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ABSTRACT 

This paper presents ElectriSense, a new solution for 

automatically detecting and classifying the use of electronic 

devices in a home from a single point of sensing. 

ElectriSense relies on the fact that most modern consumer 

electronics and fluorescent lighting employ switch mode 

power supplies (SMPS) to achieve high efficiency. These 
power supplies continuously generate high frequency 

electromagnetic interference (EMI) during operation that 

propagates throughout a home’s power wiring. We show 

both analytically and by in-home experimentation that EMI 

signals are stable and predictable based on the device’s 

switching frequency characteristics. Unlike past transient 

noise-based solutions, this new approach provides the ability 

for EMI signatures to be applicable across homes while still 

being able to differentiate between similar devices in a home. 

We have evaluated our solution in seven homes, including 

one six-month deployment. Our results show that 
ElectriSense can identify and classify the usage of individual 

devices with a mean accuracy of 93.82%. 

Author Keywords 

Infrastructure-mediated sensing, activity sensing, activity 

recognition, energy monitoring 

ACM Classification Keywords 

H5.m. Information interfaces and presentation (e.g., HCI): 

Miscellaneous.  
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INTRODUCTION 

Low-cost and easy-to-install methods to sense and model 

human activity in the home have long been a central focus of 

UbiComp research. Sensing disaggregated electricity usage 

in the home (i.e., at the individual source level) has emerged 

as one particularly promising area for activity-inference 

research because of how often it reveals the resident’s current 

activity (e.g., stove usage implies cooking). In previous work, 

Patel et al. [15] introduced a single-point sensing method for 

automatically identifying the usage of resistive and inductive 

electrical loads. In this work, we focus on sensing a different 

class of devices, namely switched mode power supplies 
(SMPS), which are used in most modern consumer 

electronics as well as in fluorescent lighting. 

Devices that rely on SMPS have become increasingly 

prevalent because of their higher efficiency, smaller size, and 

lower cost compared to traditional power supplies. 

Manufacturers are increasingly employing SMPS in their 

products to meet minimum efficiency requirements (e.g., the 

Department of Energy’s Energy Star program [4]). For 

example, in one of our deployment sites, all lights and most 

appliances used SMPS. In contrast to Patel et al.’s approach, 

which sensed voltage transients from the 
activation/deactivation of resistive and inductive electrical 

loads, we examine the continuous EMI signals generated by 

all SMPS based devices due to their reliance on 

asynchronous high frequency oscillators for operation. 

In particular, our system, called ElectriSense, senses the 

electromagnetic interference (EMI) created by SMPS 

oscillators. We have found through experimentation that the 

EMI generated by SMPS has a highly repeatable frequency-

domain signature that can be sensed and identified 

throughout a typical home during device operation. Perhaps 

more importantly, we have found that these signatures are 

largely specific to a device’s circuit design and maintain 
consistent properties across homes. This is in contrast to 

much of the work in infrastructure-mediated sensing 

[3,6,15,16,17], which involve sensing techniques that require 

per-home calibration. Moreover, because we rely on a 

continuous noise signature, we can identify devices that do 

not generate transients such as those with “soft switches” and 

transient suppressors. Finally, given that Patel et al. [15] and 

ElectriSense actually sense different classes of devices, they 

are complementary rather than competing techniques. 

Through experimental trials in seven homes and one six-

month long deployment we show that ElectriSense can 
correctly identify and classify SMPS electrical events, 

reasonably well down to the individual source level (e.g., a 
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particular TV, Laptop Charger, or a CFL Lamp). We also 

show that ElectriSense is robust to simultaneous device 

activation and can reliably detect overlapping device 

activation events (one aspect of other infrastructure-mediated 

sensing approaches that is not often evaluated, e.g., [6,15]). 

Finally, we show that our approach works irrespective of a 
device’s plug-in location in the home and also that we can 

distinguish between two devices of the same model and 

brand. 

RELATED WORK 

Distributed Sensing 

Detecting and classifying electrical appliance activation has 

been done in the distributed model wherein each device has a 

dedicated sensor, which looks for device state change 

[14,18]. Device level sensing is conceptually straightforward 

but requires time consuming and expensive installation and 

maintenance. Indirect sensing techniques have also been used 

where researchers placed microphones, accelerometers and 

video cameras throughout a home to infer activity [2,5]. Such 

techniques are effective but require tedious installation and 

maintenance and may also raise privacy concerns in a home 

setting. A more recent technique for electrical event detection 
is to indirectly listen to the activation of switches and motors 

through microphones distributed through a living space [13].  

Single-Point Sensing 

Pioneering work from the 1980s in single point sensing of 

electrical events focused on the design of new in-line 

metering techniques for monitoring whole-house appliance 

usage [1,8,9]. Hart et al.’s approach used a current sensor 

installed by an electrician in-line with a home's power meter 

to monitor voltage and current waveforms for the incoming 

power to the home. Because of the limitations of low cost 

digital signal processors in the 1980s and 1990s, this work 

considered only line frequency at 60Hz and low order 

harmonics up to a few kHz. They relied on step change in 

power, the active and reactive power components of each 
appliance and the time of day statistics to detect and classify 

appliance usage. Additionally, most consumer electronic 

devices at that time did not employ SMPS, because of the 

immature state of SMPS technology and the absence of low 

cost, single chip SMPS implementations.   

