
 
 

  
Abstract—A new model reference adaptive control design 

method using neural networks that improves both transient and 
steady stage performance is proposed in this paper. Stable tracking 
of a desired trajectory can be achieved for nonlinear systems 
having significant uncertainties. A modified state observer 
structure is designed to enable desired transient performance 
during uncertainty learning. The neural network adaptation rule 
is derived using Lyapunov theory, which guarantees stability of the 
error dynamics and boundedness of the neural network weights. 
An extra term is added in the controller expression to introduce a 
‘soft switching’ sliding mode that can be used to adjust tracking 
errors. The method is applied to control the velocity of an 
electro-hydraulic piston, and experimental results demonstrate the 
desired performance is achieved with smooth control effort. 
 

Index Terms—Neural networks, adaptive control, 
electronic-hydraulic systems 
 

I. INTRODUCTION 
PPLICATIONS of artificial neural networks in the field 
of control have been developed for decades. Narendra 

and Parthasarathy [1] provided a stability proof for the first 
time, and demonstrated the potential of neural networks in the 
identification and control of nonlinear systems. Sanner and 
Slotine [2] developed a direct tracking control method with 
Gaussian radial basis function (RBF) networks for feedback 
control of nonlinear systems. Since then, various adaptive 
control techniques using neural networks were put forward. 
Calise et al. [3]-[6] introduced neural networks to the 
dynamic inversion technique in order to cancel the inversion 
error, and developed model reference adaptive control 
(MRAC) based on  
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neural network estimation. The neural networks are trained 
online using a Lyapunov-based approach, similar to the 
approach followed in [2], [7]. 

Recently, MRAC has been applied in solving control 
problems for system with matched unmodeled dynamics [8], 
[9]. However, although these developments can be employed 
to improve robustness, tracking accuracy can only be shown 
to be bounded, and the bound depends on the disturbances 
itself. In [10], a new MRAC neural network controller named 
L1 adaptive control is proposed, and transient performance of 
both the system’s input and output signals are guaranteed. 

 At the same time, due to its simplicity and robustness, 
Sliding Mode Control (SMC) is also often used in adaptive 
control [11]-[13]. One drawback of SMC is that unavoidable 
chattering occurs when the control signal switches signs 
along the sliding surface. A soft-switching sliding mode 
technique was introduced by Lychevsky [14] in order to 
avoid oscillations and achieve asymptotic stability at the same 
time. In [15], by using a method similar to SMC, a novel 
approach combining an adaptive neural network feedforward 
controller with a continuous robust integral of sign of error 
(RISE) feedback controller is introduced. In this method, it is 
shown using Lyapunov theory that the tracking error is 
asymptotically stable. 

This paper develops a new neural network MRAC with 
guaranteed transient performance and asymptotic stability. 
Based on the MRAC neural network controller, the neural 
network observer structure is modified in the manner of [16]. 
In this modification, instead of introducing additional filters, 
a factor of the observer error is added to in the neural network 
observer structure. As a result, this new method enables 
further increases in the adaptive gain, leading to better 
tracking performance. At the same time, the modified term is 
inactive when the neural network estimation is ideal; 
therefore, estimation accuracy is guaranteed. In order to 
achieve improved transient performance and stability, a 
soft-switching sliding mode modification is combined with 
the neural network adaptive controller. It is proven, using the 
Lyapunov method, that it ideally leads to asymptotic stability 
instead of UUB and, at the same time, is free from chattering 
that are common for typical sliding mode adaptive 
controllers. In general, the proposed controller enables higher 
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adaptive gains while simultaneously providing improved 
transient performance and asymptotic stability.  This method 
is applied to an electro-hydraulic test bench [17] for velocity 
tracking control. The results illustrate that desired tracking 
performance is achieved with smooth (i.e., non-chattering) 
control.  
 The rest of the paper is organized as follows. In Section II, 
the system and neural network structure are defined. In 
Section III, the control solution is proposed. Stability proofs 
of the observer and state error signals are presented in Section 
IV. Section V includes a description of the electro-hydraulic 
piston system, and presents the results and analysis of a series 
of velocity tracking experiments using the proposed control 
methodology. 
 

