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Population-driven socioeconomic urban expansion, industrialization, and intensified

modern agricultural practices are interlinked to environmental challenges culminating in

compromised water quality due to pollution by toxic, persistent, and bioaccumulative

heavy metal ions, pesticides, nitroaromatics, and other emerging pollutants. Considering

the detrimental impact of pollutants on human health and ecosystem, their detection in

different media including water is paramount. Notably, electrochemical techniques are

more appealing owing to their recognized advantages. This research summarizes and

evaluates the most recent advances in the electrochemical sensing of environmental

pollutants such as heavy metal ions, pesticides, nitroaromatics, and other distinct

emerging contaminants. Besides, the review focuses on the application of

electrochemical detection of the selected pollutants through analysis of representative

reports in the five years from 2016 to 2020. Therefore, the review is intended to contribute

insights and guidelines to contemporary progress in specific electrochemical application

practices based on graphene derivatives, toward the aforenamed pollutants. Thus, it

focused on sensing methods such as cyclic voltammetry, anodic stripping voltammetry,

and electrochemical impedance spectroscopy employing different sensing elements

incorporating graphene. Moreover, the review also highlighted graphene synthesis

pathways, sensor design strategies, and functionalization. Furthermore, the review

showed that there is congruence in the literature that functionalized graphene and its

derivatives remain as viable modifiers in electrochemical sensing of pollutants.

Nonetheless, the study also appraised the absence of literature reports on

electrochemical detection of natural organic matter substances like humic acid and

fulvic acid using a graphene-based sensor. In reckoning, current challenges related to

graphene synthesis and applicability, envisaged opportunities, and future perspectives are

outlined.

Keywords: cyclic voltammetry, electrochemical detection, emerging pollutants, functionalization, graphene

derivatives, reduced graphene oxide, heavy metal ions, pesticides

Edited by:

Ashok K. Sundramoorthy,

SRM Institute of Science and

Technology, India

Reviewed by:

Tu Binh Minh,

VNU University of Science, Vietnam

S. Senthil Kumar,

VIT University, India

Veerappan Mani,

King Abdullah University of Science

and Technology, Saudi Arabia

*Correspondence:

Thabo T. I. Nkambule

nkambtt@unisa.ac.za

Specialty section:

This article was submitted to

Carbon-Based Materials,

a section of the journal

Frontiers in Materials

Received: 13 October 2020

Accepted: 28 December 2020

Published: 15 February 2021

Citation:

Kumunda C, Adekunle AS,

Mamba BB, Hlongwa NW and

Nkambule TTI (2021) Electrochemical

Detection of Environmental Pollutants

Based on Graphene Derivatives:

A Review.

Front. Mater. 7:616787.

doi: 10.3389/fmats.2020.616787

Frontiers in Materials | www.frontiersin.org February 2021 | Volume 7 | Article 6167871

REVIEW
published: 15 February 2021

doi: 10.3389/fmats.2020.616787

http://crossmark.crossref.org/dialog/?doi=10.3389/fmats.2020.616787&domain=pdf&date_stamp=2021-02-15
https://www.frontiersin.org/articles/10.3389/fmats.2020.616787/full
https://www.frontiersin.org/articles/10.3389/fmats.2020.616787/full
https://www.frontiersin.org/articles/10.3389/fmats.2020.616787/full
http://creativecommons.org/licenses/by/4.0/
mailto:nkambtt@unisa.ac.za
https://doi.org/10.3389/fmats.2020.616787
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles#articles
https://www.frontiersin.org/journals/materials#
https://www.frontiersin.org/journals/materials#editorial-board
https://www.frontiersin.org/journals/materials#editorial-board
https://doi.org/10.3389/fmats.2020.616787


INTRODUCTION

Owing to global socioeconomic growth spurred by exponential
population rise, water quality has been gradually depreciating.
Expansion in the intricately interrelated developmental spheres of
urbanization, industrialization, and agriculture has massively
contributed to environmental challenges. Furthermore,
inadequate treatment of industrial and municipal waste
coupled with compromised austerity in regulatory monitoring
of effluent has resulted in the deposition of pollutants into the
ecosystem. Apart from that, environmental issues including
uncapped pollution and diminished groundwater
replenishment due to low rainfall have further exacerbated
water scarcity and pollution levels (Zhang et al., 2019b;
Perreault et al., 2015; Arfin and Rangari 2018; Su et al., 2018;
Priya et al., 2018). Among the pollutants which have generated
widespread apprehension are heavy metals (HMs) viz mercury,
lead, cadmium, pesticides, and emerging chemical pollutants.
Even though some HMs are derived from biogeochemical
mechanisms, significant HMs in the aquatic media are derived
from anthropogenic operations such as fossil fuel combustion,
mining processes, incineration, and release of municipal
wastewater. Moreover, pesticides have become an integral part
of modern extensive agricultural practices and out/indoor
domestic health. Meanwhile, personal care products (PCPs)
and endocrine disruptive chemicals originating from
pharmaceutical and industrial applications are recognized
constituents of emerging pollutants (Lingamdinne et al., 2019;
Ullah et al., 2018; Sakthinathan and Chen 2015; Sharma and
Bhattacharya 2017; Álvarez-Ruiz and Picó 2020).

