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INTRODUCTION 

 In recent years, the damage detection with E/M 
impedance method has gained increased attention. The 
method uses small-size piezoelectric active sensors 
intimately bonded to an existing structure, or embedded 
into a new composite construction. Experimental 
demonstrations have shown that the real part of the high-
frequency impedance spectrum is directly affected by the 
presence of damage or defects in the monitored structure 
(Figure 1). 
 Pioneering work on utilization of E/M impedance 
method was presented by Liang et al. (1994) who 
performed the coupled E/M analysis of adaptive systems 
driven by a surface-attached piezoelectric wafer. However, 
no modeling of the structural substrate was included, and 
no prediction of structural impedance for a multi-DOF 
structure was presented. This work was continued and 
extended by Sun et al. (1994, 1995) who used the half-
power bandwidth method to accurately determine the 
natural frequency values. While the structural dynamics 
was always accounted for in the solution, the majority of 
authors assumed that the stiffness of the piezoelectric 
sensor is static and no sensor dynamics was considered. 
Giurgiutiu and Zagrai (2001a) derived an expression where 
the dynamics of a sensor was incorporated and the E/M 
impedance spectrum was modeled to simulate the direct 
measurements at the sensor’s terminals.  

The authors limited themselves to the one-dimension 
structure. Thus, the modeling was verified with simple beam 
specimen. In the same reference, the method for sensor’s 
self-diagnostics was suggested.  
 

(a)

 PZT wafer 
transducer 

Structure Defect or
damage

 

 

10

100

1000

10000

10 15 20 25 30 35 40
Frequency, kHz

R
e 

Z,
 O

hm
s

P ristine Damaged

  
(b)  

Figure 1. PZT wafer transducer acting as active sensor to 
monitor structural damage: (a) mounting of the PZT wafer 
transducer on a damaged structure; (b) the change in E/M 
impedance due to the presence of a crack. 

ABSTRACT: This paper describes the utilization of Electro-Mechanical (E/M) impedance method for
structural health monitoring of thin plates. The method allows the direct identification of structural dynamics
by obtaining its E/M impedance or admittance signatures. The analytical model for two-dimensions structure
was developed and verified with experiments. Good matching of experimental results and calculated spectra
was obtained for axial and flexural components. The ability of the method to identify the presence of damage
was investigated by performing an experiment where the damage in the form of crack was simulated with An
EDM slit placed at various distances from the sensor. It was found that the crack presence dramatically
modifies the E/M impedance spectrum and this modification decreases as the distance between the sensor and
the crack increases. Several overall–statistics damage metrics, which may be used for on-line structural heath
monitoring, were investigated. Among these candidate damage metrics, the α-th power of the correlation
coefficient deviation, CCDα, 3 < α < 7, used in the high frequency band 300-450 kHz, was found to be most
successful. Careful selection of the high frequency band and proper choice of the appropriate damage metric
were found to be essential for successful damage detection and structural health monitoring. 
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 The experimental efforts to utilize the E/M impedance 
method for complex structures were highly investigated. 
The application of the method has been proven in various 
engineering fields, such as: aerospace structures (Chaudhry 
et al, 1994, 1995; Giurgiutiu and Zagrai, 2000; Giurgiutiu 
et al., 2001), bolted joints (Estaban et al., 1996;), spot-
welded joints (Giurgiutiu et al., 2000); civil structures 
(Ayres, et al, 1996; Park et al., 2000b; Tseng et al., 2000), 
spur gears (Childs et al., 1996), pipeline systems (Park et 
al., 2001). The method has been shown to be especially 
effective at ultrasonic frequencies, which properly capture 
the changes in local dynamics due to incipient structural 
damage. (Such changes are too small to affect the global 
dynamics and hence cannot be readily detected by 
conventional low-frequency vibration methods). Novel 
ways to interpret the high-frequency impedance spectra 
generated by this technique, and to identify the changes due 
to the presence of structural damage have been explored by 
Lopez et al. (2000) Park et al. (2000a), Tseng et al. (2001), 
and Monaco et al. (2001). 
 In this paper, the theoretical analysis for 2-D isotropic 
circular plates structures is presented. Both, axial and 
flexural components of natural vibrations are included for 
in the solution. Theoretical analysis is performed for 
particular boundary conditions to model the experimental 
set-up. The analytical model is validated with experimental 
results. Systematic experiments conducted on statistical 
samples of incrementally damaged specimens were used to 
fully understand and calibrate the investigative method. 
Good matching between theoretical prediction and 
experimental data is illustrated.  