II. PROBLEM DESCRIPTION 
 Consider the following single input single output (SISO) 
system 

 

1 2

2 3

( ( ))n

x x
x x

x b u f

=⎧
⎪ =⎪
⎨
⎪
⎪ = −⎩ x

 (1) 

where b > 0. The system output is defined as 

 1y cx=  (2) 
where c  is a non-zero constant. The initial condition is 

 (0)x 0=  (3) 
 The set of equations in (1) can be written in a compact form 
as  

 ( ) ( ) ( ( ) ( ))t Ax t B u t f= + −x x  (4) 
where x n∈ is the system state vector, u ∈ is the control 
signal, A is an n n× system matrix, B is 1n× vector, 
( , )A B is assumed to be controllable, and : nf → is an 
unknown continuous nonlinear function. All of the states are 
assumed to be measurable.  The control objective is to design a neural adaptive 
controller which ensures the output tracks a desired bounded 
continuous trajectory, denoted ( )r t , and the system behavior 
follows a nominal linear time-invariant (LTI) system which is 
designed through standard methods (e.g., through linear 
quadratic regulator theory). At the same time, the controller 
should guarantee desired transient and steady state 
performance in the presence of uncertainties. 
 Assume the following neural network approximation of 

( )xf exists 

 *( ) ( ) ( ) ( )Tf φ ε ε ε= +    <x W x x x  (5) 

where ( )xφ is a set of radial basis functions. Each element of 
( )xφ  is defined as 

 2( ) exp( ( ) ( ) / )Ty y z y zφ σ= − − −  (6)  
where z is the center location and σ is the ‘width.’ The vector 
W  contains the ideal network weights, ( )xε is the network 

approximation error, and *ε  is its uniform bound. Further, it 
is assumed that a compact convex set Ω is known a priori 
such that 

 W ∈ Ω  (7) 
In order to realize tracking control for this SISO system, a 
neural network adaptive controller is developed in the next 
section. 
 

 
III. CONTROL SOLUTION 

 The proposed controller consists of three parts: linear 
feedback control 1xK , neural network adaptive control eu , 
and soft switching sliding mode control μ  

 1 +x eu K u μ= +  (8) 
where 1K  is the closed loop feedback gain that ensures the 
closed-loop system matrix 1mA A BK= −  is Hurwitz. The 
linear feedback control ensures stability when there is no 
uncertainty. The adaptive control is obtained through the 
neural network observer, which cancels the uncertainty. The 
soft switching sliding mode control guarantees asymptotic 
stability in the presence of neural network estimation error. 
 Substituting (8) into (4) 

 ( ) ( ) ( ( )+ ( ))x x xm et A t B u t fμ= + −  (9) 
The following state observer structure is defined 

 2
ˆˆ ˆ( ) ( ) ( ( )+ ) ( )x x xm et A t B u t f K tμ= + − −  (10) 

where ˆ( )x t represents the observer states at time t. The initial 
observer conditions are 

  ˆ (0)x 0=  (11) 
Since the uncertainty and the true neural network weights are 
unknown, they are represented as ˆ ( )W xTφ where 

Ŵ represents the estimated neural network weights with a 
proper weight update law. The observer gain matrix is 
assumed diagonal for convenience and is expressed as 

1 2
2 2 2 2= ( , ,..., )nK diag k k k . In the observer structure, f̂ is 

assumed to be canceled perfectly by the neural network 
controller, i.e. ˆ ˆ ( )W xTf φ= .  
 The observer error is defined as 
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 ˆ( ) ( ) ( )x x xt t t≡ −  (12) 
The adaptive weight update law is defined as 

