)

b average ion mobility (b+ + b_)/2

b+ positive and negative ion mobilities (m2/V-s)

bij effective range of coulombic interaction (Sec. A.6)

B (Sec. 6.3.4)

Bn (Eq. 3.17)

B- negative ionic species (Sec. A.5)

cb local concentration of B- (m- 3) (Sec. A.6)

Ci concentration of inert ions (Sec. A.6)

cr concentration of reactive ions (Sec. A.6)

c+ molar concentrations of ionic species (moles/m3)

C neutral solute species (Sec. A.5)

Cn (Eq. 3.20)

CE encounter complex (Sec. A.5)

CT transformed complex (Sec. A.5)

d development length (m)

dr mean separation of reactive ions (m) (Sec. A.6)

D a8/ax
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De local effective diffusivity (m2/s)

Dm average molecular diffusivity (m2/s)

Dn diffusivity of neutral species (m2/s)

Dt eddy diffusivity (m2/s)

D+ diffusivity of ionic species (m2/s)

Dr complex amplitude of perturbation radial electric displacment

Dx -Dr

e electronic charge, 1.6 x 1 1 9 (C)

en Fourier coefficients (Eq. 3.30)

E expansion efficiency (Eq. 4.9)

E electric field (V/m)

Ew electric field within expansion wall (Sec. 4.2.3)

Er radial electric field in liquid at tuie wall (V/m)

Er radial electric field in gas at tube wall (V/m)

Er radial electric field inside tube wall (V/m)

Ez axial component of electric field (V/m)

F Faraday's constant, 96,500 (C/mole)

Fn (Eqs. 2.2 and 3.27)

Fz time-averaged axial electric force density (Sec. B.3)

G generation rate (C/s-m3) (Sec. A.2)

G,Gi conductance of dead-end channel (Sec. 4.2.3)

i2, i3 charging currents (A)

I total axial current (A)

Ii current from the ith sleeve segment to ground (A)

19. axial current carried by liquid bulk (A)
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In modified Bessel function of the first kind and nth order

I s convection or streaming current (A)

Iw axial current carried by the tube wall (A)

IN leakage current carried by dead-end channels (A)

j '
3 current density (A/m2)

3+ current densities carried by positive and negative ions (A/m
2)

'.w exchange current density at liquid-solid interface (A/m
2)

JW radial current density inside wall (A/m2)

k Boltzman's constant, 1.38 x 10-23 (J/K° )

k wave number (2n/X)

km mass transfer coefficient (m/s)

kn wave number ( n/L)

Kn modified Bessel function of the second kind and nth order

kD effective dissociation constant (Sec. A.2)

kL Langevin's recombination coefficient (m3/s)

kR effective recombination constant (m3/s)'(Sec. A.2)

k12 recombination rate constant (m3/s)

k21 dissociation rate constant (m3/s)

k2 3 rate constant (s-1 )

k3 2 rate constant (5s- 1 ; i=l) or (m3/s ; i=2)

K equilibrium constant (K = kD/kR) 

K1 equilibrium constant (K1 = kl2/k21)

K2 equilibrium constant (K2 =k 2 3/k 32)

K+ coefficient (m/s)
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K- coefficient (m/s)

I length of a sleeve segment (Chapter 5)

9. length of one wire electrode (Chapter 6)

. characteristic length (Sec. A.4)

L tube length (m)

L axial length of helical winding (m)

Le linear expansion dimension (m)

n density of neutral species (m- 3) (Sec. A.2)

N number of dead-end channels (Sec. 4.2.3)

p liquid pressure (Kg/m-s2) (Sec. B.3)

Pi liquid pressure in expansion, inlet channel (Kg/m-s2)

pO liquid pressure in expansion outlet channel (Kg/m-s2 )

P power (W)

P+ coefficients (Sec. 6.3.4)

Q volume flow rate (m3/s)

Qdl total charge in diffuse part of double layer (C)

Qe total charge in insulating expansion (C)

(Qt total charge in insulating tube (C)

r radial coordinate

R radius of external conducting cylinder (m)

R resistance (Fig. 6.2)

R recombination rate (C/s-m3) (Sec. A.2)

