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Abstract The flow of viscoelastic fluids between parallel plates under the combined influence of electro-osmotic
and pressure gradient forcings with asymmetric boundary conditions, by considering different zeta potentials at the
walls, is investigated. The fluids are z–z symmetric electrolytes. The analytic solutions of the electrical potential,
velocity distributions and streaming potential are based on the Debye–Hückel approximation for weak potential.
The viscoelastic fluids used are modelled by the simplified Phan-Thien–Tanner constitutive equation, with linear
kernel for the stress coefficient function, and the Finitely Extensible Nonlinear Elastic dumbbells model with a
Peterlin approximation for the average spring force. The combined effects of fluid rheology, electrical double-
layer thickness, ratio of the wall zeta potentials and ratio between the applied streamwise gradients of electrostatic
potential and pressure on the fluid velocity and stress distributions are discussed.

Keywords Electro-osmotic/pressure driven flows · Finitely Extensible Nonlinear Elastic model-Peterlin’s
approximation (FENE-P) · Simplified Phan-Thien–Tanner model (sPTT) · Viscoelastic fluids

1 Introduction

Soong and Wang [1] investigated electro-kinetic effects on flow and heat transfer of Newtonian liquids flowing
between two parallel plates subject to asymmetric boundary conditions including wall-sliding motion, different
zeta potentials, and unequal heat fluxes at the walls. They showed that the surface electric condition due to unequal
zeta potentials dramatically influences the electric potential distribution with concomitant changes in the streaming
potential and the Newtonian fluid-flow characteristics. Such asymmetries are actually fairly normal because many
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manufacturing techniques use different materials at different walls [2]. For instance, in soft lithography the channels
are often made of polydimethylsiloxane (PDMS) except for the top wall that is often made of glass for optical access
or other material for other purpose. In pure electro-osmosis the consequence of this is a linear velocity profile in the
bulk instead of a constant front [3]. Asymmetric electro-osmosis can also be the outcome of imposed polarization by
AC fields in otherwise symmetric geometries [4,5], but this matter is outside the scope of this work which assumes
DC currents.

In DC electro-osmosis, recently an investigation was carried out by Afonso et al. [6], who presented the ana-
lytical solutions for channel and pipe flows of viscoelastic fluids under the mixed influence of electro-osmotic and
pressure-gradient forcing but only under symmetric boundary conditions. To describe viscoelasticity they used the
simplified Phan-Thien and Tanner model (sPTT model, [7]), with linear kernel for the stress-coefficient function
and zero second normal-stress difference [8], and the Finitely Extensible Nonlinear Elastic dumbbells model with
a Peterlin approximation for the average spring force (FENE-P model) [9]. Subsequently, a similar investigation
was carried out by Dhinakaran et al. [10] for PTT fluids with non-zero second normal-stress-difference coefficient
in shear flowing between parallel plates, which identified the conditions for the onset of an instability originated
in the constitutive equation. Both analyses were restricted to cases with small electric double layers, where the
distance between the walls of a microfluidic device is at least one order of magnitude larger than the thickness of the
electric double layer (EDL). When the viscoelastic flow is induced by a combination of both electrical and pressure
potentials, as in the investigations by Afonso et al. [6], in addition to the independent contributions from these two
mechanisms, there is an extra term in the velocity profile that simultaneously combines both, which is absent for
the Newtonian case where the superposition principle applies. This nonlinear term can contribute significantly to
the total flow rate, depending on the value of the EDL thickness and is a consequence of the nonlinear nature of the
constitutive relation of the fluid. Park and Lee [11] derived expressions for the Helmholtz–Smoluchowski velocity
for pure electro-osmotic flow of PTT fluids and provided a simple numerical procedure to calculate its value, and
Sousa et al. [12] considered the effect of a Newtonian skimming layer for the PTT fluid. Note that earlier investiga-
tions on purely electro-osmotic flow or combined electro-osmosis with pressure-gradient forcing were carried out
in the context of Newtonian fluids, as reviewed by Afonso et al. [6]. However, the contributions reviewed in that
paper are all for symmetric zeta potentials.

This work aims to generalize the study of symmetric z–z electrolyte viscoelastic fluids in electro-osmotic/pressure-
gradient-driven flows to other practical relevant flow conditions by presenting the analytical solutions for the flows
of sPTT and FENE-P fluids between two parallel plates under asymmetric boundary conditions of unequal zeta
potentials at the channel walls. Dilute and semi-dilute polymer solutions can easily be represented by these constitu-
tive equations. Specifically, in [13] the rheology of various aqueous solutions of polyethylene oxide, with molecular
weights ranging from 2 × 106 to 8 × 106 g/mol, and of an 18 × 106 g/mol polyacrylamide, all at concentrations not
exceeding 0.1% by weight, were investigated. The rheologies of these fluids were very well fitted by a single-mode
form of the PTT model, which is quite adequate for this shear flow.

The paper starts with the set of governing equations including the nonlinear Poisson–Boltzmann equation gov-
erning the EDL fields and the momentum equation modified by the body force associated with the applied electrical
potential field. The simplifications required to obtain the analytical solution are discussed, the solutions are presented
and a discussion of the effects of the various relevant nondimensional parameters upon the flow characteristics closes
this work. The particular case of streaming potential is presented in Appendix A.