 ˆ ˆ( ) Pr oj( ( ), ( ) ( ) )T
ct t t PBφ= ΓW W x x  (13) 

where P is found by solving T
m mA P PA Q+ = − , where Q is a 

positive definite matrix and cΓ is the neural network learning 
rate. The projection operator property guarantees the 
boundedness of the neural network weights error 

 maxW WT W≤  (14) 

where
2

max
ˆmax 4 ,W

∈Ω
≡ ≡ −

W
W W W W [18]. With the neural 

network weights, the adaptive control expression becomes 

 ˆ( ) ( )W xT
e gu k r t φ= +  (15) 

where  

 1

1
g

m

k
CA B−≡  (16) 

is the reference system open loop gain. 
 Subtracting (9) from (10), and substituting (15) into the 
resulting equation, the observer error dynamics are 

 2( ) ( ) (W ( ) )x x xT
mt A K B φ ε= − + −  (17) 

By using the Lyapunov method [9], it will be shown that the 
neural network estimation error and the observer error are 
bounded. By introducing the observer gain K2, the learning 
process is smoothed, and the modified term decreases as 
x decreases; therefore, learning accuracy is guaranteed. As a 
result, the modified observer structure enables increasing 
adaptation gain. 
 

IV. STABILITY ANALYSIS 
 In this section, the Lyapunov method is used to prove the 
boundedness of the observer error dynamics. In order to 
assure asymptotic convergence of the reference error, the 
soft-switching sliding mode controller is derived. Details of 
the proofs are provided in the following subsections. 

A. Observer error 

 To derive the error bound for the neural network observer, 
consider the Lyapunov 
function: 1( , )x W x x W WT T

cV P −= + Γ . Differentiating V 

 1( )T T T T
cV P P −= + + Γ +x x x x W W W W  (18) 

Substituting the weight update law in (13) and the observer 
dynamics in (17), (18) becomes 

 
[ ]
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          +

≤ − +
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W W x x

x x
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therefore 0V ≤ when  

 
*

min min 2

2
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ε

λ λ
≥

+
 (20) 

As a result, 
1

max
2*

1
max max

min min 2

( , )

2
( )

( ) 2 ( )

x W x xT
c

c

V P W

PB
P W

Q K P

ε
λ

λ λ

−

−

≤ + Γ

⎛ ⎞
⎜ ⎟≤ + Γ
⎜ ⎟+⎝ ⎠

  (21) 

and 

 2
min( , ) ( )x W x x xTV P Pλ≥ ≥  (22) 

Equations (21) and (22) lead to 
2*

1
max max

min min 2

min

2
( )

( ) 2 ( )

( )
x

c

Pb
P W

Q K P

P

ε
λ

λ λ

λ

−
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ + Γ⎜ ⎟⎜ ⎟+⎜ ⎟⎝ ⎠⎝ ⎠≤

 (23) 
In (23), by increasing the adaptation gain cΓ and the observer 

gain K2, x can be made arbitrarily small; therefore, precise 
uncertainty estimation using an online neural network is 
guaranteed.  

B. Reference error 

 Note that with adaptive control and linear feedback control 
alone (i.e., 0μ = ), the controller is able to track the reference 
system. However, it is only able to do so with bounded 
tracking errors. With the addition of a soft-switching sliding 
mode controller, the tracking error can be made asymptotic 
stable. The reference LTI system dynamics are characterized 
by 

 ( ( ))T
r m r r g rA b u k r W φ= + + −x x x  (24) 

where ( )W xT
r ru φ≡ is the reference controller, which 

cancels the uncertainty. By subtracting the reference 
dynamics (24) from the actual system dynamics (9), the 
tracking error dynamics are expressed as 

 

( ) ( )
ˆ( ( ) ( ) ( ))

e x x

e W W x x
r

T T
m

t t

A b μ φ ε

≡ −

= + + − −   
(25)

 
Recalling the definition of system dynamics as given in (1), 
(25) can be written as 

 

1 2

2 3

1

...