MODELING OF A PZT ACTIVE SENSOR 
INSTALLED ON A STRUCTURAL SUBSTRATE 

 The goal of this analysis is to develop a model for E/M 
impedance spectrum as measured at the sensors terminals, 
and account for the geometry and boundary conditions 
presented by the host structure onto the sensor. The 
dynamics of the sensor will be obtained by solving the 
problem of axial vibration of a piezoelectric disk with 
stiffness boundary condition represented by the pointwise 
dynamic structural stiffness kstr(ω). The dynamics of a host 
structure is described by poitwise dynamic structural 
stiffness kstr(ω). The dynamic structural stiffness accounts 
for both axial and flexural vibrations of the host structure. 
This means that kstr(ω) is defined by considering both axial 
and flexural vibrations of circular plates under steady state 
excitation produced by piezoelectric active sensor. 
 

THE PZT ACTIVE SENSOR IMPEDANCE 

 The linear constitutive equations for piezoelectric 
materials in cylindrical coordinates are (Onoe et al., 1967; 
Pugachev, 1984; IEEE Std 176, 1987): 
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Applying Newton’s second law of motion at infinitesimal 
level yields 
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Upon substitution, one recovers the equation of motion in 
cylindrical coordinates: 
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where 2
111/ (1 )E

ac sρ ν= ⋅ −  is the sound speed in PZT disk 
for axially symmetric radial motion. Note that the equation 
of motion (4) does not contain the piezoelectric effect, d31, 
E3 explicitly. However, the piezoelectric effect appears 
explicitly in the terms of the Trr and Tθθ stress equations (2) 
and (3), respectively. The general solution of Equation (5) is 
expressed in terms of the Bessel functions of the first kind, 
J1, in the form 

 1( , ) i t
r

ru r t A J e
c

ωω = ⋅  
 

 (6) 

The coefficient A is determined from the boundary 
conditions. Although the specialized literature presents the 
solution for the case of a free boundary condition at the 
circumference (Pugachev, 1984), no solution could be found 
for the case where the circumferential boundary condition is 
represented by an elastic constraint of known stiffness, 
kstr(ω). Hence, we developed, from the first principles, the 
solution for the electromechanical axial vibrations of a 
piezoelectric disk with elastic constraint of stiffness kstr(ω) 
around its circumference. 
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Figure 2. Analysis of axial axis-symmetric vibrations of a 
piezoelectric active sensor: (a) modeling set up; (b) PZT wafer 
active sensor constrained by structural stiffness, kstr(ω). 

According to Figure 2, at the boundary r = ra, 

 ( ) ( )a a str r aN r k u r= − ⋅  

The radial and tangential stress components of 
piezoelectric disk are: 
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where Na is a line force. 
 Using the constitutive equations for piezoelectric disk 
in terms of displacement  and Equations (7) we 
obtain(Zagrai and Giurgiutiu, 2001): 
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Denoting the static stiffness of the piezoelectric disk by 

11(1 )E
PZT a ak t r s ν = −  , and the dynamic stiffness ratio 

( ) ( )str PZTk kχ ω ω= (Giurgiutiu and Zagrai 2001b), the 
above expression can be rearranged in the convenient form: 
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where 12 11
E Es sν = −  is the Poisson ratio. Substituting 

ur(ra) by the general solution for displacement given by 
Equation (6) allows us to find the constant A in the form: 
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Using the constitutive equations of piezoelectric disk (1) 
yields the electric displacement Dz as: 
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Integration of Equation (11) yields the charge: 
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where /a ar cϕ ω= , while ra is the radius of a disk, and 
2
31 11 332 / (1 )E T

p ak d s ν ε = ⋅ −  is the planar coupling factor. 