2 Governing equations

The basic equations describing the flow are the continuity equation,

∇ · u = 0 (1)

and the momentum equation,

ρ
Du
Dt

= ∇ · τ − ∇ p + F, (2)
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Electro-osmotic flow of viscoelastic fluids in microchannels 17

Fig. 1 Schematic of the
flow in a parallel plate
microchannel

where u is the velocity vector, p the pressure, t the time, ρ the fluid density (assumed constant) and τ the polymeric
extra stress contribution. The body force F in the momentum equation (2) is here given as

F = ρeE, (3)

where E is the applied external electric field and ρe is the net electric-charge density associated with the spontane-
ously formed electric double layers, which are assumed here not to be affected by the imposed electric field. The
electric field is related to a potential (�), by E = −∇�, with � = ψ + φ, where φ is the applied streamwise
potential and ψ is the equilibrium induced potential at the channel walls, associated with the interaction between
the ions of the fluid and the dielectric properties of the wall. The boundary conditions are no-slip at both walls and
asymmetric zeta potentials at the walls, with Fig. 1 showing schematically the flow channel, coordinate system and
type of forcing.

2.1 Constitutive equations

2.1.1 sPTT model

One of the viscoelastic models adopted here to represent viscoelastic effects is the sPTT equation (simplified
Phan-Thien and Tanner [7]), which can be expressed by

f (τkk)τ + λ
∇
τ = 2ηD, (4)

where D is the rate-of-deformation tensor, D = 1
2

(∇u + ∇uT
)
, λ is a relaxation time, η is the constant viscosity

coefficient of the model and
∇
τ represents the upper-convected derivative, defined by

∇
τ = Dτ

Dt
− ∇uT · τ − τ · ∇u. (5)

The stress-coefficient function, f (τkk), can be expressed in linearised form as

f (τkk) = 1 + ελ

η
τkk, (6)

where τkk = τxx + τyy + τzz is the trace of the extra stress tensor.

2.1.2 FENE-P model

Another viscoelastic model used in this work is the FENE-P constitutive equation, based on the kinetic theory for
finitely extensible dumbbells with a Peterlin closure for the average spring force [9]. The coarse-grained molecule
of the FENE-P model is represented by a single dumbbell, whose connector force follows a nonlinear spring law
possessing limited extension, without consideration for excluded-volume effects and hydrodynamic interaction.
The resulting constitutive equation for the polymer stress can be written as

Z(τkk)τ + λ
∇
τ − λ

(
τ − b

b + 2
nkB T I

)
D log Z

Dt
= 2

b

b + 2
nkB TλD, (7)
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where
∇
τ represents the upper-convected derivative defined by (4), b is a parameter that measures the extensibility

of the dumbbell, kB is the Boltzmann constant, T is the absolute temperature and n is a parameter of the model [9].
The stress-coefficient function, Z(τkk) can be expressed as

Z(τkk) = 1 + 3

(
1

b + 2
+ λ

3η

τkk

(b + 5)

)
. (8)

2.2 Poisson–Boltzmann equation

If a liquid contacts a dielectric surface there are interactions between the ions and the wall, leading to a spontaneous
charge distribution at the fluid and the wall. The wall acquires a charge and the counter-ions in the fluid are attracted
by the wall while the co-ions are repelled. In this case, an electric layer is formed near the wall, which is called the
electric double layer (EDL, see [14] for more details). The induced potential field within the electric double layer,
can be expressed by means of a Poisson equation:

∇2ψ = −ρe

ε
, (9)

where ψ denotes the EDL potential and ε is the dielectric constant of the solution. The net electric-charge density
in the fluid, ρe, can be described by the following Boltzmann distribution

ρe = −2noez sinh

(
ez

kB T
ψ

)
, (10)

where no is the ion density, e is the electronic charge and z the valence of the ions. In order to obtain the velocity
field, first we need to solve for the net charge-density distribution (ρe). The charge-density field can be calculated
by combining (9), which for fully developed steady flow reduces to

d2ψ

dy2 = −ρe

ε
, (11)

and Eq. 10 to obtain the well-known Poisson–Boltzmann equation,

d2ψ

dy2 = 2noez

ε
sinh

(
ez

kB T
ψ

)
. (12)

The electro-osmotic flow is primarily caused by the movement of the charged species adjacent to the channel
walls when subjected to an externally applied electric field. In general, the distribution of the charged species in the
domain is governed by the potential at the walls and by the externally applied electric field. However, when the EDL
thickness is small and the charge at the walls is not large, this distribution is essentially governed by the potential
at the wall, ψ0, and is not affected by the externally applied electric field. Thus, the charge distribution near the
walls can be determined independently of the applied external electric field. In fact, the effect of fluid motion on
the charge redistribution can itself be neglected when the fluid velocity is small, i.e., when the inertial terms in the
momentum equation are not dominant or when the EDL thickness is small since the flow is locally uni-directional.
In this work with the additional consideration of steady fully developed channel flow and the inherent symmetry,
the charge redistribution is exactly null as is also the inertial term of the momentum equation. Then, for small
values of ψ , it is also possible to conduct further simplifications because the Debye–Hückel linearization principle
(sinh x ≈ x) can be invoked. Physically, this means that the electrical potential is small compared with the thermal
energy of the ions, and the Poisson Boltzmann equation for the channel flow under investigation becomes:

d2ψ

dy2 = κ2ψ, (13)

where κ2 = 2noe2z2

εkB T is the Debye–Hückel parameter, associated with the thickness of the Debye layer, ξ = 1
κ