( ( ) ( ))e W x xT
n

e e
e e

e bK b μ φ ε

=⎧
⎪ =⎪
⎨
⎪
⎪ = + + −⎩  

(26)
 

The sliding surface is defined as 

 ( )
1

1
1

0

n
n p

p
p

s eλ
−

− −

=

≡ ∑  (27) 
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where 0, 0,1,..., 1p p nλ > = − . In most cases, the designer can 

set 0 1λ = . For example, when n = 3, the sliding manifold is 

3 1 2 2 1s e e eλ λ= + + . 

 With the Lyapunov function 21
2sV s= , its derivative is 

 

( )
1

1 1
1

( ( ))e
n

n p
s p

p
V ss s e bK b Dλ μ

−
−

=

= = + + +∑
 (28) 

where  

 ( ) ( )W x xTD φ ε≡ −  (29) 
Recalling the neural network approximation property in (5) 
and the error boundedness of the weights in (14), the bound 
for D is 

 

* *
max( ) ( )W x xTD W Dφ ε ε= − ≤ + ≡

 
(30)

 Now the soft switching sliding manifold control term is 
formulated as  

 ( )
1

1 1
1

/ tanh( )e
n

n p
p

p
e b K sμ λ β α

−
−

=

= − − −∑  (31) 

Substituting (31) into (28) 

 ( tanh( ) )sV bs s Dβ α= − +  (32) 
When s > 0 

 

*( tanh( ) )sV bs s Dβ α≤ − +
 

(33)
 Therefore, 0sV ≥ only when 

 *tanh( ) /s Dα β≤  (34) 
which leads to 

 

*

*

1
10 ln

2 1

D

s
D
β

α
β

+
< ≤

−
 (35) 

When s < 0 

 *( )( tanh( ) )sV b s s Dβ α≤ − +  (36) 
Therefore, 0sV ≥ only when 

 *tanh( ) /s Dα β> −  (37) 
which leads to 

 

*

*

1
10 ln

2 1

D

s
D
β

α
β

−
> ≥

+
 (38) 

From (35) and (38), it can be observed that the bound for the 
sliding manifold is  

 

*

1*

1
1 ln

2 1

D

s
D
β γ

α
β

+
< ≡

−
 (39) 

As long as 0α >  and *Dβ > , the sliding manifold will 
remain bounded. By increasing α and β , the bound of the 
sliding manifold will converge to 0. The closed-loop system 
is asymptotically stable when 1 0γ = .  
 With (8), (15), and (31), the final expression for the 
proposed controller is 

( )
1

1 1
1

ˆ( ) W ( ) / tanh( )x x
n

n pT
r g p

p
u K k r t e b sφ λ β α

−
−

=

= + + − −∑ (40) 

 Note that since no discontinuous function is introduced, 
this controller is smooth and capable of driving the tracking 
error asymptotically to zero. 

 

V. EXPERIMENTAL RESULTS 
 The test bed for the proposed control method is a 
Caterpillar Electro-Hydraulic Test Bench, which was a gift 
from Caterpillar to the Missouri University of Science and 
Technology as part of a laboratory dedicated to 
electro-hydraulics and mechatronics. The test bench consists 
of five distinct physical components which affect the system 
operation and dynamics: control electronics, pilot solenoid 
valve, spool valve, piston, and sensors. Additionally, 
specialized computer hardware and software interfaces for 
actuators and sensors provide for real-time control. A system 
diagram is shown in Fig. 1.  