Infrastructure-Mediated Sensing 

Recent advances in infrastructure-mediated sensing have 

provided an alternative approach to inferring in-home 

activity through the detection of events affecting the home’s 

utility infrastructure [3,6,15,16,17]. Our approach falls within 

this class of sensing systems, but provide a significant 

advancement over prior work. 

Previous IMS approaches for detecting electrical appliance 

activation from an ordinary outlet (without requiring in-line 
installation) by Patel et.al. [15] leveraged transients generated 

by mechanically switched incandescent, heating, and motor 

loads to detect and classify electrical events (continuous 

noise was only briefly mentioned). This work showed that 

transient noise is generated whenever a mechanical switch is 

turned on or off due to tiny arcs generated inside the switch, 

which excites the step response of the home's electrical 

wiring transfer function. Capturing and analyzing transient 

noise is a computationally expensive process, and requires 

that the system continuously capture and analyze every 

transient noise event for reliable detection. There is no way to 
coherently integrate these transient events to improve 

detection likelihood as they occur infrequently and are 

relatively weak due to their broadband distribution of signal 

energy.  

Transients are an extrinsic property of mechanical switched 

loads, making their characteristics unpredictable and hence 

requiring supervised training for each physical device. Thus, 

signatures learned from one device cannot be applied to 

another even if they are similar. This also poses a challenge 

for identifying mobile devices, as the transients generated by 

a particular device change as the device is moved from one 

location to another. In contrast, our approach leverages 
signals that manifest from an engineered process, specifically 

the particular circuit design and the individual components a 

device uses, thus making the signal learned from one device 

applicable to other similar devices within and across homes. 

This eases the training process by allowing crowd-sourcing 

techniques to be applied. 

Another key motivation for our work is the fact that most 

modern consumer electronic appliances are moving towards 

having a “soft switch”, i.e. unlike a mechanical switch they 

make use of a software driven push button that cycles the 

power to the appliance electronically (for example via the 
infrared remote control of a flat-panel TV). In such devices, 

the indirect activation of the device by software driven 

electronic switch minimizes the transient generated at the 

moment of activation. We observed several devices, such as 

LCD monitors and DVD players that did not generate any 

detectable transients. Fortunately, these software driven 

devices are nearly always SMPS-based. 

THEORY OF OPERATION 

The electrical noise present on a power line when a device is 

operational is called conducted electro-magnetic interference 

(EMI), which can be classified into two types: transient and 

continuous. Transient noise is characterized by the short 

duration for which it can be observed, generally few tens of 

nanoseconds to a few milliseconds. Continuous noise on the 
other hand can be observed for as long as the device is 

operational. Both transient and continuous noise can either be 

concentrated within a narrow frequency band or spread over 

a wider bandwidth (also called broadband noise). A compact 

fluorescent light bulb (CFL) is an example of a device that 

generates continuous noise, which is conducted over the 

power line due to its physical contact with the power line. 

Since a home's electrical distribution system is 

interconnected in parallel at the home's circuit breaker panel, 

conducted EMI propagates widely from a given device 

throughout the electrical infrastructure.  



 

Continuous noise is usually intrinsic to the device's operation 

and internal electronics. Appliances like grinders, fans and 

hair dryers that make use of a motor create voltage noise 

synchronous to the frequency of AC power (60 Hz in the 

USA) and its harmonics (120Hz, 180Hz, etc.) due to the 

continuous making and breaking of electrical contact by the 
motor bushes. In contrast, modern SMPS based electronic 

devices generate noise that is synchronous to their power 

supply’s internal oscillator. 

 In contrast to traditional linear power regulation, a SMPS 

does not dissipate excess power as heat, but instead stores 

energy in an inductance and switches this stored energy in 

from the line and out to the load as required, thus wasting 

much less energy. The key to a SMPS’s smaller size and 

efficiency is its use of a power transistor to switch the stored 

energy at a high frequency, also known as the switching 

frequency. The switching frequency is much higher than the 

60Hz AC line frequency because at higher frequencies the 
inductors or transformers required are much smaller [7]. 

Typical SMPS operate at tens to hundreds of kHz. The 

switching waveform is adjusted to match the power 

requirements of the appliance it is powering. 

 

Figure 1: (Left) Circuit model of a SMPS with placement of the 

voltage probe. (Right) Frequency domain analysis at the voltage 

from probe showing EMI at 10 kHz. 

A CFL’s power supply employs the same fundamental 

switching mechanism to generate high voltages necessary to 

power the lamp. The switching action, which is the 

cornerstone of a SMPS’s operating principle, generates a 

large amount of EMI centered in frequency around the 

switching frequency. This phenomenon can be understood by 
modeling a simple DC-DC SMPS circuit that uses the same 

fundamental switching topology (See Figure 1). 