(normally referred to as the EDL thickness). This approximation is valid when the Debye thickness is small but
finite, i.e., for 10 � H/ξ � 103.
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Electro-osmotic flow of viscoelastic fluids in microchannels 19

Equation (13) can be integrated coupled with boundary conditions for different zeta potential at the walls,
ψ‖y=−H = ζ1 and ψ‖y=H = ζ2 (cf. Fig. 1), leading to:

ψ(y) = ζ1
(
�1eκy −�2e−κy) (14)

with �1 =
(
RζeκH −e−κH

)

2 sinh(2κH) and �2 =
(
Rζe−κH −eκH

)

2 sinh(2κH) , and where Rζ = ζ2/ζ1 denotes the ratio of zeta potentials
of the two walls. This equation is valid for −H ≤ y ≤ H and, when Rζ = 1, the symmetric potential profile of
Afonso et al. [6] is recovered.

Finally, the net charge-density distribution, Eq. 10, in conjunction with (14) reduces to

ρe = −εκ2ζ1
(
�1eκy −�2e−κy) = −εκ2ζ1�

−
1 (y), (15)

where the operator �±
p (y) = �

p
1 (e

κy)p ±�
p
2

(
e−κy

)p is a hyperbolic function of the transverse variable y which
depends on the ratio of zeta potentials and on the thickness of the Debye layer.

3 Analytical solution

3.1 sPTT constitutive equation

The predictions of the sPTT model in this flow, for which u = {u(y), 0, 0}, can be obtained from (5) and (6),
yielding:

f (τkk)τxx = 2λγ̇ τxy, (16)

f (τkk)τxy = ηγ̇ , (17)

where τkk = τxx is the trace of the stress tensor and
·
γ = du/dy is the velocity gradient. The demonstration that

τyy = 0 for sPTT fluids in fully developed shear flows can be found in [15], so the stress-coefficient function
becomes an explicit function of the normal stress τxx only. Upon division of the expressions for the two nonvan-
ishing stresses (Eqs. 16, 17) the specific function f (τxx ) cancels out, and a relation between the non-zero normal
and shear stresses is obtained:

τxx = 2
λ

η
τ 2

xy . (18)

3.2 FENE-P constitutive equation

For the FENE-P fluid in fully developed channel flow, i.e., subjected to u = {u(y), 0, 0}, Eqs. 7 and 8 reduce to

Z(τkk)τxx = 2λ
·
γ τxy, (19)

Z(τkk)τxy =
(

b + 5

b + 2

)
η

·
γ . (20)

Again, the trace of the extra-stress tensor becomes τkk = τxx , thus

Z(τxx ) =
(

b + 5

b + 2

) [
1 + λ

η

(b + 2)

(b + 5)2
τxx

]
. (21)

The relation between the normal and shear stresses is,

τxx = 2
λ

η

(
b + 2

b + 5

)
τ 2

xy . (22)

Inspection of these expressions and those of Sect. 3.1 shows similarities between the sPTT and FENE-P stress
distributions and this will have consequences as discussed in Sect. 3.4.
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3.3 Analytical solution for the sPTT model

From the previous simplifications, the momentum equation (2), for fully developed channel flow reduces to

dτxy

dy
= −ρeEx + p,x , (23)

where p,x ≡ dp/dx , Ex ≡ −dφ/dx and φ is the electric potential of the applied external field, which is character-
ized by a constant streamwise gradient. Note that in this flow the external electrical field is positive according to
Fig. 1, and negative otherwise. Using Eq. 15, Eq. 23 can now be integrated to yield the following distribution of
shear stress resulting from a linear combination of the pressure-gradient and electric-field contributions,

τxy = εκζ1 Ex�
+
1 (y)+ p,x y + τ1, (24)

where τ1 is a shear-stress integration constant to be quantified later from the boundary conditions.
By using the relationship between the normal and shear stresses, Eq. 18, an explicit expression for the normal

stress component is also obtained:

τxx = 2
λ

η

(
εκζ1 Ex�

+
1 (y)+ p,x y + τ1

)2
. (25)

The square term in (25) introduces a contribution to the normal stress from the combined electro-osmotic and
pressure forces. After combining (17), (24) and (25) we arrive to the velocity gradient distribution, given by

·
γ ≡ du

dy
=

[
1 + 2ελ2

(
εEx ζ1
η
κ�+

1 (y)+ p,x
η

y + ·
γ1

)2
] (

εEx ζ1
η
κ�+

1 (y)+ p,x
η

y + ·
γ1

)
, (26)

where for compactness we have used the shear-rate asymmetry coefficient defined as
·
γ1 = τ1/η. We note that this

coefficient has no particular physical interpretation.
Equation (26) is integrated subject to the no-slip boundary condition at both walls (u‖y=H = u‖y=−H = 0) and

the resulting velocity profile is

u = ·
γ1 (y + H)

(
1 + 2ελ2 ·

γ
2

1

)
+

[
εExζ1

η

] (
1 + 6

·
γ

2

1ελ
2
)
�−

1,1(y)

+ 2ελ2
[
εExζ1

η

]2

κ
·
γ1

(
6�1�2κ (y+H)+3

2
�−

2,1(y)

)
+2ελ2

[
εExζ1

η

]3

κ2
(

1

3
�−

3,1(y)+3�1�2�
−
1,1(y)