 

Fig. 1. Electro-Hydraulic System Diagram.  
 The electro-hydraulic system considered in this study 
cannot be well described by a linear, time-invariant model 
since the characteristics such as nonlinear friction, dead band, 
and nonlinear valve gains cannot be neglected. The system 
includes pressure sensors that measure the pressures in both 
chambers and an encoder that measures the piston 
displacement. In this system, the spool valve is contained in a 
sealed housing with no integrated sensor; therefore, it is 
impossible to measure its position either in real-time or 
offline. Additionally, it is subject to significant and 
unpredictable stiction effects and flow forces, so its position 
cannot be accurately predicted based solely on the control 
input and measured states. 
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 The pilot valve input will determine the direct input into 
the forward and reverse valves. The relationship between the 
variables is 
 

 

0

0

, 0, 0
0, , 0
0 0, 0

cf c cf cr c

cf cr c cf c

cf cr c

I I I I if I
I I I I if I
I I if I

⎧ = + =  >
⎪ = = +  <⎨
⎪ = =  =⎩

 (41) 

where cI  (A) is the input current, cfI (A) is the input current 

to the forward valve, crI  (A) is the input current to the 
reverse valve and 0 0 0.4cf crI I= =  A are the estimated dead 
band values for the forward and reverse directions, 
respectively.  
 From previous work [17], a simple input-output model for 
the piston response was developed based on experimental 
data. In order to remove noise from the encoder, a low-pass 
filter is utilized. The filtered piston position is numerically 
differentiated to calculate the (approximate) piston velocity. 
It is done online using a first order backwards finite 
difference scheme. The relationship between the estimated 
velocity and the encoder position output is 

 5 5e f f ev x x x= = − +  (42) 
where ve (mm/s) is the estimated velocity, xf (mm) is the 
filtered position, and ex  (mm) is the encoder position 
measurement. 
 As a result, instead of using a high order nonlinear system, 
in the following experiments a simple linear model with 
matched uncertainties is used 

 1 2
1 ( ( ( , , , , ))c cv Bv b I f x v P P I
m

= − + −  (43) 

where x (mm) is the piston displacement, v (mm/s) is the 
piston velocity, 2B = (kg/s) is the estimated value of the 
viscous friction coefficient, and 1b =  (N/A) is the estimated 
value of the control gain. The parameters 1P  (kPa) and 2P  
(kPa) are the measured pressure from the first and second 
chambers, respectively, f is the unknown nonlinear 
dynamics, and 3.85m =  kg is the measured piston mass. The 
sample period is 0.01 s. 
 With the feedback control gain 1K , the closed loop 
reference velocity dynamics are picked as 

  
 

1 ( 3 3 )
3.85r rv v r= − +  (44) 

A series of open loop experiments are conducted to ensure 
reference system is realizable.  
 The control law is 

 1 1
ˆ tanh( )T

c gI K v k r W K e sβ α= + + − −φ  (45) 

where e = v – vr. The radial basis function 12∈φ used for 
neural network structure is 

 [ ]1 2 3 1 4 2 5( ), ( ), ( ), ( ), ( ),1 T
cv x P P Iφ φ=φ φ φ φ  (46) 

 where 

 
2 22 2 2 2

3 11 1 2 1 ( ) /( ) / ( ) /
1 ( ) , ,

T
v zv z v zv e e e σσ σ − −− − − −⎡ ⎤= ⎣ ⎦φ  

 2 2
4 2( ) /

2 ( ) x zx e σφ − −=  

 
2 2 2 2 2 2

1 5 3 1 6 3 1 7 3( ) / ( ) / ( ) /
3 1( ) , ,

T
P z P z P zP e e eσ σ σ− − − − − −⎡ ⎤= ⎣ ⎦φ  

 
2 2 2 2 2 2

2 8 4 2 9 4 2 10 6( ) / ( ) / ( ) /
4 2( ) , ,

T
P z P z P zP e e eσ σ σ− − − − − −⎡ ⎤= ⎣ ⎦φ  

 
2 2

1 11 7( ) /
5 ( ) cI z

cI e σφ − −=  

 Here 1 0z =  mm/s, 2 15z =  mm/s, 3 15z = −  mm/s, 4 0z =  
mm/s, 5 8 0z z= = kPa, 6 9 40z z= = kPa, 7 10 40z z= = kPa, 