The large inductor L_PowerLine mimics the power line 

inductance. The SMPS is plugged into the power line. To 

measure the conducted EMI, we place a voltage probe V on 

the power line, which is analogous to having the single 

sensor plugged into the power line with a SMPS based 

device operational somewhere else. The switching frequency 

fc for the model is governed by the PER (period) parameter 

of the V_Switching component. We arbitrarily set it to 10 

kHz. Figure 1 shows a frequency domain plot of the noise at 
probe, which clearly shows that the power supply emits EMI, 

which is conducted over to the power line and is most 

prominent at the switching frequency fc (10 kHz here) and its 

harmonics. This is the same behavior that we observe when a 

SMPS based appliance is turned on in the home.  

In the US, the Federal Communications Commission (FCC) 

sets rules (47CFR part 15/18 Consumer Emission Limits) for 

any device that connects to the power line, which dictates the 

maximum amount of EMI a device can conduct back onto 

the power line. This limit is 66 dBuV for frequency range 

between 150 kHz to 500 kHz, which is nearly -40dBm across 
a 50 ohm load. The ElectriSense data acquisition system is 

sensitive enough to capture noise from -100 dBm to -10 dBm 

across a frequency range of 36kHz – 500kHz. 

 

Figure 2: Frequency spectrogram showing device actuation in a 

home. 

Figure 2 shows a frequency domain waterfall plot showing 

appliances being turned on and off. As is evident from the 

graph, when the device is turned on we see a narrowband 

continuous noise signature that lasts for the duration of the 

device’s operation. Also note that the noise center is 

strongest in intensity and then extends to lower and higher 

frequencies with decaying intensity, which can loosely be 

modeled with a Gaussian function having its mean at the 

switching frequency. This behavior can be attributed to the 

error tolerance of the components that make up the switching 

circuit core, as well as the characteristics of the power 
supply's load. If all the components were ideal, we would see 

a single narrow signal peak at the switching frequency. The 

error tolerance of SMPS components also allows for 

distinction between otherwise identical devices, such as a 

variety of units of the same model of CFL bulb. Finally, the 

power line itself can be thought of as a transfer function 

(difference in the inductance between the sensing source and 

the appliance) and provide additional discrimination among 

multiple similar devices. We show this experimentally later 

in this paper.  

 Dimmers also produce continuous noise due to the triggering 
of their internal triac switches, which can be used to detect 

and identify incandescent loads they control. In contrast to 

the narrowband noise produced by SMPS, a dimmer 

produces broadband noise spanning hundreds of kHz, which 

could be modeled as a Gaussian having very large variance. 

A detailed treatment of dimmers and differentiating between 

identical devices is presented later. 

 

 



 

SYSTEM DESCRIPTION AND OVERVIEW 

Our prototype system consists of a single custom Power Line 

Interface (PLI) plug-in module that can be plugged into any 

ordinary electrical outlet in the home (Figure 3). The output 

of the plug-in module is connected to a high speed data 

acquisition system based on the Universal Software Radio 

Peripheral (USRP) that digitizes the analog signal from the 

plug-in module and streams it over a USB connection to a 

data collection and analysis PC running GNU Radio, which 
in real-time samples and conditions the incoming signal. The 

ElectriSense algorithms then watch for an event and extract 

features that are used to identify and classify the device 

causing the event.  

Though we tested our system on a 120V, 60 Hz electrical 
infrastructure, our approach can easily be applied to electrical 

infrastructure utilizing different frequency and voltage rating 

with little change to the hardware and no change to the 

software. For homes that have split phase wiring (i.e. two 

120 V branches that are 180-degrees out of phase), the 

coupling between the two phases allows us to monitor at a 

single location and capture events on both. The exception to 

this and further discussion is presented later in the paper. 

 
Figure 4. Block diagram of major components of our system. 

IMPLEMENTATION DETAILS 

In this section, we describe the various components of our 

prototype system (Figure 4) and present in detail the 

hardware design and software algorithms used for event 

detection, feature extraction and classification. 

Hardware 

To capture and analyze the electrical noise on the power line, 

we built a custom power line interface (PLI) module for our 

analog frontend. It is necessary for this module to filter out 

the AC line frequency (60 Hz in the U.S.) so that the 

spectrum analyzer or any analog-to-digital device is not 

overloaded by the strong 60Hz frequency component. The 

PLI consists of a high pass filter, which has an essentially flat 

frequency response from 50 kHz to 30 Mhz. The 3 dB corner 
is at 36.7 kHz giving us a wide enough band to look at the 

complete range of any conducted EMI (see Figure 5 for the 

schematic). The filter design also includes a 10 dB attenuator 

so that a constant 50-ohm load is presented at the input of the 

data acquisition hardware, irrespective of the signal 

frequency or the AC line conditions. For safety and isolation 

from the line voltage, high voltage capacitors are required. It 

should be noted that the polarity shown should be strictly 

followed, i.e., the line and neutral lines should not be 

connected in reverse and the isolation capacitors should be of 

AC-line rated polyester film type for safety. 

 

Figure 5: Schematic of the plug-in power line interface module. 