)

+ 1

2

[
p,x
η

] (
y2 − H2

)
(

1 + 6ελ2 ·
γ

2

1 + ελ2
[

p,x
η

]2 (
y2 + H2

)
)

+ 2
·
γ1ελ

2
[

p,x
η

]2 (
y3 + H3

)
+ 12

ελ2
[
εEx ζ1
η

] [
p,x
η

]

κ

·
γ1

(
�−

1,2(y)−�+
1,1(y)

)

+ 6
ελ2

[
εEx ζ1
η

] [
p,x
η

]2

κ2

(
�−

1,3(y)+ 2�−
1,1(y)− 2�+

1,2(y)
)

+ 6ελ2
[
εExζ1

η

]2 [
p,x
η

] (
�1�2κ

2
(

y2 − H2
)

+ 1

2
�−

2,2(y)− 1

4
�+

2,1(y)

)
, (27)

where the operator �±
p,q(y) is defined as

�±
p,q(y) = (κy)(q−1) �±

p (y)− (−1)(q+1) (κH)(q−1) �±
p (−H). (28)

The no-slip boundary conditions for the velocity at the walls allows the determination of the integration constants.

Here we choose to obtain an explicit form for
·
γ1. The application of the second no-slip boundary condition leads

to the following cubic equation:

·
γ

3

1 + a1
·
γ

2

1 + a2
·
γ1 + a3 = 0. (29)
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Electro-osmotic flow of viscoelastic fluids in microchannels 21

The Cardan–Tartaglia solution of the cubic equation gives the following explicit expression for the physically
meaningful real solution of (29) (the other two solutions are complex and unphysical),

·
γ1 = 3

√√√√−b1

2
+

√
b2

1

4
+ a3

27
+ 3

√√√√−b1

2
−

√
b2

1

4
+ a3

27
− a1

3
,

a = a2 − a2
1

3
, (30)

b1 = a3 − a1a2

3
+ 2a3

1

27
,

with coefficients

a1 = 3

2

εExζ1

ηH
�−

1,1(H),

a2 = 1

2ελ2 +
(

p,x
η

)2

H2 + 6

(
εExζ1

η
κ

)2

�1�2 + 3

4

(
εEx ζ1
η
κ
)2

κH
�−

2,1(H)

+3

(
εEx ζ1
η
κ
)

p,x
η

κ2 H

(
�−

1,2(H)−�+
1,1(H)

)
, (31)

a3 = 1

2

εExζ1

η

�−
1,1(H)

2ελ2H
+ 1

2

(
εEx ζ1
η
κ
)3

κH

(
1

3
�−

3,1(H)+ 3�1�2�
−
1,1(H)

)

+3

2

(
εExζ1
η
κ
)2 p,x

η

κ2H

(
1

2
�−

2,2(H)− 1

4
�+

2,1(H)

)
+ 3

2

(
εEx ζ1
η
κ
) (

p,x
η

)2

κ3 H

(
�−

1,3(H)+ 2�−
1,1(H)− 2�+

1,2(H)
)
.

As suggested by (27) there are terms which are only proportional to Ex , others to p,x and those that are simul-

taneously proportional to p,x and Ex . Even the terms proportional to
·
γ1 depend on both forcings. Therefore, as

discussed by Afonso et al. [6], the superposition principle valid for Newtonian fluids and quasi-linear viscoelastic
fluids is no longer valid for the sPTT fluid and suggests that the same applies to other nonlinear viscoelastic models.

It is often more convenient to work with the dimensionless form of Eq. 27. Introducing the normalizations
ȳ = y/H and κ̄ = κH , we can write the dimensionless velocity profile as

u

ush
= ·
γ 1 (y + 1)

(
1 + 2

·
γ

2

1
εDe2

κ

κ2

)
−

(
1 + 6

·
γ

2

1
εDe2

κ

κ2

)
�

−
1,1(y)

+ 2
·
γ 1
εDe2

κ

κ

(
6�1�2κ (y + 1)+ 3

2
�

−
2,1(y)

)
− 2εDe2

κ

(
1

3
�

−
3,1(y)+ 3�1�2�

−
1,1(y)

)

+ 1

2
�

(
y2 − 1

) (
1 + 6

·
γ

2

1
εDe2

κ

κ2 + εDe2
κ

κ2 �2
(

y2 + 1
))

+ 2
·
γ 1
εDe2

κ

κ2 �2
(

y3 + 1
)

− 12
·
γ 1
εDe2

κ

κ3 �
(
�

−
1,2(y)−�

+
1,1(y)

)
+ 6

εDe2
κ

κ2 �

(
�1�2κ

2
(

y2 − 1
)

+ 1

2
�

−
2,2(y)− 1

4
�

+
2,1(y)

)

− 6
εDe2

κ

κ4 �2
(
�

−
1,3(y)+ 2�

−
1,1(y)− 2�

+
1,2(y)

)
, (32)

where �
±
p,q(y) is the normalized version of the operator introduced by (28), defined as

�
±
p,q(y) = (κ y)(q−1) �

±
p (y)− (−1)(q+1)κ(q−1)�

±
p (−1), (33)

with �
±
p (y) = �

p
1

(
eκ y

)p ±�
p
2

(
e−κ y

)p
.
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The dimensionless shear-rate asymmetry coefficient can be calculated from