Inorganic arsenite and HM ions such as mercury, copper,
cadmium, and lead have a detrimental impact on the
environment besides the health of mankind on account of
their toxic nature, persistence in different media, and
disposition to biologically accumulate along the trophic
system. Human beings become exposed to these metals
through consuming contaminated food and portable water.
For instance, trivalent arsenic ions are known to cause
impairment of major human organs such as the lungs, the
liver, and the reproductive system besides weakening the
immune system (Molina et al., 2016; Zuo et al., 2019). These
pollutants have detrimental effects including damage to body
organs and malfunctioning of hormonal systems. Consequently,
there is strong motivation to protect ecosystems through
environmental analysis and determination of contaminants
(Qu et al., 2013; Hou et al., 2018; Liyuan Wang et al., 2013;
Lingamdinne and Koduru 2018; Wang et al., 2020). Currently
used spectroscopic, chromatographic, and hyphenated
techniques are reliable, sensitive, and precise; however, they
have inherent shortcomings including prolonging and tedious
sample preparatory steps, less economical, utilization of
potentially harmful solvents, and the need for trained and
certified operators. Inevitably, these approaches become
limited for on-site, instantaneous, and in situ analysis (Molina
et al., 2016; He et al., 2018a; Huang et al., 2019a; Wen et al., 2018).

Conversely, electrochemical (EC) approaches are hugely
acclaimed to be versatile in the detection of variant natural

and anthropogenic pollutants such as HM ions, pesticides, and
other substances of concern owing to numerous merits
comparative to the conventional laboratory-centralized means.
Specifically, EC methods are accredited for their superior
sensitivity and discriminatory ability, lowly detection limits,
and cost-effectual status. Moreover, their facileness in
operation, rapid analytical response, absence of sample
pretreatment, technically miniaturized devices, and portable
state make them amenable for on-site analysis (Silwana et al.,
2016; Bansod et al., 2017; Smith et al., 2019).

Again, EC methods are acknowledged for their short response
time, simple preparation procedures which are used, and high
target specificity even when analyte concentration is extremely
low especially in complex matrices; thus, there is a diminished
impact from potentially interfering chemicals (Theyagarajan
et al., 2020a; Jerome and Sundramoorthy 2020).

Using bare electrodes during the analysis of contaminants is
prone to some drawbacks including electrode passivation, high
overpotential of analyte reactions, and slow direct electron
transfer (Hang et al., 2019; Lee et al., 2018; He et al., 2019a).
Notwithstanding, there are strategies to mitigate against such
limitations, thus improving the sensitivity and preciseness of
electrodes. Electrode modification is one such approach using
metal (oxide) NPs, polymers, and other carbonaceous materials.
Notably, modification serves to decrease the overpotential of EC
reactions and preconcentrating capability for some analytes, and
it culminates in the generation of an electrode-modifier interface
which ensures the formation of bridges and pathways to enable
electron shuttling to ultimately improve signal amplification
(Salih et al., 2016; Krishnan et al., 2019; Jerome and
Sundramoorthy 2020). Besides, electrode modifying facilitates
the simultaneous covalent immobilization and effectual
anchoring of biomolecules on the electrode surface. It also
promotes accessing of embedded redox-active sites by
mediators while it preserves the enzyme’s original nature and
activity (Lawal 2018; Kandaswamy Theyagarajan et al., 2020;
Murugan et al., 2020). Among the carbon-based materials are
carbon nanotubes and graphenic carbon nanomaterials. For
instance, graphene-derived nanomaterials are recognized
owing to environmentally friendly synthesis methods; for
example, during EC synthesis of graphene, nontoxic solvents
are used; comparatively, high yield is obtained and minimum
residual defects are formed (Nagarajan and Sundramoorthy
2019). In addition, they have a large specific area-to-volume
ratio, conductivity, and fast electron transfer kinetics.
Therefore, they have attracted global attention; thus, they are
explored in different applications. In particular, graphene-
derivatized nanomaterials have become entrenched in
applications among others, energy harvesting and storage, and
environmental analysis as electrochemical sensors or biosensors
(Dideikin and Vul’ 2019; Nagarani et al., 2018; Dywili et al., 2019;
Li et al., 2015; Gumpu et al., 2017).

This review summarizes and evaluates recent advances in the
development and application of EC detection of selected
environmental pollutants such as HM ions, pesticides,
endocrine disruptors, nitroaromatics, and other pollutants of
concern, all based on graphene derivative platforms. Graphene
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and its derivative synthesis methods and functionalization are
briefly outlined. Ultimately, confronting issues, ensuing
opportunities, and prospects are further discussed. The review
evaluated representative published reports available through the
Internet, on the respective subject in the five years from 2016 to
2020, and in the process, more than 200 reports were examined.
The review has been organized into sections which include EC
techniques, graphene and its derivatives synthesis approaches,
and functionalization of graphene-based materials. Further
sections focused on application in EC sensing of diverse
environmental pollutants, HM ions, pesticides, emerging
contaminants, natural organic matter, nitroaromatic
compounds, and other pollutants of interest, all with relevant
examples to illustrate contemporary progress. Figure 1

summarizes the main pollutants and functionalizing materials
associated with graphene in this review. The penultimate part is
dedicated to challenges, envisaged opportunities, and future
perspectives interrelated with the synthesis and application of
graphene originating materials.

ELECTROCHEMICAL DETECTION
TECHNIQUES

Diverse EC techniques are at the disposal of the scientific research and
academic community viz impedimetric and voltammetry. The
techniques have gained global recognition owing to their
advantages such as high sensitivity, facile operation and
procedures, cost-effectiveness, and miniaturizable, portable, and
hence potential on-site application. In this part, cyclic
voltammetry (CV), anodic stripping voltammetry (ASV), and
electrochemical impedance spectroscopy (EIS) are briefly outlined.