The filtered signal is then fed into the USRP, which acts as a 

general purpose analog to digital converter sampling at a rate 

of 1 MHz set through the software. The digitized signal is 
streamed from the USRP to our processing software over 

USB.  

Software 

The incoming time domain signal stream from the USRP is 

buffered as 2048-point vectors and FFTs of these are 

computed to obtain the frequency domain signal. The 2048 

points are spread equally over the spectral width of 500 kHz, 

which yields a resolution of 244 Hz per FFT bin. The FFT 

vector or frequency vector is computed 244 times per second, 

which is then fed into our event detection and extraction 

software. 

We found that most SMPS devices generate noise peaks that 

are 8 dB to 60 dB above the baseline. The baseline noise in a 

home varies unpredictably between -90 dBm to -70 dBm 
across the entire spectrum with a period of few Hertz. Since 

the variability of the baseline noise is high, we must average 

the incoming frequency vector over time to obtain a stable 

baseline. We use a sliding window average with a window 

size of 25. Using a window that is too small results in an 

increase in the false positives whereas a large window size 

increases the shortest duration between near simultaneous 

events that is needed for the system to detect them as separate 

events.  

 

Figure 3: Our prototype system consists of a single plug-in 

module, acquisition hardware and the supporting software 



 

When the system first starts, it computes an average of 25 
frequency vectors and stores it as the baseline noise signature 

(Figure 6 Left) Thereafter, a new window is calculated every 

25 frequency vectors, and a difference vector with the 

baseline noise signature is computed. When a device is 

actuated and new noise in the frequency domain is 

introduced to the power line (Figure 6 Center), the difference 

vector reflects this change, thus segmenting the event (Figure 

6 Right). 

The event detection algorithm scans the difference vector to 

find any values that are greater than a predefined threshold. It 

should be noted that this is a global threshold that is set once 

and works across different homes. In our deployments, we 
found that 8 dB above the noise baseline was a sufficient 

power threshold.  Since the vectors in a window are 

averaged, if the window only partially overlaps with an 

event, the detection algorithm may still correctly detect it, but 

the difference vector will reflect a smaller magnitude. To 

mitigate this problem, when an event is detected, a new 

difference vector is calculated using the next window cycle. 

After the detection of an event, the baseline noise vector is 

updated appropriately so as to reflect the new noise floor of 

the power line.  

Our feature extraction algorithm finds peaks above the 
threshold using the difference vector and fits a Gaussian 

function to extract the mean, amplitude and variance 

parameters (Figure 6 Right). The change in amplitude can be 

positive or negative depending on whether the device is 

turned on or off. These noise signatures are always the 

inverse of each other for opposite state transitions. 

A feature vector for the suspected event is then created using 

the parameters of the center frequency, which is generally the 

global maximum frequency component. Other peaks may 

also be present as harmonics. We use K-Nearest Neighbor 

(KNN) with K=1 and a Euclidean distance metric with 

inverse weighting, which is well suited for this kind of low-
dimensionality data. These parameters were derived 

experimentally using a cross validation test over our entire 

dataset from seven different homes. 

IN HOME DEPLOYMENTS AND EVALUATION 

To validate our learning approach, we conducted 

experiments in seven different homes. We collected data 

from one house for a longer period, spanning six months and 

from multiple homes for a shorter period (spanning a single 

day). This allowed us to show the general applicability of our 
approach to a diverse set of homes as well as the long-term 

temporal stability of our sensing solution. Table 1 shows the 

summary of the homes used in our evaluation. 

ID 
Style/Built/ 

Remodeled 
Size/Floors 

No. of 

Test 

Devices 

No. of 

Events 

H1 
Apartment/1985/ 

NA 
750 sq. ft./ 1 flr. 10 135 

H2 
Single 

Family/2003/NA 
3000 sq. ft./ 2 

flrs. 
15 203 

H3 
Single 

Family/1974/2009 

1200 sq. ft./ 2 

flrs. + basement 
13 170 

H4 
Apartment/1910/ 

NA 
450 sq. ft./ 1 flr. 7 108 

H5 
Single 

Family/1960/NA 

1700 sq. ft./ 1 

flr. 
13 198 

H6 
Single 

Family/1926/2003 

2800 sq. ft./ 2 

flrs. + basement 
20 404 

H7

* 

Apartment/2009/ 

NA 
657 sq. ft./ 1 flr. 16 1358 

Table 1: A summary of the homes showing the style, size, 

number of appliances we tested and the number of events (* 

Long-term 6-month deployment). 

Data Collection Procedure 

Our system was packaged such that it could be rapidly setup 

in a home. The laptop, data acquisition hardware and a 

wireless router were pre-configured, connected properly, and 
setup on a rolling cart. For each home, we picked at random 

an available electrical outlet that had two sockets and 

plugged the PLI module into one and used the other to power 

our laptop and the USRP. Our laptop and the USRP of course 

generate their own EMI but this noise is subtracted from the 

baseline. After the installation, we made a note of every 

appliance, electronic device, and light fixture that 

incorporated a switching power supply. This included 

incandescent lights that were driven by a dimmer switch in 

addition to any light fixtures with CFL bulbs. For dimmers, 

we only collected events at 0% and 100% dim levels, 
because of the challenge of accurately and repeatedly setting 

intermediate dim levels. More analysis on dimmers is 

presented later. The collected labels were then fed into our 

ground truth labeling software. We then went through the 

home in two phases.  

