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Abstract: A facile methodology system for synthesizing solid polymer electrolytes (SPEs) based on
methylcellulose, dextran, lithium perchlorate (as ionic sources), and glycerol (such as a plasticizer)
(MC:Dex:LiClO4:Glycerol) has been implemented. Fourier transform infrared spectroscopy (FTIR)
and two imperative electrochemical techniques, including linear sweep voltammetry (LSV) and
electrical impedance spectroscopy (EIS), were performed on the films to analyze their structural and
electrical properties. The FTIR spectra verify the interactions between the electrolyte components.
Following this, a further calculation was performed to determine free ions (FI) and contact ion pairs
(CIP) from the deconvolution of the peak associated with the anion. It is verified that the electrolyte
containing the highest amount of glycerol plasticizer (MDLG3) has shown a maximum conductivity
of 1.45× 10−3 S cm−1. Moreover, for other transport parameters, the mobility (µ), number density (n),
and diffusion coefficient (D) of ions were enhanced effectively. The transference number measurement
(TNM) of electrons (tel) was 0.024 and 0.976 corresponding to ions (tion). One of the prepared samples
(MDLG3) had 3.0 V as the voltage stability of the electrolyte.

Keywords: biopolymer blend electrolyte; EIS and FTIR; ion transport parameters; complex permittiv-
ity; LSV and TNM measurements

1. Introduction

Due to demand for high-energy consumption, for instance, to power laptops and
mobile devices, the usage of energy storage devices is widespread. In order to produce
low-cost and safe energy storage systems, the design of high-performance electrochemical
devices has been extensively studied [1,2]. It is essential to use polymer electrolytes (PEs)
for electrochemical devices because of their common advantages including qualities such
as wide electrochemical windows, leakage-free, ability to form thin films, lightweight,
flexibility, ease of handling, transparency, good conductivity, and solvent-free feature
compared to commercial liquid electrolytes (LEs) [3,4]. In the PEs of the energy storage
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devices, the host polymer is often divided into two types: natural and synthetic polymers [5].
Non-biodegradable synthetic polymers deplete petroleum resources and introduce disposal
difficulties [6]. As a result, biopolymers may be employed as the host polymer to investigate
energy storage devices and minimize plastic waste pollution. These polymers, which derive
from natural resources, have distinct advantages over synthetic ones, including low cost,
wide compatibility with a wide range of solvents, abundance, and high film formation
efficiency [7,8]. In PE investigations, starch, cellulose, chitosan, dextran, and carrageenan
are the most- often employed biopolymers [9–13].

The search for novel ion-conducting PEs for lithium-based energy devices continues
incessantly [14–17]. To replace the LEs in lithium-ion batteries, PEs that are linked to lithium
salts and integrated into neutral or ion-conducting polymers have been suggested [18]. In
contrast to manufactured polymers, which are durable, natural biopolymers degrade with
time [19]. Cellulose is nature’s most abundant organic polymer, making it an excellent
source of renewable energy [8]. As a natural polymer, cellulose is seen as a potential
replacement for petrochemical polymers [20]. Cyanoacrylate is one of the most often used
and lowest-priced types of cellulose. A biodegradable polymer that has excellent film-
forming capabilities may be transparent and possesses superior mechanical and electrical
properties that can be made from alkali cellulose. Methylcellulose (MC) is one of these
cellulose derivatives [6]. By adding dimethyl sulfate or methyl chloride to alkali-based
cellulose, a polymer with a 1,4 glycosidic link is created, known as MC [21]. Through
a dative connection, ions create a complexation with polymer-host-oxygen-containing
functional groups. Ion conduction in MC is facilitated by functional groups possessing
lone-pair electrons, including hydroxyl, glycosidic link, and mexthoxy groups [22]. When
it comes to film-forming and dissolving qualities, MC is a standout because of its strong
mechanical, thermal, and chemical stabilities [23]. Glass transition temperature (Tg) for
microcrystalline MC is between 184 and 200 ◦C, making it an excellent material for high-
temperature applications [22]. Leuconostoc mesenteroides bacteria produce dextran, a
non-toxic and biodegradable polysaccharide that has lone-pair electrons of heteroatoms,
such as oxygen, which is essential for dissolving inorganic salts [13]. The polymer blend
approach has been reported to generate a polymer mix host with higher ionic conduc-
tion sites [24]. A reduced glass transition temperature and degree of crystallinity may
be achieved by mixing polymers [25]. A PE based on lithium salts is able to perform
well overall in terms of crucial features, such as electrochemical window stability and
ionic conductivity [26]. Various plasticizing agents were identified to further improve
the above-mentioned properties. The loading of glycerol provided a conductivity of
(1.32 ± 0.35) × 10−3 S cm−1 for the chitosan-PS-LiCF3SO3 system [27].