Fundamentally, voltammetry pertains to the applying of
potential in an EC cell and consequently measuring the
resulting current which is controlled by the mass transport.
The applied potential progressively changes with the
independent time variable while the current response is a
function of the potential but has a linear relation with the
earmarked analyte concentration in the bulk sample (Yilong
et al., 2015; Silwana et al., 2016; Wongkaew et al., 2019;
Banerjee et al., 2020). Contemporarily, voltammetry has been
used in sync with other innovative strategies including differential
pulse, square wave, and anodic stripping with an acclaimed
reputation in sensing various analytes.

ASV is a sensing technique which is reliant on a
preconcentration stage when the dissolved HM ions drift from
the bulky solution to the bare or modified electrode. Depending on
an enabling potential difference, the HM ions are electroreduced
generating the elemental metal. The neutral metal adsorbates
accumulate on the electrode surface leading to the transferring
of mobile charges to the surface modifier (Gęca and Korolczuk
2017; Waheed et al., 2018). Uniquely, when a specific anodizing
voltage is applied, the elemental metals are dissolved releasing
electrons. Simultaneously, the di/trivalent cations diffuse into the
electrolyte while generating an intense voltammetric stripping
current even in ultralow metal concentration matrices.
Significantly, there exists a direct interrelationship between the
rate-determining prior concentration step along with the ensuing
stripping current (Lee et al., 2017; Waheed et al., 2018; Shtepliuk
and Yakimova 2019; Suherman et al., 2017). The basic steps in ASV
and relevant data to be extracted are shown in Figure 2. ASV stands
out as a technique of choice associated with its unique sensing
capability features like discriminant selectivity, rapid detection
period, and elevated sensitivity.

FIGURE 1 | Scheme summarizing the main pollutants reviewed and functionalizing materials associated with graphene in this review.
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Several researchers explored ASV realizing incredible results;
typically, Wen et al. fabricated and applied a reduced graphene
oxide-manganese dioxide (rGO/MnO2) nanocomposite doped
with nitrogen for GCE modification. Based on CV, EIS, and ASV
in the mercuric determination, the enhanced sensor behavior was
on account of synergic impact emanating from obtained
nanostructured material and doping. Thus, they reported an
elevated sensitivity of 72.16 μA μM−1 and a low detection limit
of 0.0414 nM within a linear range of 0.01–0.2 µM (Wen et al.,
2018).

In a different report, Chimezie et al. produced an rGO and ex

situ synthesized magnetite nanocomposite (rGO/Fe3O4) for
refashioning a screen-printed carbon electrode (SPCE) surface
and investigated quantification of arsenite through DPASV and
EIS technologies. Enhanced perfomance of EC sensor was
achieved at a linear range of 2–300 μg L−1 with low detection
limit of 0.10 μg L−1 (S/N � 3) compared to reported limit of
quantification (0.33 μg L−1). They accounted for the enrichment
of performance through synergistically large active surface
centers for electron transfer routes (Chimezie et al., 2017).

In other respects, EIS is an accomplished technique
undertaken to determine the impedance whose components,
frequency-reliant-resistance, and capacitance of the electrode
are preceded by perturbating in alternating current mode.
Results of experiments are mathematically evaluated with an
equivalent electrical circuit (EEC) and reliably provide
quantitative electrochemical data on mass transfer hence
reaction rates, electrical conductivity, dielectric constant, and
direct electron mobility (Jin and Maduraiveeran 2018;
Wongkaew et al., 2019). For example, Manavalan et al.
fabricated GO-functionalized ZnO nanostars for SPCE
modification. They evaluated the altered electrode through CV,
DPV, and EIS for methyl parathion (MP) detection (Manavalan
et al., 2020). Remarkable sensor behavior was reported giving a
low sensing limit of 1.2 nM and superior sensitivity of
16.5 μA μM−1 cm−2 over a linear range from 0.03 to 670 µM.
Furthermore, the amplified EC sensor properties were aftermath
due to the combinational collaborative effect of the materials used
as indicated by the raised peak currents and lower charge transfer
resistance. Meanwhile, the proposed sensor’s applicability was
assessed in real matrices for MP and it proved a viable candidate.
Similarly, Zhou et al. constructed graphene nanoplatelets

integrated with a noble metal and Au nanoparticles (GNPs-Au
NPs) for refashioning a GCE surface. They investigated the
determination of trace level bisphenol A (BPA) using CV,
DPV, and EIS strategies and applied the sensor to different
water matrices. Their findings demonstrated a low detection
capping of 0.027 nM spanning a linear function of 5 ×

10−3–100 µM. More so, the improved sensor properties were
attributable to increased electrocatalytic behavior due to
synergy between the composite materials (Zou et al., 2019).

EC SENSOR DESIGN PLATFORMS

Sensor platforms intended to ensure sufficient selectivity and high
sensitivity apart from having long-term shelf life and short
response time. Additionally, they ought to be economic in
terms of low power needs and cost-effective. Numerous efforts
that are based on material chemistry, target analyte reactivity,
sensing mechanism, and other factors have been pursued by the
scientific community. In this section, the following are presented:
sensor design strategies, the role of nanosized materials, graphene
derivative platform synthesis, and lastly the functionalization
using diverse materials like metal (oxides) NPs, polymers, and
organic and inorganic materials.