In the first phase, we actuated each appliance on and off five 

to six times individually to ensure that we captured an 

Figure 6: (Left) Background noise observed on a particular power line. (Center) A new device is turned on, producing EMI 

that introduces new signals to the power line. (Right) After background subtraction the new signal features are extracted. The 

resulting Gaussian fit and its features amplitude (A), mean (µ) and variance (σ) are also shown. 



 

isolated signature for each appliance. Every time our system 

detected an event (i.e., when we turned on a device), the 

features were automatically extracted and sent to the labeling 

software’s queue running on an ultra-mobile Sony Vaio UX 

computer (UMPC). As events were being captured, we could 

label those events using the UMPC. This process was carried 
out for all of the devices in the home. 

For our second phase of data collection in each home, our 

goal was to collect data under a naturalistic setting allowing 

for overlapping and simultaneous events. To do so, (1) we 

asked the homeowner to perform certain activities (on an 

average three activities per home involving 2-4 devices 

each), such as watch TV, prepare a meal, etc. and (2) we 

actuated random appliances and/or logical groups of 

appliances such as turning on the DVD player, digital cable 

box, a gaming console and then a TV to simulate a TV 

watching experience through a universal remote. Events 

generated from these tasks were manually labeled. 

In addition to the devices already found in each of the test 

homes, we collected data from a laptop power adaptor, two 

CFL lamps and a camera charger that we took to each one of 

the deployment sites. To simulate a naturalistic use of each 

device, we moved them around in the home and plugged 

them into any available outlet.  This allowed us to analyze 

the stability of these noise signatures across different homes. 

The data collected by the labeling software was time 

stamped, labeled and stored in an XML database. Since we 

collect more features than required by our current approach, 

the XML database allows us to easily filter and parse the data 
with help of an XQuery to generate output data in a format 

that can be directly imported and processed by the Weka 

machine learning toolkit. 

Long-Term Deployment 

To test the temporal stability and long-term feasibility of our 

approach, we deployed our prototype system at one of the 

homes for over six months. Events were collected and 

labeled throughout this entire period manually using a slight 

variant of the labeling tool that was used in other homes. 

Every time an event was detected, the logging tool would put 

the extracted features in a queue and generate an audible 

beep. The home occupants were instructed to label the events 

with the electrical appliance they actuated using the labeling 

tool.  

The labeling tool was designed to have a highly streamlined 

interface, requiring only the selection of device labels from 

an onscreen selection list. If the user did not label an event in 

the queue for more than six minutes, it was labeled as 

unknown and purged from the queue. This feature allowed 

the home occupants to handle any erroneously detected 

events and ignore events when the occupants were unable to 

attend to the labeling tool promptly. Though a convenient 

feature, this also meant that we lost labels on actual events 

that the occupant missed or decided to ignore. However, the 

intent of this experiment was to gather as many ground truth 

labels as possible for an extended period of time.  

RESULTS AND ANALYSIS OF IN-HOME EXPERIMENTS 

In this section, we detail the datasets collected and present 

the results of our approach. 

Data Collected 

We collected a total of 2576 (Table 1) electrical events from 

seven homes. The largest number of events came from 

lighting, which tended to be either CFL- or dimmer-based. 

Most of the other detectable devices were common consumer 

electronic devices, such as LCD or LED TVs, gaming 
consoles, PCs, power adaptors, etc. 

Appliances such as dryers and electric stoves did not appear 

to generate events in some of our test homes. Generally such 

devices are large resistive loads and hence do not emit any 

high frequency noise. We did observe continuous noise 

events from a washer in H7. Out of all our test homes only 

H7 had a modern Energy Star compliant high efficiency 

washer that generated continuous noise, which was from its 

electronically controlled DC motor powered through a 

SMPS. Also, for most large appliances the use of a SMPS is 

considered negligible compared to the overall power 
consumption for the appliance. 

Classifying Specific Devices within the Homes 

To determine the classification accuracy of electrical device 
actuations in a home, we evaluate our classification approach 

using two different procedures. In the first, we evaluate the 

performance of our KNN-based classifier using a 10-fold 

cross validation for each home. In the second evaluation, we 

use a minimal training set (a single training example for each 

device of interest) in order to simulate a more practical and 

real-world situation. Table 3 shows the overall accuracy for 

classifying devices within each of the seven homes. Using 

10-fold cross validation, we observed an overall average 

accuracy of 91.75%.  

Upon analyzing the confusion matrices for each of the 
homes, we found that for both H5 and H6, there was 

confusion between some of the lighting (see Figure 7 for the 

confusion matrix). From our data, we observed that our 

classifier correctly identified similar light fixtures (i.e, the 

same model and brand) that were located in different rooms. 