In this study, glycerol (contains three OH groups) as an eligible plasticizer has been
used in an effort to pick up the conductivity of the blended polymer system. It causes
weakening of the attraction force between the polymer chains and cations and anions of the
salts [4]. The objective of this study is to enhance the conductivity of the prepared SPEs by
adding glycerol as more ions are dissociated to increase conductivity. The electrochemical
tests indicate the films are convenient for applications.

2. Results and Discussion
2.1. FTIR Results

To study polymer-mix developments, several scientists have turned to FTIR. Inter-
molecular interactions may be studied using FTIR spectroscopy, which analyzes spectra
based on the stretching or bending vibrations of specific bonds. Figure 1 showed the spectra
of the electrolytes at the 400 to 4000 cm−1. A wide band of 3353 cm−1 was observed in
the FTIR spectra for MC: Dext, indicating the presence of OH groups [28,29]. The bands,
due to -OH bending and -OH stretching, can be found at 1253–1503 cm−1 in a sharp peak
and 3703–3149 cm−1 in a broad-peak form, respectively, by glycerol loading [30,31]. A
peak at 1334 cm−1 came from -OH bending. The -CH asymmetrical and -CH symmetrical
stretching are found at 3049 to 2849 cm−1 [32,33]. As the concentration of glycerol rises,
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the intensity of the -CH bands increases, indicating a complicated interplay between the
glycerol and MC-Dex-LiClO4 [34]. As glycerol concentrations increase, the position of the
electrolyte carboxamide and amine band shifts somewhat to 1749–1519 cm−1. The impact of
increasing the content of glycerol on the strength of the interaction between the components
of the polymer blend is proved where additional ions are interacting with the oxygen atoms
and nitrogen atoms [27]. The range of carboxamide and amine bands can be recognized
straightforwardly as reported by Aziz et al. [35] and Shukur et al. [36]. Interestingly, a
sharp peak lies between 901 and 1203 cm−1 that comes from the C-O stretching, which is in
accordance with the findings of the study documented by Mejenom et al. [37]. This band
peak widens as the glycerol concentration increases. The insertion of LiClO4 salt into MC:
Dex resulted in a significant shift in the strength of the bands, which is fascinating. The
changes in the macromolecular arrangement have a direct effect on the intensity of these
bands. The spectra of the complexes may show more and less organized structures, which
might be the cause of these bands [38].
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Figure 1. FTIR spectra for (i) MDLG1, (ii) MDLG2, and (iii) MDLG3 in the region 400–4000 cm−1.

Many useful qualities, such as peak resolution, noise removal, and checking for inter-
connections between deconvolution parameters, are provided by the FTIR deconvolution,
which is used in support of the conductivity findings [39]. When using this method, the
deconvolution FTIR spectra may be used to determine the ion fraction that conducts elec-
tricity. Ramelli et al. noted that FTIR spectra might be deconvoluted, allowing one to isolate
existing peaks and modify both intensity and wavenumber [40].

A peak for ClO4 localizes from 650 to 600 cm−1 and is regularly utilized in the investi-
gation of ion–ion interactions in the PE and LiClO4 salt addition [41,42]. The ClO4 bands
are featured by two peaks extending from 610 to 630 cm−1, which indicates that, at most,
two dissimilar sorts of ClO4 anions are present in this material.
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Salomon et al. documented that the presence of Li+1 is attached to the ClO4 band
located at 610–630 cm−1. CIP ClO4

−1 anions were observed at lower than 610 cm−1,
while free ClO4 anions were observed at about 610–630 cm−1 [42]. Figure 2a–c show the
deconvoluted FTIR spectra for the prepared electrolytes. The free ClO4 peaks are larger
than the peaks of contact-ion pairs, as shown in Figure 2. Glycerol plasticizer helps dissolve
LiClO4 salt in the MC: Dex matrix; therefore, this is what happens when the two mixtures
are combined.
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Figure 2. Deconvoluted FTIR spectra for (a) MDLG1, (b) MDLG2, and (c) MDLG3.