·
γ

3

1 + a1
·
γ

2

1 + a2
·
γ 1 + a3 = 0, (34)

with coefficients

a1 = −3

2
�

−
1,1(1),

a2 = κ2

2εDe2
κ

+ �2 + 6κ2�1�2 + 3

4
κ�

−
2,1(1)− 3

�

κ

(
�

−
1,2(1)−�

+
1,1(1)

)
, (35)

a3 = −1

4

κ2�
−
1,1(1)

εDe2
κ

− 1

2
κ2

(
1

3
�

−
3,1(1)+ 3�1�2�

−
1,1(1)

)
+ 3

2
�

(
1

2
�

−
2,2(1)− 1

4
�

+
2,1(1)

)

−3

2

�2

κ2

(
�

−
1,3(1)+ 2�

−
1,1(1)− 2�

+
1,2(1)

)
,

where
·
γ 1 =

·
γ 1 H
ush

and Deκ = λush
ξ

= λκush is the Deborah number based on the EDL thickness and on the

Helmholtz–Smoluchowski electro-osmotic velocity, defined as ush = − εζ1 Ex
η

[11]. In Poiseuille flows a differ-
ent Deborah number is usually defined [15] based on the cross-sectional average velocity for the Newtonian flow

under the sole influence of pressure gradient and the channel half-height, DeN = λUN
H with UN = − H2 p,x

3η . A
third alternative Deborah number for electro-osmotic flow is based again on ush, but considers the channel half-
height, Desh = λush

H . These three Deborah numbers are related by Deκ = κ̄Desh = − 3
�
κ̄DeN , where parameter

� = − H2

εζ1

p,x
Ex

represents the ratio of pressure to electro-osmotic driving forces. Note that for simplicity the above
terms were based on the zeta potential at the bottom wall, (ψ‖y=−H = ζ1), but can be related with the upper-wall
zeta potential using the ratio of zeta potentials: ush = ush2/Rζ , � = Rζ �2 and Deκ = Deκ2/Rζ . The solution of
Eq. 34 is similar to Eq. 30. The flow rate per unit length can be determined from integration of the velocity profile
(27). Here, this integration was carried out using the normalized velocity profile, Eq. 32, leading to the following
expression

Q = Q

2Hush
= u

ush
= 1

2

1∫

−1

u

ush
dȳ = ·

γ 1

(
1 + 2

εDe2
κ

κ2

·
γ

2

1

)
− 1

2
�

(
4

5

εDe2
κ

κ2 �2 + 2

3

(
1 + 6

·
γ

2

1
εDe2

κ

κ2

))

+ 2
·
γ 1
εDe2

κ

κ2 �2 − 1

2

(
1 + 6

εDe2
κ

κ2

·
γ

2

1

)(
�

+
1,1(1)

κ
− 2�

−
1 (−1)

)

+ εDe2
κ

κ

·
γ 1

(

12�1�2κ + 3

2

(
�

+
2,1(1)

2κ
− 2�

−
2 (−1)

))

− εDe2
κ

(
�

+
3,1(1)

9κ
− 2

3
�

−
3 (−1)+ 3�1�2

(
�

+
1,1(1)

κ
− 2�

−
1 (−1)

))

− 6
·
γ 1
εDe2

κ

κ4 �
[
�

+
1,2(1)− 2�

−
1,1(1)+ 2κ

(
κ�

−
1 (−1)+�

+
1 (−1)

)]

+ 3
εDe2

κ

κ2 �

(
1

4κ

(
�

+
2,2(1)−�

−
2,1(1)

)
− 4

3
�1�2κ

2 + κ�
−
2 (−1)+ 1

2
�

+
2 (−1)

)

− 3
εDe2

κ

κ5
�2

(
�

+
1,3(1)− 4�

−
1,2(1)+ 6�

+
1,1(1)

)

+ 6
εDe2

κ

κ4 �2
((
κ2 + 2

)
�

−
1 (−1)+ 2κ�

+
1 (−1)

)
. (36)

The decoupling of this total flow rate into its three fundamental contributions (pure electro-osmosis, pure Poiseu-
ille flow and the nonlinear combined forcing contribution) is not attempted here since it leads to extremely complex
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relations, if at all possible. In fact, the dependence on the shear-rate asymmetry coefficient,
·
γ 1, complicates this task,

because
·
γ 1 is the solution given by (30) of the cubic equation (29), and each of its various component coefficients

(a1, a2 and a3) also contain the same fundamental contributions. However, it is possible to gain insight into this
issue by looking at the simpler symmetric case for which Afonso et al. [6] quantified the relative flow-rate contribu-
tions (cf. their Fig. 10). For instance, for large viscoelasticity (

√
εDeκ ≥ 5), the ratio of flow rates asymptotes and

becomes inversely proportional to κ . If the double layer is thick, say κ = 20, and for a favourable pressure gradient,
QE P/QT can be of the order of 19%, decreasing to 4% for a thin EDL. This nonlinear contribution becomes
stronger than the pure Poiseuille contribution at high values of

√
εDeκ , even if the pressure gradient is adverse.