However, H5 and H6 had rooms where the same models of 

fluorescent light fixtures were installed spatially near each 

other (1-2 feet apart), which produced very similar noise 

signatures. Thus, these particular lights did not have 

sufficient differences nor were they far apart enough along 

the power line to differentiate between those lights.  

Higher frequency resolution hardware may partially alleviate 
this problem, but with added costs. Also, for some 

applications, logically combining or clustering the lighting 

that are spatially co-located might be acceptable. Using this 

latter approach, Table 3 shows the performance of our 

classification scheme after clustering the same model of 

lights or devices that are 1-2 feet apart from each other as a 



 

single event. This approach yields an increase in 

classification accuracy for H5 (92.4%) and H6 (91.8%) for 

an average accuracy of 93.82%. 

 

Figure 7: Visual confusion matrix highlighting misclassification 

due to physical proximity of similar fixtures in H5 and H6. 

Home 

10 Fold Cross Validation (%) Minimal 

Training 

Set As is Combined 

H1 96.29 96.29 93.46 

H2 89.65 89.65 83.73 

H3 96.47 96.47 93.52 

H4 97.23 97.23 93.81 

H5 85.35 92.42* 90.53 

H6 84.41 91.83* 84.61 

H7 92.85 92.85 85.13 

Total 91.75 93.82 89.25 

Table 3: The performance using 10-fold cross validation and 

minimal training for classification for each home. The results of 

combining the same devices that are spatially near each other as 

a single event are also shown (*). 

The lower accuracy of H2 was due to classifier confusion 

between two devices of the same brand that were on the 

opposite phase of the installation point of the PLI. Part of the 

second floor exhibited very weak coupling between the 

electrical phases, which required us to plug in the PLI on that 

phase and thus causing some of the signatures to look very 

similar. We later discuss ways to address this problem, such 
as using two different PLIs, one on each of the two phases or 

installing a single PLI at a split-phase 240 V dryer outlet. 

Since N-fold cross validation is generally optimistic and is 

not a true measure of the expected classification performance 

for a real world system, we perform a follow-up analysis 

using a minimal training set, i.e. a single event signature for 

each device to model and then apply it to a test set. For 

example, a homeowner would likely be only willing to 

provide a few training events for each appliance. Table 3 

summarizes the classification accuracies when using a 

minimal training data set. We found that this approach has an 
accuracy of 89.25% 

Stability of Signatures Across Homes 

Since no two homes have the exact same electrical 
infrastructure and can have drastically different baseline 

noise present on the power line, we must examine the 

portability of noise signature across homes, which is a 

prerequisite for allowing signatures from one home to be 

applied to a similar device in another home.  

We performed two experiments that together suggest the 

viability of applying a learned signal for a device in one 
home to a similar device in another. In the first, we show that 

the EMI signal of a device is independent of the home in 

which it is used, thus proving that the signal is intrinsic to the 

device’s functioning. Second, the signal is consistent to 

within the variance limits for multiple, but similar devices, 

that is, the signals from the same brand and model of devices 

are similar. 

Our first experiment comprised of collecting data for four of 

our own preselected devices in each of the seven homes and 

showing the signal portability through classification results 

across homes. The average accuracy of the ten trials for a 10-

fold cross validation test was 96.87%. For 3 of the 4 devices, 
the classification accuracy was 100%, strongly suggesting 

that these devices generated similar signals. Only one device 

performed poorly. Table 4 summarizes these results. 

Device 
10 Fold Cross 

Validation (%) 

Camera Charger 100 

Laptop 87.5 

23W CFL Lamp 100 

12W CFL Lamp 100 

Aggregate 96.87 

Table 4: The performance of four of our own devices across 

different homes using a 10-fold cross validation classification. 

We found that the laptop’s power adaptor was harder to 

identify because the extracted feature vector for this device in 

H6 looked slightly different than the other homes. Upon 

closer inspection, the noise generated by the laptop’s adaptor 
had a harmonic peak that was very close in amplitude to the 

center frequency. This marginal difference caused the peak 

detection algorithm to assign the first harmonic as the center 

frequency in H6, thus extracting a different feature vector. A 

simple approach to alleviate this problem is by employing an 

algorithm that classifies an event only if the distance between 

the event feature vector and the nearest neighbor in KNN is 

less than a certain threshold. If not so, the algorithm builds a 

new feature vector from the next strongest peak. Using this 

new method, classification accuracy for the laptop was 

100%. 

In our second experiment, we collected data for eight 20” 

Dell™ LCD monitors that were of the same model (from our 

research lab). This LCD model was also coincidently found 

in H5 and H7. We swapped out the EMI signature for one of 

the other 9 signatures obtained from a different home or 

building. For example, we trained the classifier using the 

signature from H7 and tested it in H5. This test ensured that 

if the signatures for any of the LCDs were different it would 

be misclassified as another device. All of our tests yielded 



 

100% accuracy suggesting that similar make and model 

devices produce similar signature irrespective of the home or 

building they are in, implying the feasibility of crowd 

sourcing to obtain device signatures. 

Temporal Stability of Noise Signatures 

For any signature or fingerprint-based classification system, 

temporal stability is important. The classifier must perform 

well for months (or ideally, years) without requiring frequent 

re-training, which necessitates that the underlying features to 
remain stable over time. 