The electrical admittance in terms of harmonic electrical 
current and voltage is ˆ ˆY I V= . Since ˆˆ iI Qω= ⋅  and 
ˆ ˆ

aE V t= , Equation (12) yields the admittance expression 
for piezoelectric disk sensor constrained by the structural 
substrate with dynamic stiffness ratio χ (ω): 
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The sensor impedance, Z (ω), can be found using the 
relationship 
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Equation (14) can be used to predict the E/M impedance 
spectrum as it would be measured by the impedance 
analyzer at the embedded active-sensor terminals during a 



712 ANDREI N. ZAGRAI AND VICTOR GIURGIUTIU 

structural heath monitoring process. Thus, it allows for 
direct comparison between experimental spectrum 
measured with the impedance analyzer and the spectrum 
predicted by Equation (14). 

MODELING OF A CIRCULAR PLATE SUBSTRATE 

 The theoretical foundation for transverse vibrations of 
isotropic circular plates was first published by Airey (1911) 
and extended by Colwell (1936). An outstanding overview 
of a subject was presented by Leissa (1969). The 
theoretical background and numerical results were given 
for large variety of boundary conditions and plate shapes. 
(Wah, 1962; Kunukkasseril and Swamidas, 1974; Soedel, 
1993; Rao, 1999). The equation of motion for axis-
symmetric axial and flexural vibration of circular plates is: 
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where ur is the radial in-plane displacement, and w is the 
transverse displacement.  
 Consider the piezoelectric disk sensor placed at the 
origin of the plate as it is shown in the Figure 3. For further 
consideration, it is convenient to formulate our problem in 
terms of total displacement of piezoelectric sensor bonded 
at the origin of the circular plate undergoing axial and 
flexural vibrations. When the sensor is excited with an 
external voltage, it elongates due to piezoelectric effect and 
produces a force Fa which induces a force and moment on 
the plate (Figure 4). When the excitation is harmonic with 
circular frequency ω, the line force and line moment 
produced by PZT are: 
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Due to the problem’s axial symmetry, the θ-dependent 
component is not present in the solution. The magnitude of 
the excitation line force and line moment of Equations (17), 
(18) is defined in terms of the Heaviside function: 
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Figure 3. Schematics on elongation of piezoelectric sensor 
bounded on the plate: (a) side view; (b) top view. 
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The solution of Equations (15) and (16) is expressed as 
series expansions in terms of modeshape functions: 
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where ωk and ωm correspond to the natural frequencies of 
axial and flexural vibrations with corresponding modal 
participation factors Pk and Gm. The solutions for 
modeshapes Rk and Ym for axial and flexural  vibrations of 
circular plate are expressed in terms of Bessel functions for 
particular boundary conditions (Itao and Crandall, 1979): 
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The modeshapes Rk and Ym of Equations (22), (23) form 
ortho-normal sets of functions defined by the following 
conditions: 
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where a is a radius of a circular plate, h is the thickness, 
and ρ is the density. 
Using expressions Equations (15)-(25), the modal 
participation factors for axial and flexural vibrations 
obtained as: 
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where ζk and ζmn are the modal damping ratios. 

DYNAMIC STRUCTURAL STIFFNESS 

 The radial displacement of piezoelectric sensor consists 
of axial and flexural parts: 
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 and is described by 
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axis. Referring to the Figure 3, the difference between 
points A and 0 yields 
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Substitution Equations (26) and (27) into Equation (28) 
gives the following result for the axial displacement of 
piezoelectric active sensor: 
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The dynamic structural stiffness can defined in terms of the 
line force Na and the displacement of piezoelectric active 
sensor. Defining the structural stiffness, kstr, as : 
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Equation (29) yields the total dynamic structural stiffness: 
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MODEL VALIDATION THROUGH NUMERICAL 
AND EXPERIMENTAL RESULTS 