11 0z =  A, 1 1σ = , 2 20σ = , 3 4 5 6 2σ σ σ σ= = = = , and 

7 0.05σ = . The centers and widths of the Radial Basis 
Functions (RBFs) are selected so that the neural network can 
estimate uncertainty over the entire working region of the 
system with similar sensitivity. Notice that as long as f is a 
continuous function of x , v , 1P , 2P , and cI , the neural 
network approximation assumption (3) is valid. While 
friction is not continuous at origin of velocity, two separate 
networks can be used for positive and negative direction to 
enable precise approximation. 
 The learning rate for the adaptive controller is selected as 

100cΓ = , the observer gain is 2 100K = , and the sliding 
surface is rs e v v= = − since the modeled system is first 
order. The soft switching sliding mode control parameters 
are = 150α and = 150β . Increasing cΓ causes larger 
overshoot, while decreasing it increases the error bound. 
Increasing 2K  increases the error bound, while decreasing it 
increases overshoot. The parameters are tuned in order to 
decrease the steady state error bound and obtain the best 
possible transient performance. Increasingα will increase the 
feedback controller’s sensitivity to the tracking error, and 
increasing β can increase the controller’s response speed; 
however, when it is too large there will be significant 
overshoot. Neural network weights are updated by the 
adaptive law (10), with 1P = . 
 To verify the feasibility of the proposed controller, take the 
command input as 

 18s ign(sin(2 / 32) ) mm/sr tπ=   (47) 
The results, with comparison to previous work using a well 
tuned PI controller, are shown in Fig. 2. 
 

29



 
 

0 10 20 30 40 50 60
-20

-10

0

10

20

30

sec

m
m

/s
ec

velocity

 

 

0 10 20 30 40 50 60
-0.5

0

0.5

1

sec

A

Control

 

 

0 10 20 30 40 50 60
-10

-5

0

5
Velocity erorr

sec

m
m

/s
ec

 

 

Reference Proposed method PI

Proposed method PI

Proposed method PI

 
Fig. 2. Experimental results 

for 18s ign(sin(2 / 32) ) mm/sr tπ=   . 
 
 There is an initial inevitable delay (approximately 0.8 s) for 
each experiment, due to the flow filling process of the test 
bench. Neglecting the first peak, the controller keeps the 
velocity error bounded within 4.5 mm/s during both steady 
and transient stages. Disregarding the first step, the 5% 
settling times for the second, third and fourth steps are 1.5, 
2.7, and 1.5 s respectively. The difference is due to the 
nonlinearity and asymmetry of the system. As comparison, 
for PI controller, the steady stage errors are greater than 
1mm/s for all steps, which means it doesn’t settle under 5%. 
During the transient stage, the tracking error increases to a 
peak value of 4.1 mm/s for the forward direction and 4.4 
mm/s for the reverse direction, while for PI they are 4.7 mm/s 
and 4.8 mm/s. To sum up, proposed method improved 
response speed, and provide better tracking performance 
during both transient and steady stage. 
 

VI. SUMMARY AND CONCLUSION 
A new model reference adaptive control method has been 

created in this paper. Bounds on the transient response error 
have been derived. A novel sliding mode term has been added, 
resulting in guaranteed asymptotic stability of the errors, as 
opposed to upper bound guarantees. . The controller is 
designed and applied for velocity tracking of an 
electro–hydraulic system. Experimental results illustrate that 
precise tracking of the reference model output is realized 
using the adaptive controller for different cases. At the 
expense of relatively complex structure, the controller makes 
it possible to achieve asymptotic stability. Future research 
will focus on further increasing robustness under significant 
disturbance, and more convenient tuning techniques. 

REFERENCES 
[1] K. S. Narendra and K. Parthasarathy, “Identification and control of 

dynamical systems using neural networks,” IEEE Trans. Neural Netw., 
vol. 1, no. 1, pp. 4–27, March 1990. 