To show the stability of our noise signatures over time, we 

chose devices from our long-term deployment dataset, in 

particular those that met two criteria: (1) devices were fixed 

in their location during the duration of the deployment and 

(2) they were not altered in any way, for example light bulbs 

were not replaced. For these devices, we extracted randomly 

selected EMI signature vectors spread over the period of the 

6-month evaluation. 

 

Figure 8: Variation of features over 6 months for four devices 

shown in the feature space. Note that no cluster overlaps. 

Figure 8 shows the temporal stability or variation of the 

signatures over time for four randomly chosen devices by 

visualizing the feature vectors in the feature space. We 

observed that the long-term temporal variation was similar to 
what we observe in the short-term temporal variation in these 

devices and that none of the clusters overlapped. 

To better understand how temporal variation effects the 

classification accuracy over time, we generated test sets for 

each device consisting of all events that happened more than 

one week prior to the last day of the deployment and a 

training set consisting of events from all devices that 

happened in the last week. This setup ensured that, if the 

EMI signatures in the test set deviated more than the distance 

between the device clusters that the classifier had computed, 

we would see misclassifications. We observed 100% 
accuracy with KNN classifier on our results, which indicate 

that the devices are largely stable over a long period of time. 

It is important to note that this long-term experiment was 

straddling the summer and winter seasons.  

DISCUSSION AND NEW INSIGHTS 

Using EMI for electrical event detection is a promising 

approach. In this section, we provide additional detail and 

insights that can shed some light on improving our overall 

approach as well the limitations and challenges we 

uncovered. This paper is primarily focused on event 

detection, but the EMI signal also provides rich information 

about the state of particular devices (i.e., the setpoint of a 

dimmer switch, the mode of a washing machine, the 
changing of TV channels, etc). 

Multiple Similar Devices 

Having a number of similar devices is a common occurrence 

in a home, such as having multiple TVs or, more commonly, 

lights that all use the same brand CFL bulbs. This can cause 

problems, especially if similar devices cannot be grouped 

into a single group. For example, grouping two ceiling lights 

in a bedroom may be acceptable, but grouping lights that are 

in different rooms or floors may not be. There are two 

potential solutions to this. 

First, the tolerances in components that make up the 

switching circuitry of a device can introduce enough 

variability in switching frequency such that the mean of the 
Gaussian fits observed on the power line are also shifted. 

Figure 9(a) shows a subset of the spectrum observed by our 

system showing the spectra of the noise generated by four 

CFL lamps of the same model that were purchased as a pack 

of four, thus ensuring that they came from the same 

manufacturing batch. Note that the spectra do not overlap 

even among the same batch of CFLs.  

Our current hardware is able to discern these subtle features 

only when observed in isolation, i.e., a line isolation 

transformer was used to create a noise free power line for this 

particular experiment. With higher ADC resolution and a 

larger FFT, this shortcoming may be overcome. Thus, 
increased resolution may give us better differentiability. 

Second, as the conducted EMI travels through the power line, 

it is affected in several ways, but most prominently the signal 

is attenuated as a function of the line inductance between the 

source of noise and the point of sensing. Thus, two identical 

devices generating identical EMI may look different at the 

sensing source depending on where the devices are attached 

along the power line, which we observed in our in-home 

experiments. 

To confirm this, we plugged a device in two different 

locations in a home and logged the raw spectrum data as 
sensed by our system. Figure 9(b) shows a spectrum of a 

small section of this data. The difference in amplitude can be 

used to differentiate between similar devices located in 

various parts of the home. This suggests that we might have 

found a way to determine the number of fixed devices 

present in the home (i.e., the number of CFL lights in the 

house or the number of a particular type of TV).  



 

It should be observed that only the amplitude varies 

prominently as a function of the position of the device in the 

home. Other features such as the mean and variance of the 

Gaussian remain relatively stable. It is these stable subset 

features that allow us to correctly identify a mobile 

appliance, such as a laptop adapter despite changes in its 

position in a home. It also allows reuse of signature from one 

home to another without re-training for similar devices. Thus, 

the stable subset features can be used to identify which 

device (CFL, TV etc.) and the amplitude can be used to 
resolve the instance (TV1, TV2 etc.) in a particular home. 

The probability of two different types of devices having the 

same Gaussian fit mean and variance is small. For 

independent EMI signals, it is 1/(FFT Size) if we only 

consider the probability of two devices having the same 

mean frequency. In practice, since we use not only the 

location, but also parameters of a fitted Gaussian, the true 

probability is likely much lower.  

Dimmers 

Unlike SMPS based devices, dimmers generate a wide band 

signal from their internal triac switches. Since our system is 

designed around a Gaussian fit in the feature extraction 

phase, we model the broadband noise emitted by a dimmer 

with a Gaussian distribution, even though a band-limited 
uniform distribution would be more appropriate. Thus, we 

found that for dimmer controlled devices we observed 

Gaussian fits with very large variances. Figure 9(c) shows the 

EMI signal generated by a dimmer at various dim levels.  