The free ions and contact ion pairs were measured using the area of the FTIR bands by
the equations below [4]:

Percentage of FI (%) =
A f

A f + Ac
× 100% (1)

Percentage of CIP (%) =
Ac

A f + Ac
× 100% (2)

where Af is the area of the FIP and Ac is the area of the CIP. The percentages of FI and CIP
are shown in Table 1.
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Table 1. The percentages of ions.

Sample FI% CIP%

MDLG1 65.85% 34.14%
MDLG2 72.58% 27.42%
MDLG3 76.95% 23.05%

The rise in ionic conductivity might also be attributed to the rise in Li+ ions that
dissociate from LiClO4 salts. There is a strong correlation between the conductivity and the
proportion of free ions, according to Aniskari and colleagues [43]. The calculation of the
number density (n), ionic mobility (µ), and diffusion coefficient (D) for each electrolyte can
be calculated from Equations (3)–(5). In these equations, M stands for the molecular weight
of glycerol and e is the electron charge, and NA is the Avogadro’s constant. A polymer
electrolyte has a total volume of VTotal. The calculated values of n, µ, and D are shown in
Table 2.

n =
M× NA

VTotal
× ( f reeion%) (3)

µ =
σ

ne
(4)

D =
µkT

e
(5)

Table 2. The n, D, and µ at ambient temperature from FTIR approach.

Glycerol % n (cm−3) µ (cm2 V−1 s) D (cm2 s−1)

MDLG1 2.32 × 1022 4.0 × 10−8 1.04 × 10−9

MDLG2 5.92 × 1022 1.09 × 10−7 2.83 × 10−9

MDLG3 1.13 × 1023 1.10 × 10−7 2.86 × 10−9

In Table 2 the D, µ and n values increase as the glycerol increases. The improvement
of D and µ can be interpreted according to the increase in polymer chain flexibility upon
the addition of the glycerol [1].

The relationship between the ionic conductivity of the electrolyte films and the ionic
mobility is well-acknowledged and mathematically stated as follows:

σ = ∑ ηqµ (6)

where σ denotes the ionic conductivity, η represents the charge carrier density, and q stands
for the single charge. From the equation above, it can be observed that the ionic conductivity
improves with the increment of the ionic mobility as well as charge carrier density.

2.2. Impedance Study

Figure 3 shows the Cole-Cole plots used to estimate the impedance parameters of
the electrolytes used in this study. An appropriate equivalent circuit model, with series
connections for the resistor and the capacitor given by bulk resistance (Rb) and the constant
phase element (CPE), is shown in the inset figure for each Cole-Cole plot. Ions flow via a
resistor, whereas polymer chains remain immobile in a capacitor [44]. Because of the charge
buildup and capacitive elements in the electrolytes, there is a spike in the plots created by
the diffusion process inside the system [17,45]. This graph also shows how polarization
and blocking electrodes in the Pes affect the inclination [46,47].



Int. J. Mol. Sci. 2022, 23, 9152 6 of 16
Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 17 
 

 

 

 

 

Figure 3. EIS spectra of (a) MDLG1, (b) MDLG2, and (c) MDLG3 electrolytes. 

  

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

Zr(Ohm) x 102

Z i
(O

hm
) x

 1
02

Experimental

Fitting

Rb CPE2

  (a)

0

1

2

3

4

5

0 1 2 3 4 5

Zr(Ohm) x 102

Z i
(O

hm
) x

 1
02

Experimental

Fitting

Rb CPE2

  (b)

0

1

2

3

0 1 2 3

Zr(Ohm) x 102

Z i
(O

hm
) x

 1
02

Experimental

Fitting

Rb CPE2

  (c)

Figure 3. EIS spectra of (a) MDLG1, (b) MDLG2, and (c) MDLG3 electrolytes.

The impedance of CPE (ZCPE) is written as follows [48,49]:

ZCPE =
1

Cωp

[
cos
(πp

2

)
− i sin

(πp
2

)]
(7)
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where ω denotes the angular frequency, p indicates the deviation of the plot from the axis,
and C refers to the capacitance of CPE component. The spectra that involve only a spike
and Rb are in series with CPE, and the real and the imaginary parts of impedance, Zr and
Zi, are based on the following mathematical relationships.

Zr = R +
cos
(πp2

2
)

C2ωp2 (8)

Zi =
sin
(πp2

2
)

C2ωp2 (9)

The determined Rb and CPE for each electrolyte are listed in Table 3. The CPE values
increase while the Rb values fall when glycerol concentrations increased. There are more
ions in a solution, resulting in a higher capacitance value, which results in the greater mobil-
ity and dissociation of ions, thereby increasing conductivity [50,51]. The ionic conductivity
(σ) measured using Equation (10) and also shown in Table 3 demonstrates this.