 A series of experiments were conducted on thin-gage 
aluminum plates to validate the theoretical investigation. 
Twenty five identical circular plates were manufactured 
from aircraft-grade aluminum stock. The diameter of each 
plate was 100-mm and the thickness was approximately 0.8-
mm. The plates were instrumented with 7-mm diameter 
piezoelectric-disk active sensor, placed at the plate center 
(Figure 5a). The twenty five plates were split into five 
“pristine” plates and twenty “damaged” plates. 
 Impedance data was taken using a HP 4194A Impedance 
Analyzer. The spectra reordered during this process are 
shown in Figure 5b. During the experiments on five 
“pristine” plates (Group 0), the specimens were supported 
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on commercially available packing foam to simulate free 
boundary conditions. Plate resonance frequencies were 
identified from the E/M impedance real part spectra. Table 
1 shows the statistical data in terms of resonance 
frequencies and log10 amplitudes. It should be noted that 
the resonance frequencies have very little variation (1% 
standard deviation) while the log10 amplitudes vary more 
widely (1.2—3.6% standard deviation). 
 In Figure 6, the experimental spectrum was compared 
with the spectrum predicted by to the theory presented in 
this paper. The modified expression (14) was used to 
simulate E/M impedance spectrum for a particular plate 
used in the preceding experiment. Figure 6a shows this 
comparison over wide frequency range (0.5 - 40 kHz), 
which captures six flexural and one axial modes. Figure 6b 
zooms into the 0.5 – 8 kHz range, and identifies the first 
three flexural modes of the circular plate. The theoretical 
predictions of Figure 6 were obtained with modified 
version of Equation (14). The modifications consisted in 
introducing a multiplicative correction factor a/ra, in front 
of the stiffness ratio χ(ω). 
 Although the simulation gives a good matching with 
experimental results, the model is limited to the natural 
frequencies corresponding to the purely axis-symmetrical 
modes. This assumption is consistent with the geometry of 
our problem where the piezoelectric disk active sensor was 
placed in the center of the plate. However, if the sensor is 
slightly misaligned non axis-symmetric modes will also be 
excited and appear in the spectrum. This effect is especially 
noticeable at high frequencies as illustrated in Figure 6a. 
Low amplitude peaks that appeared due to slight 

misalignment of the sensor from the plate center are 
observable at 15, 24 and 33 kHz 

DAMAGE DETECTION EXPERIMENTS 

 Systematic experiments were performed to assess the 
detection of cracks. The experimental setup is shown in 
Figure 7. Five groups were considered: one group consisted 
of pristine circular plates (Group 0) and four groups 
consisted of plates with simulated cracks placed at 
increasing distance from the plate edge (Group 1 through 4). 
In our study, a 10-mm circumferential EDM (electric 
discharge machining) slit was used to simulate an in-service 
crack. During the experiments, the specimens were 
supported on packing foam to simulate free conditions. 
 
 

Table 1. Statistical summary for resonance peaks of first four 
axis-symmetric modes of a circular plate as measured with the 
piezoelectric active sensor using the E/M impedance method. 

Statistical Summary for Group 0 -- Pristine 
Average 

frequency, 
kHz 

Frequency 
STD,  

kHz (%) 

Log10 - 
Average 

amplitude, 
Log10 - Ohms

Log10 - 
Amplitude 

STD, Log10 - 
Ohms (%) 