Design Strategies
The detection behavior of a sensor is responsive to the interaction
which occurs at the electrode interface with the targeted chemical
species. Primarily, any sensor system has key components like the
sensing element, recognition element, and transducer (Jin and
Maduraiveeran 2018; Peña-Bahamonde et al., 2018). Thus, the
sensor components and interface events influence design
strategies. Sensor design strategies are premised on the
realization that actual environmental, clinical, food, or
security-related samples may be complicated matrices and the
earmarked analyte may be present in extremely low
concentrations. Therefore, the design promotes superior
sensitivity and differentiation and upgraded target specificity
while ameliorating nonfouling effects. Notably, some
acknowledged design strategies that have been applied solely
or in combination include analyte affinity enrichment,
enhancement of the surface area, increased catalytic effect,

FIGURE 2 | A schematic representation of the basic steps of ASV and the information to be obtained. Reproduced with authorization from (Waheed et al., 2018).
Copyright 2018, Elsevier.
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high loading capacity, and amplification of EC signal (Kumar
et al., 2019; Hang et al., 2019; Numan et al., 2020; Wongkaew
et al., 2019; Moro et al., 2019; Yan et al., 2020a).

The integration of properties of components of sensor
configurations has been widely explored with beneficial
impact. In one study, Yan et al. constructed a functional
sensing configuration deploying Au NPs, ferrocene dendrimer
(FcDr), and rGO. The Au NPs/FcDr/rGO nanohybrid was
employed to modify GCE and applied in the detection of
dichlorvos (Yan, 2020). Remarkably, FcDr is an effectual
signaling constituent associated with the strong anchoring on
the electrode, electrostatic interaction, and covalent
immobilization besides serving as an Fc+2/Fc natural redox
probe for EC signal (Yan et al., 2020b). The sensing element
components Au NPs have excellent electrical conductivity and
improve analyte interaction while rGO nanosheets have a large
surface area which is conducive for effective loading and
dispersion of metallic NPs onto rGO. Therefore, these
components have a synergistic effect stimulating the electron
transfer process, hence amplifying the EC signal of the Au NPs/
FcDr/rGO/GCE sensor. The proposed sensor attained
micromolar detection sensitivity for the pesticide analysis.

Similarly, Malakootian, Hamzeh, and Mahmoudi-
Moghaddam investigated the modification of carbon paste
electrode (CPE) employing a magnetic FeNi3/CuS/BiOCl NC
for concurrent detection of divalent cadmium and lead. The
researchers reckoned that the biocompatible and
superparamagnetic FeNi3 promotes electrical communication
between electroactive species and electrode surface
(Malakootian et al., 2020). Meantime, the stable
semiconductor BiOCl has high catalytic activity while CuS
possesses electrical conductivity qualities like metals. Thus,
there was synergistic aftermath that boosted the electron
transfer kinetics, ultimately amplifying the sensor signal.
Furthermore, through SWASV, the corresponding detection
limit of 0.4 μg L−1 and 0.1 μg L−1 for Cd+2 and Pb+2 was
reported while the sensor demonstrated viability when its
applicability was evaluated in real samples.

Recently, Kaur assembled a novel NC of ErGO-chitosan (CS)-
hemoglobin (Hb) coatings (ErGO-CS/Hb) through a green
synthesis method prior to modifying a fluorine-tin oxide
(FTO) electrode. The ErGO-CS/Hb configured platform was
employed in investigating the quantification of MP via SWV
and EIS (Kaur et al., 2020). Notably, the immobilization of Hb
onto the ErGO-CS matrix ensued a fast charge transfer rate to the
embedded electrode center while safeguarding the nativity of the
biomolecule. Evidently, there was magnified pesticide affinity
attributed to the delocalized π electron system of rGO which
initiated robust π-π stacking interaction with MP. Besides,
electrostatic interaction and hydrogen bonding promoted firm
binding of the pesticide on the modifier surface. The combination
of rGO with CS through amide linkage also improved the
dispersion during synthesis, producing a stable nanohybrid.
Furthermore, rGO possesses a large surface area, superior
electrical conductivity, lower background current, and wide EC
potential window while Hb has active redox centers and the
hydrophobic biopolymer CS endowed with good film-forming

ability was synergistically integrated, manifested in excellent
sensitivity and selectivity. So, a limit of detection (LOD) of
79.77 nM and sensitivity of 45.77 A cm−2 µM−1 were attained.

Likewise, Zeng et al. devised a nanohybrid involving Pd
nanoflower-decorated 3D CNT-graphene nanosheets (GNSs)
network assembled from CNTs and GNSs for modification of
an SPE. The sensing element PdNFs-CNTs-GNSs/SPE was
engaged for simultaneous sensing of nitroaromatics,
p-nitrophenol (4-NP), 1,3-dinitrobenzene (DNB), 1-chloro-2,4-
dinitrobenzene (Cl-DNB), 2,4-dinitrotoulene (DNT), 1,3,5-
trinitrobenzene (TNB), and trinitrotoluene (TNT). Initially, 1D
CNTs were embedded into 2D GNSs to form a native 3D
architectural framework instrumental for prohibiting CNTs
and GNSs from agglomerating during synthesis (Zeng et al.,
2019). Besides, the 3D structure has a large surface area plus
numerous electrochemically active surface sites conducive for
high loading of functional NMs on itself confirmed by PdNFs
being finely dispersed on the porous CNTs-GNSs scaffold.
Effectively, synergism between active PdNFs and CNTs-GNSs
porous 3D network facilitates electron channeling between the
electrode and redox species, hence fostering electrical
communication. Furthermore, the unique configuration had
superior electrocatalytic activity toward the reduction of
nitroaromatics. The sensor achieved detection limits in the
nanomolar level, and the proposed portable sensor system
demonstrated potential for prompt, in situ, and point-of-

analysis assessments.