σdc =

(
1

Rb

)
×
(

t
A

)
(10)

Table 3. EEC fitting parameters for each sample.

Sample K (F−1) CPE (F) Rb (Ohm) Conductivity
(S cm−1)

MDLG1 5.21 × 104 1.92 × 10−5 3.80 × 101 3.93 × 10−4

MDLG2 2.45 × 104 4.08 × 10−5 1.89 × 101 8.16 × 10−4

MDLG3 1.59 × 104 6.29 × 10−5 1.10 × 101 1.45 × 10−3

Here, t refers to the electrolyte’s thickness; A denotes the SS electrodes area.
This study demonstrated that the MC:Dex:LiClO4:glycerol combination is more flexible

and mobile because of the glycerol [52]. The conductivity of 1.99 × 10−3 S cm−1, achieved
by MDLG3, is close to that achieved by Amran et al. [27] and Shukur et al. [30], and they
also used glycerol as a plasticizer in their studies. It is also comparable with our previous
studies of the biodegradable-blend-polymer electrolytes incorporated with ammonium
salts [53,54]. The conductivity that was achieved in this study bodes well for future
applications in energy devices [31].

As the samples have only a spike, D, µ, and n are measured by below equations [2]:
D is measured using Equations (11) and (12) [1]:

D = Do exp
{
−0.0297[ln Do]

2 − 1.4348 ln Do − 14.504
}

(11)

where the following is the case.

Do =

(
4k2l2

Rb
4ωmin

3

)
(12)

Here, ωmin and l correspond to the angular frequency that is based on the minimum
Zi and the electrolyte thickness, respectively. µ is measurable from the relationship shown
in Equation (13):

µ =

(
eD

KbT

)
(13)

where Kb and T are the Boltzmann constant possess normal meanings.
The conductivity can be measured using Equation (6).
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Thus, the number n is measured using Equation (14):

n =

(
σdcKbTτ2

(eK2εoεr A)2

)
(14)

In Table 4, D, µ, and n increased when glycerol increased. This is caused by increasing
the polymer chain’s flexibility when the glycerol is loaded [2]. The outcome shows how the
concentration of glycerol affects the values of the ion number density, the ionic mobility,
and the diffusion coefficient. This increase in D, µ, and n values can cause an increase in
conductivity [4]. It is interesting to observe that when glycerol concentration increases,
the number of ions (n) tends to increase continuously. Glycerol enhances the dissociation
of salts to free ions; thus, n increases correspondingly. Meanwhile, ionic mobility (µ) and
diffusion coefficient (D) are observed to follow the same trend of ionic conductivity, as
shown in Table 3. The value of the free ion, which gradually increased by adding glycerol
to the system, indicates that the ionic conductivity of the present system increased by
the increasing the (n) value. These results from EIS and the FTIR deconvolution are in
agreement.

Table 4. The values of ion transport parameters of each film from impedance approach.

Sample D (cm2 s−1) µ (cm2 V−1 s) n (cm−3)

MDLG1 1.72 × 10−7 6.71 × 10−6 3.65 × 1020

MDLG2 1.88 × 10−7 7.33 × 10−6 6.95 × 1020

MDLG3 2.64 × 10−7 1.03 × 10−5 8.80 × 1020

2.3. Dielectric Properties

According to current research, dielectric material qualities may be defined in multiple
ways. There were many ways to increase the accuracy and sensitivity of material character-
ization [55–59]. Impedance studies at various frequencies have been shown to be a good
approach for studying the molecular mobility of dielectric materials [60]. Dielectric studies
may be used to examine the conductivity trend. Different amounts of glycerol at ambient
temperature affect the dielectric constant (ε′) and the dielectric loss (ε′′), as observed in
Figures 4 and 5, respectively. ε′ and ε′′ are measured using the equations below [61–63]:

ε′ =

[
Z′′

ωCo(Z′2 + Z′′ 2)

]
(15)

ε′′ =

[
Z′

ωCo(Z′2 + Z′′ 2)

]
(16)

where Co is the vacuum capacitance, which is equivalent to ε0 A/t in which ε0 is the vacuum
permittivity; the angular frequency is denoted by ω (ω = 2πf); the frequency is denoted
by f.