12.856 0.121 (1%) 3.680 0.069 (1.8%)
20.106 0.209 (1%) 3.650 0.046 (1.2%)
28.908 0.303 (1%) 3.615 0.064 (1.7%)
39.246 0.415 (1%) 3.651 0.132 (3.6%)
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Figure 5. (a) Thin-gage aluminum plate specimens with centrally located piezoelectric sensors: 100-mm circular plates, thickness – 
0.8mm. (b) E/M impedance spectra taken from pristine plates in the 11—40 kHz frequency band. 
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 The experiments were conducted over three frequency 
bands: 10-40 kHz; 10-150 kHz, and 300-450 kHz. The data 
was process by capturing the real part of the E/M 
impedance spectrum, and determining a damage metric to 
quantify the difference between two spectra. Figure 8 
shows data in the 10-40 kHz band. The superposed spectra 
of groups 0 and 4 specimens (extreme situations) are 
shown in Figure 8a, while those of groups 0 and 1 (almost 
similar situations) are shown in Figure 8b. Figure 8a 
indicates that the presence of the crack in the close 
proximity of the sensor drastically modifies the real part of 
the E/M impedance spectrum. Resonant frequency shifts 
and the appearance of new resonances are noticed. In 
contrast, the presence of the crack in the far field only 
marginally modifies the frequency spectrum (Figure 8b).  
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Figure 6. Experimental and calculated E/M impedance 
spectra for pristine plate specimen: (a) 0.5-40 kHz frequency 
range; (b) 0.5-8 kHz frequency range. 

 For the high frequency band, similar results were 
obtained. Figure 9a shows the extreme situation where the 
spectrum of the pristine plate (Group 0) was compared with 
the spectrum of a plate having the crack placed in the 
proximity of the sensor (Group 4). Significant difference 
between the two spectra is noticeable. When the crack was 
in the far field (Group 1), the sensor was also able to capture 
the presence of the damage but the changes in the spectrum 
were less severe (Figure 9b). Thus, the results obtained in 
the high frequency band follow the trend already observed 
in the lower frequency band. 
 
 
 Development of suitable damage metrics and damage 
identification algorithms remain an open question in the 
practical application of E/M impedance technique. The 
damage index is a scalar quantity that serves as a metric for 
the damage present in the structure. The damage index 
compares the amplitudes of the two spectra (damaged vs. 
pristine) and assigns a scalar value. Ideally, the damage 
index should be able to evaluate the E/M impedance 
spectrum and indicate damage presence, location, and 
severity. Sun et al. (1995) used a damage index based on the 
root mean square deviation (RMSD) of the E/M impedance 
real part spectrum. Though simple and extensively used, the 
RMSD metric has an inherent problem: perturbing effects 
unrelated to damage (e.g., temperature variation) shift up 
and down the spectrum, and directly affect the damage 
index value. Compensation of such effects is not 
straightforward, and may not even be possible. Other 
damage metrics, based on alternative statistical formulae 
(absolute percentage deviation, the covariance, the 
correlation coefficient, etc.) have also been tried (Tseng et 
al. 2001; Monaco et al., 2001). However, this did not seam 
to completely alleviate this problem. 
 In our experimental study, we used several overall-
statistics damage metrics to quantify the difference between 
spectra for various crack locations: root mean square 
deviation (RMSD); mean absolute percentage deviation 
(MAPD); covariance change (CC); correlation coefficient 
deviation (CCD). We found the correlation coefficient 
deviation to be the best metric of damage presence.  
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Figure 7. Systematic study of circular plates with simulated cracks (EDM slits) placed at decreasing distance from the E/M impedance 
sensor. 
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Figure 8. E/M impedance results in the 10—40 kHz band: (a) superposed groups 0 & 4 spectra; (b) superposed groups 0 & 1 
spectra. 
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Figure 9. E/M impedance results in the 300–450 kHz band: (a) superposed Groups 0 & 4 spectra; (b) superposed Groups 0 & 1 
spectraFigure 10 presents the plot of the correlation coefficient deviation, CCD3, for 300-450 kHz frequency band. The CCD3 damage 
metric tends to linearly decrease as the crack moves away from the sensor. Similar results were also obtained when the metric CCD7 
was used. The following conclusions can be drawn: 

 
a) The crack presence significantly modifies the pointwise 

frequency response function, and hence the real part of 
the E/M impedance spectrum 

b) This modification decreases as the distance between the 
sensor and the crack increases 

c) The decrease tendency is not uniform for all frequency 

bands and this effect should be investigated further. 