Functional Nanostructures
Nanostructured materials have the potential to considerably
boost the surface area-to-volume ratio and they are endowed
with numerous active centers and hence influence the analytical
performance of a sensor.

Nanopillars are sharp spiked nanostructures with high
antibacterial efficacy whenever bacteria come into contact.
Their potency mode is piercing the bacterial cell wall, thus
rupturing and damaging the microorganism, Thus, nanopillars
are favorable modifier candidates where antimicrobial surfaces
are needed (Bhadra et al., 2018; Chen et al., 2020; Canalejas-
Tejero et al., 2018).

The central bore of nanoneedles is a critical feature which is
exploited in the medical field. The bore serves as a conduit where
the desired molecules pass through. So, nanoneedles are useful for
the delivery of bioactive molecules into cells, loading of drugs, and
delivery of drugs to specific points (Shende et al., 2018).

Nanorods are 1D structures with a diameter between 1 and
100 nm and they are amenable for use in the sensing and medical
field. For example, Hang et al. constructed a hierarchically vertical
fluorinated graphene/ZnO nanorods plus nanoseeds platform
which was employed for H2O2 determination. The sensor had
increased active surface area and inherent self-cleaning and
fouling-proof capabilities which enhanced its analytical
performance (Hang et al., 2019).

Nanowires (NWs) are “sticks” with a diameter of less than
100 nm and varying lengths. However, when interconnected,
NWs form 2D or 3D conductive independent frameworks that
are self-supporting but have an excellent specific surface area.
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Moreover, NWs have the capability of hosting several structural
defects; they are corrosion proof to the reaction conditions and
provide the direct charge connectivity between underlying active
centers and the electrode surface. Ultimately, NWs improve the
electrocatalytic activity and promote signal amplification. For
instance, Zhuang et al. designed a sensor premised on 3D nickel
oxide NPs, PANI nanowires, and GO. The NiO NP/PANINW/
GO matrix was used to modify a GCE and applied for the
detection of glucose (Zhuang et al., 2016). The sensing
platform exhibited superior electrocatalytic activity while its
sensitivity was high (376.22 μA μM−1 cm−2) and LOD was in
micromolar level. Similarly, nanotubes also serve as conducting
channels linking redox sites with the electrode, besides improving
the active surface area which forms the bedrock of EC reactions
(Kumar et al., 2019; Cho et al., 2020; Zhang et al., 2018a).
Theyagarajan et al. fabricated a sensor employing MWCNTs
and a functionalized ionic liquid where the horseradish
peroxidase was anchored before modifying a GCE
(Theyagarajan et al., 2020b). The sensing configuration was
evaluated through detection of H2O2 and the corresponding
sensitivity and linear range were 55.08 μA μM−1 cm−2 and
0.01–2.07 nM while the LOD was at micromolar level.
Furthermore, there were synergism of properties of MWCNTs
and functionalized ionic liquid, large surface area, superior
electrical conductivity, π–π stacking, covalent immobilization,
and accessing of embedded redox sites. Thus, the sensor
performance was enhanced.

Graphene Derivative Platforms
The graphene lineage is composed of the pristine precursor
graphene and its derivatives inclusive of GO, rGO, and
graphene quantum dots (GQDs). Besides, doped graphene is
regarded as an offshoot of that family (Zheng et al., 2017; Smith
et al., 2019; Thangamuthu et al., 2019). Graphene is a sole layer of
an allotrope of carbon with sp2-hybridized carbon atoms
hexagonally arrayed into a two-dimensional (2D)
honeycombed entity (Ambrosi et al., 2016; El-Shafai et al.,
2018; Beitollahi et al., 2019). For more than a decade, the
substantial focus has been directed toward this 2D
nanomaterial due to its standout features including excellent
chemical inertness and remarkable thermal, optical,
mechanical-electrical characteristics (Lee et al., 2019c;
Lingamdinne and Koduru 2018; Magesa et al., 2019).
Moreover, graphene-derived nanomaterials are conferred with
the facility that promotes simple functionalization, superior
electron transport capability, and enormous specific surface
area-to-volume ratio, besides being biocompatible (Huang
et al., 2019b; Kuralay et al., 2016; Kumar et al., 2017; Krishnan
et al., 2019). There are diverse pathways for the synthesis of
graphene derivatives. Moreover, the derivatives are endowed with
peculiar properties which enhance the sensing behavior of
composite materials.