Re(Z) real part of the complex argument Z

Re electric Reynolds number ( sU/oL)

Ry hydrodynamic Reynolds number':( 2aU/v)
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s total solute concentration (m- 3) (Sec. A.4)

S surface area (m2)

Sc Schmidt number (- v/Dm )

Sh Sherwood number (m kmLe/Dm)

T absolute temperature (K°)

T+ coefficients (Sec. 6.3.4)

U mean liquid velocity (m/s)

U potential of the average force (Sec. A.6)

vp phase velocity (m/s)

vx local time-averaged velocity (m/s)

vz local time-averaged velocity (m/s)

VT thermal voltage (kT/e 0.02? V)

vs liquid velocity at edge of diffusion sublayer (m/s)

V volume (m3)

Vo standing wave amplitude (V)

w thickness of the insulating wall of a tube or expansion (m)

x coordinate measuring distance from interface into liquid

z axial coordinate

zi unsigned ionic valence (Sec. 2.3.3)

zi,zj signed ionic valence (Sec. A.6)

OL (Sec. 5.3)

aL ion size parameter (Sec. A.6)

%eff effective ion size parameter (Sec. A.6)

8 (Sec. 5.3)

etl · liquid permittivity (F/m)
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permittivity of free space (F/m)

SW permittivity of tube wall (F/m)

dle effective conductivity ( c1 + (2/a)os)

local liquid conductivity (S/m)

(lo liquid bulk conductivity here p = 0 (S/m)

os surface conductivity (S)

conductivity of tube wall (S/m)

c(z,t) surface charge density averaged over tube circumference (C/m2)

M(t) surface charge density averaged cver entire tube (C/m2)

+ surface charge densities (C/m2 )

conductivity (Sec. 6.3.3)

y conductivity gradient (Sec. 6.3.3)

y degree of dissociation in equilibrium (Appendix A)

rb radial flux density of B- ions (m-2 s-1 ) (Appendix A)

rn flux density of neutral species (m-2s- ) (Appendix A)

r± radial flux density of ionic species (m-2 s-1 )
r

electric potential (V)

On Fourier coefficients (V)

$O complex amplitude of perturbation potential V)

time characterizing evolution of surface charge in expansion (s)

characteristic time (Appendix A)

temporal period of traveling-wave excitation (Appendix B)

time characterizing charging transient in insulating tube (Secs.

2.1, 3.2, 5.3)
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x1 time characterizing evolution of surface charge in expansion

(Sec. 4.2.3)

a relaxation time of the ion distribution (Appendix A)

Tc relaxation time of the average ion concentration (Appendix A)

tcr chemical relaxation time (Appendix A)

cd diffusion time for neutral species (Appendix A)

D diffusion time for ionic species (Appendix A)

Tex duration of an experiment

'T% charge relaxation time in liquid '(- e/1 )

'Tm migration time (Appendix A)

time characterizing the nth Fourier mode (s)

tr liquid residence time in expansion ( V/Q)

shear stress at interface (Kg/m-s2)

charge relaxation time in wall (e¢/ao)

s transit time (L/v8)

p(r,z) local volume charge density (C/m3 )

p(x,z) volume charge density in diffusion sublayer in tube (C/m3)

p(x,t) volume charge density in diffusion sublayer in expansion (C/m3)

p(z,t) volume charge density averaged over tube cross section (C/m3)

p(t) volume charge density in turbulent core of expansion (C/m3)

Pi(t) volume charge density at expansion inlet (C/m
3)

Pm mass density (Kg/m3)

tP = ao/2eb (Appendix A)

volume charge density at liquid-solid interface ( (a,z))

P+ = e[A+], eB-] (C/m3) (Appendix A)
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effective line charge density (C/m)

X wavelength of standing- or traveling-wave excitation (2n/k)

Xm molecular Debye length (m)

Xn Fourier coefficients (C/m)

Xt turbulent Debye length (m) (-eDt/a)

8 diffusion sublayer thickness (m)

viscous sublayer thickness (m)

in absolute viscosity (Kg/m-s)

v kinematic viscosity (m2/s)

u mean axial ion velocity (m/s)

uO response in volts (Chapter 6)

angular frequency (s-1 )

zeta potential (V)
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