The difference in the signature generated at various dim 

levels opens up the possibility for our approach to identify as 

well as infer the dim of such devices device. Since it is not 

possible to train at different levels, we would need to build a 

model for the noise characteristic and how it is affected by 

the dim level or conduction angle of the triac. 

Additional Features 

The performance and robustness of a classification algorithm 

is only as good as the features being used, so it is desirable to 

explore and extract more advanced features from the 
underlying signals. During our experimentation we observed 

multiple potentially useful features that could be used in 

future classification work. Several devices produce a 

characteristic EMI pattern that lasts for a short time when 

they are switched on, i.e. they produce narrow band transient 

EMI while the SMPS is starting up. These transients are 

lower frequency than those described by Patel et al. [15]. 

Figure 9(d) shows a short burst of EMI that most CFL lamps 

produce when first powered up. The short burst comes from 

the ignition circuitry in a CFL, which is required to warm the 

lamp up for operation [10]. Similarly, other devices such as 

modern TVs and DVD players that have multiple power 

supplies and supporting electronics also produce start up 

noise signatures that may provide additional information for 

determining the category of the devices. 

In our current implementation, the algorithm design assumes 

that the mean or location of EMI peaks do not change when 

the device is operational. This may not be true for certain 

devices. We have come across a particular brand of a LCD 

TVs, where the switching frequency of its power supply is a 

function of the screen brightness, thus causing the mean of 

EMI peaks to shift as the content on the screen changes. Our 

current algorithm will report a new event every time such a 

change happens, which could overwhelm the system. A new 

approach may be to lock onto the time varying noise peak 

and extract temporal features or templates. 

Certain motor based devices such as a washing machine or a 

dishwasher generate low frequency periodic noise patterns in 

their motor controllers, which could be used to identify the 

device and its state. For example, in H7, we observed that the 

clothes washer in its wash cycle produced intermittent noise 

at roughly 0.1 Hz in contrast to constant noise while in its 

spin cycle. Such features can be used to build a finite state 

machine or a statistical model for more detailed 

classification. 

Simultaneous Events 

Our current implementation can detect near simultaneous 

events as close as 102 milliseconds (ms), that is, two events 

that occur more than 102 ms apart can successfully be 

detected as separate events by our current implementation. 
This is based on our current sampling frequency and 

averaging window size. If simultaneous events happen in 

shorter than 102 ms duration, they are detected as a single 

event, and the features extracted are a collection of features 

from multiple devices. Thus, the underlying features remain 

intact, but are reported as one event. A new classification 

approach may be able to separate out these compounded 

features to identify individual devices. 

Figure 9: (a) Small, but discernable variation in the mean of the EMI peaks for four same model and brand CFLs. (b) Same CFL 

lamp plugged into different regions of the home producing EMI amplitude variations. (c) Band limited EMI generated by a 

dimmer shown at various dim levels. (d) Startup burst of EMI signal generated by CFL lamps on ignition. 



 

End User Calibration 

Since ElectriSense employs a fingerprinting based approach 

for device identification, it requires a training process to learn 

the parameters of various devices in a home. Like any such 

approach, this is generally accomplished by having the user 

go through actuating each device at least once.  

Fortunately, our approach benefits from the portability of 

signature across homes, which allows end users to share their 

device signatures, potentially through crowd sourcing. In 
other words, an end user may be able to access an online 

database of popular consumer electronic device signatures 

submitted by other users who have gone through a calibration 

process. Additionally, since the EMI that we sense is an 

engineered signal, it may be possible to generate such 

signature databases without physically actuating a device or 

having physical access to it. This can be realized by mining 

information from a device’s FCC compliance report, which 

lists the frequency and raw magnitude in dBuV for various 

noise peaks it emits. An example compliance report for a PC 

power supply is shown here [12]. Mining the datasheets of 
the internal integrated circuits and oscillators found in 

consumer electronic devices are other sources for this 

information. 

Phase Coupling 

We observed strong signal coupling or crosstalk across 

phases in most homes, including larger homes like H5 and 

H6. However, for H2 we found that for some parts of the 

home, which were on the opposite phase from the sensor it 

was very difficult to detect events. Either installing two PLIs 

(one on each phase) or installing the PLI to an available 240 

V outlet where both phases are present (typically for a dryer) 

can address this problem. Installing two PLIs would allow 

the system to capture events from both phases but also 

increases the chances of similar looking signatures for two 
similar devices. This can trivially be addressed by knowing 

which of the two PLIs detected the event. 

CONCLUSION 

We have presented a significant new advancement in single-

point sensing solution for whole-home electrical event 

detection. This work leverages the trend towards more 

energy efficient and low-cost switch mode power supplies for 

consumer electronic devices. The EMI generated by these 

power supplies allow us to isolate and classify the occurrence 

of unique electrical events. Our initial results both validate 

the effectiveness of our approach and provide a basis for 

future analyses and improvements. Our new strategy shows 

significant promise as a practical, low-cost solution for 

providing disaggregating electrical information for energy 
monitoring and ubiquitous computing applications.  
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