Synthesis of Graphene
Conveniently, pristine graphene synthesis processes as depicted
in Figure 3 are segmented as either bottom-up or top to bottom
incorporating the Geim-Novoselov pioneered mechanical

cleavage of graphite. Notwithstanding that, the technique is
roundly recognized as least suitable for scalable commercial
graphene production since it is arduous and has inferior
reproducibility (Khan et al., 2015; Yin et al., 2015; Molinari
and Argurio 2017; Xu et al., 2017; Tiwari et al., 2018).
Meanwhile, other respective methods are described in the
literature, including defects-generating aqua-chemical
exfoliation (Lee et al., 2019b; Lawal 2018), epitaxial forming of
graphene on silicon carbide substrate, and chemical vapor
deposition (CVD) (Avouris and Dimitrakopoulos 2012;
Suvarnaphaet and Pechprasarn 2017; Ahmad et al., 2018), and
thermal exfoliation (Mohan et al., 2018; Rowley-Neale et al.,
2018). Furthermore, “unzipping” of CNTs is also considered a
viable graphene preparation pathway. Comparatively,
electrochemical means are preferred owing to their efficacy,
rapidness, facile, and environmentally friendly nature
(Ambrosi et al., 2016; Sakthinathan et al., 2016). Nonetheless,
it has been ascertained that graphene’s applicability is hindered
by agglomeration arising from the conjunction of π–π restacking,
physical defects, multiplex sheet thickness, and inferior aqueous
dispersion (Khan et al., 2015; Silwana et al., 2016; Sturala et al.,
2018; Beitollahi et al., 2019; Pei et al., 2020). Consequentially,
there has been consensus in exploring mitigatory strategies such
as the primal conversion of graphene to functionalities-rich GO.

Preparation of Graphene Oxide
The principal approaches for GO synthesis are based on
(improved/modified) Hummers method where pyrolytic
graphite precursor is subjected to strongly oxidizing and acidic
conditions prior to sonication (Zaaba et al., 2017; Lee et al., 2019c;
Eigler and Hirsch 2014; Chang and Baek 2017). The resultant GO
is hydrophilic owing to the abundant presence of oxygen
functionalities. Accordingly, GO is endowed with improved
solvent dispersibility and a predisposition for architectural
modulation through functionalizing nanomaterials (Bahadir
and Sezgintürk 2016; Muthoosamy and Manickam, 2017).
Literature sources abound with detailed properties and
synthesis protocols of GO (Mohan et al., 2018; Feicht et al.,
2019; Smith et al., 2019; Wongkaew et al., 2019; Turkaslan and
Mihrace, 2020). Nevertheless, the prevalence of the functional
moieties imparts GO with insulating properties. Therefore, in
attempts to circumvent such GO limitation and partially restore
native pristine graphene qualities, rGO is prepared instead (He
et al., 2018b).

Synthesis of Reduced Graphene Oxide
Several methods are at the disposal of researchers for the
reduction of GO to rGO to restore certain properties to near
pristine graphene. Distinctly, the methods are either thermal or
chemical in addition to EC. Significantly, the thermal reduction
has concurrent merits of elimination of some oxygen-containing
domains, besides stimulating reestablishment of defects through
rehybridization of carbon atoms (Dideikin and Vul’, 2019;
Oliveira and Morais, 2018). Meanwhile, chemical reduction of
GO fosters the worthwhile restoration of prototype graphenic
structure, although it introduces structural defects. Apart from
that, green and soft reduction technologies continue to be
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attractive. Relatively, thermal reduction is a preferred method
while EC reduction is appealing since it promotes tuning of
material properties using green route (Cinti and Arduini, 2017;
Su et al., 2018). Figure 4 shows the GO reduction mechanism and
the progressive change in oxygen functionalities.

Synthesis of Nitrogen-Doped Graphene
As much as the development of N-doped graphene is concerned,
prevalent strategies are variant. Among them are CVD with
ammonia gas, nitrogen plasma annealing of graphene, heat
conditioning of graphite oxide using melamine, electrically
huge energy treatment in ammonia, and hydrothermal
tempering involving nitrogen in the form of urea (Lei et al., 2017).

Functionalization
Functionalization with the sole purpose of tuning graphene-based
nanomaterial chemicophysical characteristics such as reactivity,
electrochemical activity or resistivity, surface energy, and
electronic structure has been a subject of research interest for
decades. Thus, functionalization has been accomplished either via
covalent means or noncovalent interactions. Covalent
functionalizing entails the incorporation of variant
functionalities onto the graphenic basic structure through

attaching by primarily covalent bonds. The incorporation of
other entities occurs through the nonmetallic heteroatom
replacement of carbon, free radical addition to conjugated
bonds, and edge oxygenated moieties reacting with other
functional materials. Meanwhile, intermolecular forces viz
π-anionic attraction, hydrogen bonding, π–π stacking, van der
Waals forces, and hydrophobic interaction are the principal
contributors toward noncovalent narrative. A distinctive
characteristic of the noncovalent functionalization is that it
does not interfere with the graphitic structure while
entrenching it with functionalities (Georgakilas et al., 2012;
Eigler and Hirsch 2014; Xu et al., 2017; Lawal 2018).
Furthermore, graphene is adorned with semiconductor
properties despite the absence of bandgap energy. The opening
of such a null bandgap is a critical feature of graphene
derivatization which enhances target analyte detection (Garg
et al., 2014; Talirz et al., 2016; Ould Ne et al., 2017; Sturala
et al., 2018). Figure 5 shows the absence of an energy bandgap in
pristine graphene which becomes adjustable due to
functionalization. Ultimately, the resultant altered product has
inherent hybrid and synergistic properties of the initial
components which are advantageous while concurrently
overshadowing the individual original limitations. Among

FIGURE 3 | Schematic illustration of different graphene synthesis approaches, (A) mechanical exfoliation of graphene flakes, (B) epitaxial graphene growth on
metal crystal, (C) epitaxial growth on carbon sources like silicon carbide wafers, (D) CVDmethod utilizing metal foils to prepare graphene possessing large surface area,
and (E) chemical synthesis of graphene from graphite oxide. Reproduced with permission from (Jariwala et al., 2011). Copyright 2011, American Scientific Publishers.
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FIGURE 4 | Schematic flowchart of GO reduction pathways. Reproduced with consent from (Khan et al., 2015). Copyright 2015, The Royal Society of Chemistry.