The explicit expressions for the dimensionless shear and normal-stress components are obtained from normali-
zation of (24) and (25):

τxy

3ηushκ
= 1

3

⎡

⎣�
y

κ
+

·
γ 1

κ
−�

+
1 (y)

⎤

⎦ , (37)

τxx

3ηushκ
= 2

3
Deκ

⎡

⎣�
y

κ
+

·
γ 1

κ
−�

+
1 (y)

⎤

⎦

2

. (38)

The normalized shear rate is

·
γ

ushκ
=

⎡

⎢
⎣1 + 2εDe2

κ

⎛

⎝�
y

κ
+

·
γ 1

κ
−�

+
1 (y)

⎞

⎠

2
⎤

⎥
⎦

⎛

⎝�
y

κ
+

·
γ 1

κ
−�

+
1 (y)

⎞

⎠ (39)

and the viscosity profile can be obtained from

μ(
·
γ ) ≡ τxy

·
γ

⇒ μ(
·
γ )

η
=

⎡

⎢
⎣1 + 2εDe2

κ

⎛

⎝�
y

κ
+

·
γ 1

κ
−�

+
1 (y)

⎞

⎠

2
⎤

⎥
⎦

−1

. (40)

3.4 Analytical solution for the FENE-P model

As pointed out at the end of Sect. 3.2, for fully developed channel flow, there is similarity between the solutions
for the sPTT and the FENE-P models [16]. By comparing (16) and (17) for the sPTT model with (19) and (20) for
the FENE-P model, and since the momentum equation (23) is independent of the constitutive equation, an exact
equivalence in the sense of a parameter-to-parameter match is obtained, as explained in detail in [17]. Hence, the
solution of Sect. 3.3 and Appendix A also applies to the flow of FENE-P fluids, provided the following substitutions
are made:

f (τxx ) →
(

b + 2

b + 5

)
Z(τxx ),

λ → λ

(
b + 2

b + 5

)
, (41)

ε → 1

b + 5
,

η → η.

4 Discussion of results

In Sect. 3 the solution was obtained for fully developed flow of viscoelastic fluids (sPTT and FENE-P fluids) under
the mixed influence of pressure gradient and electro-osmosis induced by asymmetric zeta potentials at the channel
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Fig. 2 Effect of zeta-potential ratio on Newtonian flow under pure electro-osmosis (� = 0) and κ̄ = 20: a Dimensionless potential
and b velocity profiles. Symbols in (b) represent the data from Burgreen and Nakache [20]

walls. The different influences of the driving forces, fluid rheology and zeta-potential ratio on the velocity profiles
have been identified in (27); in this section we discuss in detail some of the various limiting cases in order to
better understand the fluid dynamics. The limit cases contained in the general solution are: (a) Newtonian fluid
with mixed electro-osmotic/pressure driving forces and asymmetric wall zeta potentials; (b) Pure electro-osmotic
flows of viscoelastic fluids with asymmetric wall zeta potentials; (c) Poiseuille flow of a viscoelastic fluid and (d)
Viscoelastic fluid with mixed electro-osmotic/pressure driving forces and asymmetric wall zeta potentials. Case (c)
was studied in detail elsewhere [15–18], and so was case (a) in [1], but this latter situation is revisited here as a
starting point.

4.1 Newtonian fluid with mixed driving forces and asymmetric zeta potentials

For a Newtonian fluid the relaxation time is zero, so the Deborah number vanishes (Deκ = 0), and Eq. 32 becomes

u

ush
= ·
γ 1 (y + 1)−�

−
1,1(y)+ 1

2�
(
y2 − 1

)
, (42)

under the mixed influence of electro-osmotic and pressure driving forces, as was also shown by Soong and Wang [1].
As explained in Sect. 3.3, the asymmetric boundary-conditions for the zeta potential at the channel walls introduces

a new constant in the velocity profile,
·
γ 1, that depends on the ratio of zeta potentials, Rζ , on the relative micro-

channel ratio, κ̄ , on the ratio of pressure gradient to electro-osmotic driving forces, �, and on the fluid rheology.
For a Newtonian fluid the dimensionless shear-rate asymmetry coefficient is a linear function of Rζ , as expressed

by
·
γ 1 = 1

2�
−
1,1(1) = 1

2

(
Rζ − 1

)
. For symmetric boundary conditions (Rζ = 1),

·
γ 1 = 0, and the velocity profile is

simplified to that of Dutta and Beskok [19]. For � → ∞, pressure forces dominate the momentum transport for any
value of κ̄ , and the classical laminar parabolic velocity profile is recovered. Note that this corresponds to Ex → 0
and ush → 0, since ush ∝ Ex and � ∝ E−1

x . For � → 0, the last term on the right-hand side of (42) vanishes, the
flow becomes governed exclusively by electro-osmosis and the velocity profile is a function of the wall distance,
the relative microchannel ratio, κ̄ , and the ratio of zeta potentials, Rζ , as shown by Soong and Wang [1]. So, for
symmetric boundary conditions (Rζ = 1), the velocity profile is only a function of the wall distance and the relative
microchannel ratio, κ̄ , as shown earlier by Burgreen and Nakache [20]. Note that for large κ̄ (κ̄ → ∞) the size of
the EDL, or region of excess charge, is relatively small, and (42) reduces to the classical Helmoltz–Smoluchowski
equation, u/ush = 1 [11], if simultaneously � = 0.