[2] R. M. Sanner and J. J. Slotine, “Gaussian networks for direct adaptive 
control,” IEEE Trans. Neural Netw., vol. 3, no. 6, pp. 837–864, 
November 1992. 

[3] B. S Kim and A. J. Calise, “Nonlinear flight control using neural 
networks,” AIAA J. Guidance Control, Dynamics, vol. 20, no. 1, pp. 
26–33, December 1997. 

[4] J. Leitner, A. Calise, and J. V. R. Prasad, “Analysis of adaptive neural 
networks for helicopter flight controls,” AIAA J. Guidance Control 
Dynamics, vol. 20, no. 5, pp. 972–979, September 1997. 

[5] M. B. McFarland, R. T. Rysdyk, and A. J. Calise, “Robust adaptive 
control using single-hidden-layer feed-forward neural networks,” Proc. 
American Control Conf., pp. 4178–4182, 1999. 

[6] J. A. Muse and A. J. Calise, “H∞  adaptive flight control of the generic 
transport model,” AIAA Infotech@Aerospace, AIAA 2010-3323, 2010. 

[7] F. L. Lewis, A. Yesildirek, and K. Liu, “Multilayer neural net robot 
controller with guaranteed tracking performance,” IEEE Trans. Neural 
Netw., vol. 7, no. 2, pp. 388–399, March 1996. 

[8] Z. T. Dydek and A. M. Annaswamy, “Adaptive control of quadrotor 
UAVs in the presence of actuator uncertainties,” AIAA 
Infotech@Aerospace, AIAA 2010-3416, 2010. 

[9] T. E. Gibson and A. M. Annaswamy, “Adaptive control of hypersonic 
vehicles in the presence of thrust and actuator uncertainties,” AIAA 
Guidance, Navigation and Control Conference and Exhibit, AIAA 
2008-6961, 2008. 

[10] C. Cao and N. Hovakimyan, “Novel L1 neural network adaptive control 
architecture with guaranteed transient performance,” IEEE Trans. 
Neural Netw., vol. 18, no. 4, pp. 1160-1171, July 2007. 

[11] K. K. D. Young, “Controller design for a manipulator using the theory 
of variable structure systems,” IEEE Trans. on Syst. Man Cyber., vol. 8, 
no. 2, pp. 101-109, February 1978. 

[12] J. J. E. Slotine, “The Robust Control of Robot Manipulators,” Int. J. 
Robotics Research, vol. 4, no. 2, pp. 49-63, June 1985. 

[13] V. I. Utkin, “Variable structure systems with sliding modes,” IEEE 
Trans, on Automatic and Control, vol. 22, no. 2, pp. 212-222, April 
1977. 

[14] S. E. Lyshevski, Control Systems Theory with Engineering 
Applications, Birkhäuser, 2001. 

[15] Z. Cai, M. S. de Queiroz, and D. M. Dawson, “Robust adaptive 
asymptotic tracking of nonlinear systems with additive disturbance,” 
IEEE Trans. Automatic Control, vol. 51, no. 3, pp. 524-529, March 
2006. 

[16] R. Padhi, N. Unnikrishnan and S. N. Balakrishnan, “Model-following 
neuro-adaptive control design for non-square, non-affine nonlinear 
systems,” IET  Control Theory Appl., vol. 1, no. 6, pp. 1650-1661, 
November 2007. 

[17] D. G. Fenstermacher, K. Krishnamurthy, R. G. Landers, and J. D. Patel, 
“Development of a novel electro–hydraulic laboratory,” ASME 
International  Mechanical Engineering Congress and Exhibition, 
Chicago, Illinois, November 5–10, 2006. 

[18] J. B. Pomet and L. Praly, “Adaptive nonlinear regulation: Estimation 
from the Lyapunov equation,” IEEE Trans. Autom. Control, vol. 37, no. 
6, pp. 729–740, June 1992. 
 

30