FIGURE 5 | Schematic representation showing (A) null bandgap in pristine graphene and (B) and (C) graphene bandgap opened due to doping and
functionalization with different materials. Reproduced with permission from (Garg et al., 2014). Copyright 2014, MDPI.
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others, these impactful synergies enhance the electrochemical
performance of the sensing system.

EC methods have typical drawbacks when utilizing bare
electrodes as follows: carbon paste (CP) or glassy carbon (GC)
electrodes. Typically, high overpotential and inactivation of
the electrode due to the deposition of by-products have been
confronted. Notwithstanding, modifying electrode surfaces is
an acceptable mitigatory means to counter electrode
passivation due to accumulating of reaction by-products
and raised overpotential (Hanssen et al., 2016; Campuzano
et al., 2019). Electrode surface modification has been
accomplished by employing diverse materials. Among
them, metal/metal oxide nanoparticles, organic materials
including ionic liquids, or carbon nanomaterials especially
graphene, SWCNT, or MWCNT have been explored. Other
than that, inorganic materials, conducting polymers such as
polyaniline (PANI) and heteroatoms doping continue to draw
considerable attention of the scientific community owing to
numerous merits. Specifically, beneficial synergistic effects
that enhance sensor characteristics for the detection of
analytes have been realized (Sakthinathan and Chen 2015;
Si et al., 2018; Venu et al., 2018). Furthermore, the emanating
synergic aftermaths hugely enhance structural morphology
and photochemical and electrochemical properties, and the
impedance of the electrode surface is diminished while
improving preferential accumulation and boosting the
electron transport process. Ultimately, the sensor
performance regarding sensitivity, selectivity, and stability
is improved (Silwana et al., 2016; Bollella et al., 2017; Si
et al., 2018). Figure 6 shows a schematic illustration
depicting electrode modification by chitosan-Fe(OH)3
composite (CFC) nanomaterials and the sensing effect.

APPLICATION: ELECTROCHEMICAL
DETECTION

Heavy Metal Ions
Uniquely, HM ions can remain in the environment for prolonged
timespans since they are not degradable by biological means to
form innocuous substances. Furthermore, they are bioavailable
and hence have the tendency to be bioaccumulative in the trophic
systems and ultimately reach the consumer, the human being.
Because of their proclivity to persist in the environment,
bioaccumulative disposition, and elevated toxicity (PBT),
considerable attention has been directed to HMs based on the
detrimental aftermath on ecological systems and the health of the
general populace. Even though some HMs such as copper,
manganese, nickel, and zinc are an essential trace dietary
expectation, exceeding intake levels may have an adverse
impact on body functioning. Additionally, when the
concentration of some HM ions surpass regulatory limits and
there is sufficient exposure to human beings, they may have
adverse effects on their health (Stortini et al., 2020). Besides, some
HM ions are suspected carcinogens and mutagens. Meanwhile,
there have been reports of varying ecological, biota, and human
health ramifications due to excessive exposure to some typical
metal ions like arsenic, lead, or mercury in parts of the world (Jan
et al., 2015; Orr and Bridges 2017; Latif et al., 2018; Pratush 2018;
Rehman et al., 2018; Wan et al., 2020). Moreover, their mortal
mode is through complications, impairment, or damaging of
critical body organs such as liver, reproductive system kidneys,
lungs, heart including the central nervous system, and the skin
(Zhou et al., 2018; AL-Gahouari et al., 2020; Raril and
Manjunatha 2020). Accordingly, for the sake of protecting the
environment and for human health safety, timeous detection

FIGURE 6 | Schematic illustration of (A)GC electrode modification by chitosan-Fe(OH)3 composite (CFC) and the As (III) sensing mechanism and (B) ASV signal of
the CFC modified electrode for various concentrations of As (III) solutions. Reproduced with permission from (Lalmalsawmi et al., 2020). Copyright 2020, Elsevier.
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(and removal) of harmful HM ions surpassing international
guideline levels in the media is of critical importance.

Functionalization applying small organic molecules boosts
sensor performance. As such, Raril and Manjunatha
constructed a novel polyglycine-modified graphene paste
electrode (PGMGPE) for simultaneous EC detection of the
divalent ions of mercury and lead. The researchers realized the
enhancement of redox signal for the HM ions by the polymer-
modified electrode attributable to superior electron transfer
kinetics, thus affirming that there was considerable electrode
surface property change (Raril and Manjunatha 2020).
Thereupon, the PGMGPE was assessed and it demonstrated
satisfactory electrocatalytic activity, good stability, and wide
linearity response coupled with low corresponding Hg (II) and
Pb (II) detection limits of 6.6 and 0.8 µM, respectively.
Furthermore, they applied the fabricated EC sensor for the
determination of the foregoing HM ions in water and blood
serum samples where the recovery was commendable.