Figure 2a shows the effect of the ratio of zeta potentials, Rζ , on the variation of the dimensionless potential for
pure electro-osmotic flow (� = 0) and relative microchannel ratio of κ̄ = 20. When the ratio of zeta potentials
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Fig. 3 Velocity profiles for Newtonian fluids for κ̄ = 20 and different ratios of pressure to electro-osmotic driving forces, �, and zeta
potential ratios: a Rζ = −1 and b Rζ = 2

decreases from symmetric (Rζ = 1) to anti-symmetric (Rζ = −1) the corresponding dimensionless potential pro-
files vary from fully symmetric to fully anti-symmetric, respectively. This is also observed in the velocity profiles
presented in Fig. 2b: for symmetric boundary conditions (Rζ = 1) the velocity profile corresponds to a pluglike
flow, as shown earlier by Burgreen and Nakache [20]. When Rζ = −1 the velocity profiles are fully anti-symmetric.

Figure 3 shows Newtonian velocity profiles for various ratios of pressure gradient to electro-osmotic driving
forces at κ̄ = 20 and for different values of Rζ . When � = 0 and Rζ = −1 the velocity profiles are anti-symmetric,
as seen in Fig. 2b. When � = 0, corresponding to mixed Poiseuille electro-osmotic flows, the pressure-gradient
effect can be observed in the favorable (� < 0) or adverse (� > 0) contributions for the velocity profiles. The
velocity profiles shown in Fig. 3b for κ̄ = 20 and Rζ = 2, show a skewed pluglike profile, due to a higher zeta

potential at y = 1. Equation 42 predicts negative velocities at ȳ = 0 when � > 2
·
γ 1 −

[
Rζ+1−2 cosh(κ)

cosh(κ)

]
for all

values of κ̄ and Rζ . For symmetric boundary conditions, negative velocities at ȳ = 0 are predicted for � > 2 and
small but finite Debye lengths, κ̄ � 10, as observed by Afonso et al. [6].

4.2 Viscoelastic fluid with pure electro-osmosis and asymmetric zeta potential

For the sPTT fluid under pure electro-osmosis driving force, the solution is derived by setting � = 0, for which Eq.
32 reduces to

u

ush
= ·
γ 1 (y + 1)

(
1 + 2

·
γ

2

1
εDe2

κ

κ2

)
−

(
1 + 6

·
γ

2

1
εDe2

κ

κ2

)
�

−
1,1(y)

+ 2
·
γ 1
εDe2

κ

κ

(
6�1�2κ (y + 1)+ 3

2
�

−
2,1(y)

)
− 2εDe2

κ

(
1

3
�

−
3,1(y)+ 3�1�2�

−
1,1(y)

)
. (43)

For symmetric boundary conditions (Rζ = 1 and
·
γ 1 = 0) the above equation reduces to that presented by Afonso

et al. [6], but for Rζ = 1 the dimensionless shear-rate asymmetry coefficient,
·
γ 1, depends on the fluid rheological

properties, as shown in Fig. 4a. For Rζ < 1,
·
γ 1 is always negative, decreasing with the increase of

√
εDeκ , an

indication that the shear stress is also decreasing as
√
εDeκ increases. For Rζ > 1,

·
γ 1 is always positive and

increases with
√
εDeκ , since increasing the shear-thinning behaviour of the fluid, leads to higher shear stresses. All

curves asymptote to the same limiting curve when
√
εDeκ → ∞, with the absolute value of

·
γ 1 increasing when κ̄

increases (κ̄ = 20, 100, 150 and 200), as observed in Fig. 4b. The increase of
·
γ 1 with κ̄ is related with the reduction
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Fig. 4 Variation of the dimensionless shear-rate asymmetry coefficient,
·
γ 1, for purely electro-osmotic viscoelastic flow (� = 0) as a

function of the ratio of zeta potentials, Rζ . a Increasing
√
εDeκ for κ̄ = 20 and b asymptotic limit for

√
εDeκ → ∞ at several κ̄
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nel ratios of κ̄ = 20
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Fig. 6 Variation of the dimensionless shear-rate asymme-
try coefficient, γ̇ 1, with Rζ as a function of � (electro-
osmotic/pressure-driven flow) for the asymptotic limit of√
εDeκ → ∞ and κ̄ = 100

of the shear layer thicknesses, leading to high shear stresses near the wall, i.e., higher values of
·
γ 1 are needed to

balance the velocity profile.
Figure 5 shows the corresponding dimensionless velocity profiles as a function of the parameter

√
εDeκ for two

ratios of zeta potentials, Rζ = −1 and Rζ = 0.5, and a relative microchannel ratio of κ̄ = 20. These profiles should
be compared with those in Fig. 2b pertaining to Newtonian fluids. As for Newtonian fluids, the velocity profiles for
Rζ = −1 exhibit an anti-symmetric pluglike shape (full lines in Fig. 5), with the absolute velocities increasing with√
εDeκ . For Rζ = 0.5, increasing

√
εDeκ also leads to an increase in the skewed pluglike profile, as observed in

Fig. 5. This flow enhancement by increasing
√
εDeκ is typical of sPTT fluids and is associated with the increased

shear-thinning behaviour of the fluid.