The conductivity of a polymer electrolyte is determined by its dielectric constant [64].
Real dielectric permittivity (ε′) is used to determine the polarization or dipole alignment,
which is measured by capacitance. Similarly to ε′′, which indicates dielectric loss, conduc-
tance reflects the energy needed to align dipoles in a dielectric medium [65]. An important
consideration in electrical conductivity testing is the identification of neutral ion pairs
produced by the interaction of dissolved ion pairs [59]. In EIS measurements, it was shown
that by adding more glycerol, the DC’s conductivity significantly increased. ε′ and ε′′ at
low frequencies are higher (Figures 4 and 5), which show variations for the films. Charge
carriers or space charge polarization build up at the electrode/electrolyte contact point,
causes this phenomenon [60]. Increasing the frequency reduces the dielectric property
(bulk property). As a result, ε′ and ε′′ increase as a result of a decrease in the frequency of
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the applied electric field [66]. As a result of the quick reversal of the electric field frequency,
there is no new ion diffusion that takes place along its route, and polarization is reduced.
Eventually, the peak shrinks to the point where it is no longer frequency dependent [48]. In
a comparison to other samples, the system containing 42 wt.% of glycerol had a greater
dielectric constant. Dielectric loss (ε′′) and constant (ε′) are strongly impacted by the
conductivity in the system [51,67].
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It has previously been observed that the dielectric constant (ε′) and the density of the
charge carriers (ni) were formulated by the following relationship:
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ni = no exp(−U/ε′KbT) (17)

where U is the dissociation energy.
DC’s conductivity, as well as dielectric constant values, can be manipulated success-

fully [68]. The dielectric constants of polymer electrolytes may be used to determine the
conductivity of certain materials and, hence, their electrical properties. A drop in dielectric
constant is accompanied with a decrease in capacitance (ε′ = C/Co). The plots show that
the ε′′ value is higher than the ε′, as shown in Figures 4 and 5. DC conduction processes
and dielectric polarization processes both have an impact on dielectric loss [51].

2.4. TNM Study

In order to ensure the purely ionic nature of the PE system, the ion transport number
(tion) has been measured for the optimized MC:Dex: LiClO4:Glycerol composition using the
DC polarization technique [69]. The curve obtained for the SS|Polymer electrolyte|SS cell
(SS: stainless-steel) is shown in Figure 6. An initial current (Ii) of 128 A and the total of ionic
and electronic currents were delivered by the cell. Since the SS electrode is ion-blocking in
nature, the current declines quickly and is saturated at the residual electronic current (Ie) of
3 µA. The electrolyte system’s ionic composition is thought to be responsible for the abrupt
reduction in current levels. The tion and tel values of the electrolyte film, obtained using
the Equations (18) and (19), are found to be 0.976 and 0.024, respectively. These results
show how ionic the electrolyte system is and how it will protect the electrodes of the energy
storage device from each other since it is close to 1, which means it is close to the ideal
value of unity. Ions are the key charge carriers in this system of methylcellulose-dextran-
LiClO4:Glycerol [70–72]. The result obtained in this study is observed to be high compared
to our previous study for methylcellulose-based polymer electrolytes impregnated with
potassium iodide [73].
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Equations (17) and (18) are used to measure tion and tel.

tion =
Ii − Iss

Ii
(18)
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tel = 1− tion (19)

In Equations (18) and (19), the starting and the steady-state current are expressed as Ii
and Iss, respectively.

The electrochemical stability window (ESW) is an important parameter for an elec-
trolyte, which determines the working voltage range of the energy storage device. The ESW
of the optimized MC:Dextran:40 wt.% LiClO4:48 wt.% Glycerol composition is obtained
using linear sweep voltammetry (LSV). The LSV curve, shown in Figure 7, displays a
plateau of negligible current without any anodic/cathodic current peak up to ~3 V. The
present values increase sharply after the aforementioned potential. A considerable ESW of
3 V is shown, making the electrolyte film acceptable for supercapacitor use. In order for the
film to be used in energy storage devices, the stability of the plasticized methylcellulose-
dextran-LiClO4 system has been shown to be up to 3 V. The interesting observation in this
study is the eligibility of the MDLG3 electrolyte for energy storage device utilization. This
is caused by the satisfactory voltage breakdown of the sample at almost 1.0 V [74,75]. The
decomposition voltage attained in this study is relatively high compared to our previous
studies [76,77]. This could be due to the presence of LiClO4 as an ionic source, which has
higher stability than ammonium salts. Moreover, a protic ionic liquid electrolyte was uti-
lized for lithium-ion batteries as documented by Bockenfeld et al. [78]. They demonstrated
that the highest potential stability was 2.65 V for their electrolyte that incorporated 0.5 M
lithium nitrate (LiNO3) in propylene carbonate-pyrrolidinium nitrate.
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3. Materials and Methods
3.1. Materials

MC polymer (Mw avg = 10,000–220,000), LiClO4 (Mw = 106.39 g/mol) and glycerol
(Mw = 92.09382 g/mol) were purchased from Sigma-Aldrich (Kuala Lumpur, Malaysia).