To obtain consistent results during the health monitoring 
process, the proper frequency band (usually in high kHz) 
and the appropriate damage metric must be used. Further 
work is needed on systematically investigating the most 
appropriate damage metric to be used for successful 
processing of the frequency spectra. The use of the α-th 
power of the correlation coefficient deviation, CCDα, 3 < α 
< 7, seems to give a good fit in the high frequency band 
300-450 kHz. 
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Figure 10. Variation of the correlation coefficient deviation 
(CCD) damage metric with the distance between the crack 
and the sensor in the 300—450 kHz band 
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CONCLUSIONS 

In this paper, the application of E/M impedance method for 
damage detection in thin circular plates was discussed. The 
paper extends the quasi-static approach previously 
presented by Liang et al. (1994) and the one-dimensional 
dynamic approach presented by Giurgiutiu and Zagrai 
(2001b). A two-dimensional polar coordinates analysis for 
axis-symmetric vibrations is presented. The analytical 
solution incorporates and couples the dynamics of the 
structural substrate and the dynamics of the piezoelectric 
active sensor. The analytical model accounts for flexural 
and axial circular plate vibrations and predicts the E/M 
impedance response, as it would be measured at the 
piezoelectric active sensor’s terminals during the health 
monitoring process. For the first time, the complete 
analytical solution for in-plane vibrations of piezoelectric 
disk with elastic constraint boundary conditions is derived. 
A set of experiments was conducted to support the 
theoretical investigation. Circular plate specimens were 
used to measure the electro-mechanical impedance spectra 
as predicted by the theory for a piezoelectric active sensor 
attached in the middle of the plate.  
Seven flexural harmonics (0.7, 3, 7, 13, 20, 29 and 39 kHz) 
and one axial harmonic (37 kHz) of axis-symmetric 
vibrations were successfully identified by both theoretical 
predictions and experimental results. The experimental data 
also revealed other resonance peaks of residual amplitudes 
that can be attributed to non axis-symmetric modes that 
were inadvertently exited through small off-center 
deviations in sensor placement. Thus, we concluded that 
good matching of experimental and calculated E/M 
impedance signatures was obtained for both flexural and 
axial harmonics of the spectrum. 
 The sensor’s sensitivity to the presence of structural 
damage was studied using five groups of plates, with the 
damage condition increasing gradually from pristine (Group 
0) to severe damage (Group 4). The damage severity was 
controlled by gradually placing a simulated crack (EDM 
slit) closer and closed to the sensor. It was found that the 
crack presence dramatically modifies the E/M impedance 
spectrum, and that this modification increases as the 
distance between the sensor and the crack decreases. 
Consistent results were obtained especially at high 
frequencies (300-450 kHz). Several overall-statistics 
damage metrics were investigated: root mean square 
deviation (RMSD); mean absolute percentage deviation 
(MAPD); covariance change (CC); correlation coefficient 
deviation (CCD). We found that, in the 300-450 kHz band, 
the third power of the correlation coefficient deviation, 
CCD3, correlated almost linearly with the damage location. 
Similar results were obtained with CCD7. 
 The work reported in this paper has demonstrated the 
ability of permanently attached PZT active sensors to 
perform structural identification and damage assessment in 
thin circular plates through the E/M impedance method. 
Other important features of the work presented in this paper 
are: 

a) The successful modeling of E/M impedance active 
sensor mounted on 2-D structure (circular plate) 
and verification of theoretical prediction through 
experimental results 

b) The illustration of how the presence of a crack, 
located at various distances from the active sensor, 
modifies the broad-band E/M impedance spectrum 
recorded by the piezoelectric active sensor. 

c) The observation that, among various overall-
statistics damage metrics, the α-th power of the 
correlation coefficient deviation, CCDα, 3 < α < 7, 
in the high frequency band 300-450 kHz., seemed 
to be the most successful in correlating with the 
distance between sensor and damage location.  
A special novel feature of the present paper is the 

modeling of a piezoelectric active senor (PZT disk) 
vibration under elastic boundary conditions and the 
prediction of its broad band E/M impedance when 
installed on a circular plate. 
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