4.3 Viscoelastic fluid with mixed driving forces and asymmetric zeta potentials

The viscoelastic flow characteristics under the combined action of electro-osmosis and a pressure gradient are
discussed in this section following (32).
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Fig. 7 Dimensionless velocity profiles for a PTT fluid under the mixed influence of electro-osmotic/pressure driving force as function
of

√
εDeκ for relative microchannel ratio of κ̄ = 20: a � = −2 and Rζ = −1 and b � = 2.5 and Rζ = 0.5

The Poiseuille effect on the dimensionless shear-rate asymmetry coefficient,
·
γ 1, is presented in Fig. 6, here for

the asymptotic limit of
√
εDeκ → ∞. By increasing the favorable pressure gradient (decreasing �),

·
γ 1 increases,

especially for Rζ < 1. By increasing � for adverse pressure gradient conditions,
·
γ 1 also increases, especially for

−1 < Rζ < 1, i.e.,
·
γ 1 behaves monotonically but nonlinearly with Rζ showing the minimum value for Rζ < 1

and the maximum for Rζ > 1. Figure 7 (a) and (b) present the dimensionless velocity profiles for the flows with
favorable and adverse pressure gradients, respectively. For � < 0 with anti-symmetric zeta potentials (Rζ = −1),
the velocity profiles increase with

√
εDeκ , due to shear-thinning effects, leading to correspondingly higher shear

rates near the walls. For � > 0 with Rζ = 0.5, the velocity profiles show the same double peak seen for Newtonian
flows (cf. Fig. 3a), due to the retarding action of the pressure gradient. The velocity profiles also increase with√
εDeκ , again due to shear-thinning effects, both within the EDL layer and in the bulk zone.
In Appendix A the streaming-potential solution induced by Poiseuille flow is presented and discussed.

5 Conclusions

Analytical solutions for channel flow of symmetric z–z electrolyte viscoelastic fluids under the mixed influence of
electro-osmosis and pressure gradient forcings were obtained for the case of asymmetric wall zeta potentials. This
analysis is restricted to cases with small electric double-layers, where the wall-to-wall distance is at least one order
of magnitude larger than the thickness of each EDL. The viscoelastic fluids analysed are described by the sPTT
model with linear kernel for the stress-coefficient function and zero second normal-stress difference [7], and the
FENE-P model [9]. In addition, we have also presented the solution for the streaming potential. The solution remains
valid for the particular combination of forcings known as the streaming potential and the flow characteristics are
determined by the same equations provided Ex = Ex,sp and� = �sp, where�sp and Ex,sp are given in Appendix A.

Acknowledgements The authors acknowledge funding from FEDER and Fundação para a Ciência e a Tecnologia (FCT), Portugal,
through projects PTDC/EQU-FTT/70727/2006 and PTDC/EQU-FTT/71800/2006. A.M. Afonso would also like to thank FCT for
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Appendix A: Streaming-potential solution

In the solution presented in Sect. 3, the electrical field Ex can be applied externally or be a consequence of electric
potentials created by the flow. In the absence of an externally applied electrical field, the applied pressure difference
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induces a flow carrying ions that generate an electrical current, called the streaming current, I ′
s . The streaming

current accumulates counterions at the end of the channel therefore setting up an electric field, Ex,sp which is
associated with the so-called streaming potential, φsp via Ex,sp = −�φsp/ l. This induced electric field creates an
opposite current, I ′

c, called conduction current which induces a flow contrary to the pressure-induced flow. This is
established in such way that under steady state conditions the net electrical current, I ′, vanishes. The net electric
current is the sum of the streaming currents and the electrical conduction current:

I ′ = I ′
s + I ′

c ≡ 0. (A.1)

The electrical streaming current (per unit of width) is of the form:

I ′
s =

H∫

−H

u(y)ρe(y)dy =
H∫

−H

−u(y)εκ2ζ1�
−
1 (y)dy, (A.2)

which for the sPTT fluid leads to

I ′
s

εζ1
= − ·

γ 1

(
1 + 2ελ2 ·

γ
2

1

) (
2κ�+

1 (H)−�−
1,1(H)

)
+ 6ελ2

[
εEx,spζ1

η

]2

κ2 ·
γ1�1�2
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2�−

1,1(H)− 4κ�+
1 (H)
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− 1

2

[
εEx,spζ1

η

] (
1 + 6

·
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2

1ελ
2
)
κ
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�−

2 (H)+�−
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)
− 2�2
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2
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η
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κ2 ·
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3 (−H)+ 3�1�2
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1 (−H)
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+ 12
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. (A.3)

In Eq. A.3 the electric potential Ex has already been substituted by the corresponding streaming potential, Ex,sp.
The electrical conduction current in the channel is defined as:

I ′
c = 2Hσt Ex,sp, (A.4)

where σt is the total electric conductivity. Note that the conduction current can now flow back through both the
fluid as well as the channel walls, depending on the corresponding electrical conductivities. The total electrical
conductivity can be calculated as σt = σfluid + σsur Psur/Achan, where Psur and Achan are the wetting perimeter and
cross-section area of the channel, respectively and σfluid and σsur are the fluid bulk and wall surface conductivi-
ties, respectively. Upon substitution of Eqs. A.3 and A.4 we arrive at an algebraic cubic equation in the streaming
potential field as function of the imposed pressure gradient. This cubic equation has a real solution given in Eq.
30 as well as in classical books; cf [21, pp. 178–180]. This cubic equation in Ex,sp can alternatively be written in

non-dimensional form to give �sp, where �sp = − H2

εζ1

p,x
Ex,sp

. In this case, it is customary [6,12] to normalize the

electric conductivity σt as Υ1, defined as Υ1 = H2ησt

ε2ζ 2
1

.
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