3.2. Electrolyte Preparation

The synthesis of MC-Dex-blend polymer was performed by stirring and dissolving
40 wt.% of Dex (0.4 g) and 60 wt.% of MC (0.6 g) individually, each in a 1% solution of
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30 mL acetic acid, for almost 2 h at room temperature. Then, the two solutions were stirred
and blended using a magnetic stirrer for around 4 h until reaching a homogenous-blend
solution. Then, with respect to the above solution, 40 wt.% (0.666 g) of LiClO4, MC-Dex-
LiClO4 formed. Ultimately, in the step of 14 wt.%, 14, 28, and 42 wt.% of glycerol were
added to the MC-Dex-LiClO4 solution followed by continuous stirring until the synthesis
of plasticized SPEs was achieved. The labelling of the series of the samples was conducted
as follows: MDLG1, MDLG2, and MDLG3 for the MC-Dex-LiClO4 loading 14, 28, and
42 wt.% of glycerol, respectively as shown in Table 5. The casting of the series of sample
solutions was carried out in the Petri dishes, followed by leaving them at room temperature
to evaporate the solvent gradually. The free solvent sample films were kept in a desiccator.

Table 5. The identification and composition for the MC-Dex-LiClO4–glycerol systems.

Sample Code MC (g) Dex (g) LiClO4 (g) Glycerol (g) Glycerol wt.%

MDLG1 0.6 0.4 0.666 0.271 14
MDLG2 0.6 0.4 0.666 0.647 28
MDLG3 0.6 0.4 0.666 1.206 42

3.3. Methods of Characterizations
3.3.1. FTIR and EIS Measurements

The FTIR spectra of the blended polymer systems were acquired using FTIR Spec-
trophotometer (Malvern Panalytical Ltd., Malvern, UK), ranging from 4000 to 400 cm−1

with a resolution of 2 cm−1. The EIS samples spectra were acquired using the EIS (3532-50
LCR HiTESTER (HIOKI), Nagano, Japan) within 50 Hz and 5,000,000 Hz of frequency. The
circle film had a geometric circle shape (diameter of 2 cm), which was sandwiched between
stainless steel (SS) electrodes using a spring force during electrochemical measurements.
The cell was hyphenated with a computer to measure real and imaginary (Z′ and Z′′) parts
of the complex impedance spectra (Z*).

3.3.2. TNM and LSV

The ion (tion) and electron (tel) transference numbers were measured precisely. The
cell (SS|MDLG3|SS) was connected to the UNI-T UT803 multimeter and A&V Instrument
DP3003 digital DC power supply. By applying a voltage of 0.2 V to the cell, the polarization
of the cell was obtained over a sufficient amount of time at room temperature. To obtain
the potential stability of the MDLG3, LSV was used by applying 10 mV s−1 within 0.0
and 4.0 V. The cell was the three-electrode type, and the working, counter, and reference
electrodes were used by utilizing the Digi-IVY DY2300 potentiostat. The current changes
over the mentioned potential were obtained.

4. Conclusions

In this study, SPEs based on MC:Dex:LiClO4 plasticized with glycerol were synthesized
by the solution-cast method. The conductivity increased to 1.45 × 10−3 S cm−1 due to the
doping of glycerol. The FTIR method showed that there was an interaction of LiClO4 and
glycerol with the MC and Dex by changing FTIR absorption peaks. The FTIR deconvolution
of CLO4

− anions showed that the free ion percentages increased when glycerol increased,
while the percentages of contact ion pairs decreased. Further proof of DC conductivity
trends was emphasized from the dielectric measurement. The addition of glycerol was
effective in increasing the number density (n), diffusion coefficient (D), and mobility
(µ). Additionally, the mass transport improvements of the electrolytes originate from
the increase in chain flexibility. The values of measured tion and tel indicate the ion’s
responsibility for conduction in the polymer-electrolyte system. The stability voltage range
of the electrolyte system is satisfactory, meaning that the SPE is eligible for utilization at
large scales in electrochemical energy storage devices.
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