Numerous research efforts have been explored exploiting the
interlinked microporous nature of three-dimensional
nanocomposite structures which improves the effectual surface
area and reactive sites for collection/accumulation of targeted
substances. Likewise, there is a powerful synergism between
graphene and the functional material plus smooth charge
carrier movement since the interconnected graphenic network
provides unimpeded channels enhancing the sensitivity and
selectivity of the modified detection system (Yan et al., 2015;
Wang et al., 2015; Guan et al., 2018). Distinctively, Shi et al.
(2017a) studied a facile electrode alteration based on a 3D
graphene network integrated with bismuth nanoparticles
toward multiple HMs sensing. Significantly, wide linear ranges
of 1–120 μg L−1 for both Cd (II) and Pb (II) with 40–300 μg L−1

for Zn accompanied by LOD of 0.05, 0.02, and 4.0 μg L−1,
respectively, were proclaimed. They reckoned that the
diminished limits, improved sensitivity, selectivity, and other
properties of the proposed sensor were associated with the
boosted active metal cations binding sites of the porous
graphene framework an enhanced path for charge mobilities
and bismuth-graphene intensified conductivity synergy. In
another study, Xiao et al. (2016) via a self-assembly method
constructed a graphitized mesoporous framework and
investigated its potential applicability for on-site sensing of
HMs contaminants present in aqueous media. The modified
bismuth mesoporous graphene framework Nafion bound (Bi/
MGF-Nafion) electrode showed enriched properties such as
elevated sensitivity (0.437 and 0.210 μA L µg−1), 0.3 and
0.1 μg L−1 LOD over a broad linear function of 2–70 and
0.5–110 μg L−1 for the divalent cadmium and lead
correspondingly. Notably, they deduced that the enhancement
in properties was linked to the combinational impact of in situ
coated bismuth with adhesive Nafion and the 3D mesoporosity
nature, superior electrical conductivity, and raised active surface
area of MGF.

Similarly, Al-Gahouari et al. explored the effects of modifying
GCE using a 3D nanohybrid of electrochemically (E) rGO
combined with MWCNTs. This was done via covalently
functionalizing with an amino acid and L-cysteine (ErGO-

MWCNTs-L-cys/GCE) and applied the modified electrode in
the monodetermination of lead (Pb2+) ions in water (AL-
Gahouari et al., 2020). The authors reported a linearity span
of 0.2–40 μg L−1 and a calculated sensing limit of 0.1 μg L−1which
was recognized to be lower compared to the international
standard quantity for portable water. Additionally, by
comparison to the bare electrode, the developed sensor system
had an upgrade in the electrochemical conductivity, sensitivity,
and selectivity which they attributed to synergistic impact among
the components ErGO, MWCNTs, and the amino acid. The CV
in Figure 7 validates the proffered deduction while the EIS
analysis reveals the combinational effect in lowering the
resistance at electrode boundary for electron movement,
hence, further affirming that altering electrode surface
promoted quick electron relaying by the hybridized material.
Correspondingly, Priya et al. designed an HM ion sensor by
fashioning the surface of GCE using a nanocomposite material
fabricated from GO, the functional group rich amino acid
L-cysteine, and a biodegradable but compatible natural
biopolymer ĸ-carrageenan (Priya et al., 2018). They studied
the feasibility of the sensing system employing SWASV and
hence revealed a broad linearity range of 5–50 nM with
comparably low LOD of 0.58 and 1.08 nM and remarkable
sensitivity of 1.39 and 1.32 μA nM−1 for the divalent Cd and

FIGURE 7 | CV and EIS images comparing the behavior of bare GCE as
well as differently modified electrodes. Reproduced with permission from (AL-
Gahouari et al., 2020). Copyright 2020, Frontiers Media S.A.
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Pb, respectively. Furthermore, they ascribed these enhanced
characteristics of the modified sensor to the combinational
effects of high surface area and functionalized edges of GO,
the chelation capacity of the multifunctional amino acid, and
the active adsorptive binding of carrageenan toward the HM ions.

Recently, Baghayeri et al. investigated a solvothermally
produced graphene-zinc metal-organic framework (G/MOF)
platform for arsenic (III) determination. The researchers
ascribed the enriched As (III) sensing sensitivity to a fruitful
synergistic relationship between the mechanically strong large
surface area of graphene and the microporous rich network MOF
giving a large active surface area. More significantly, they
achieved a detection limit of 0.06 ppb which is more than a
hundred times less than the internationally set value while a
broad linear span of 0.2–25 ppb was realized demonstrating
potential applicability for arsenite detection in real samples
(Baghayeri et al., 2020).

Heteroatoms including nitrogen, boron, sulfur, or halogen
elements have been incorporated into graphene-derived
nanocomposites for modification of electrodes with significant
amplifying of properties like electric conduction or
electrochemical behavior. Among other contributory factors

are the influential dopant-to-carbon electron linkage and the
emerging of possible reactive sites for heavy metal ions to
accumulate on (Shi et al., 2017b; Guan et al., 2018). Therefore,
considerable efforts have been focused on doping of variant
nonmetal elements into sensing platforms founded on
graphene nanomaterials, exploiting the accruing benefits. For
example, Lin et al. designed and investigated a nitrogen-doped
laser-engraved graphene electrochemical sensor system using
polyaniline, PANI, and polyvinylpyrrolidone, PVP, as the
N-doping reagents, for concurrent recognition of lead and
cadmium ions employing SWASV (Lin et al., 2018). They
attained broad linearity relation in the span from 5 to
380 g L−1 and 0.5–380 g L−1 for the corresponding Cd (II) and
Pb (II) with LOD of 1.08 and 0.16 g L−1. These authors further
deduced that there was an integrated effect between the dopant’s
electron affinity to carbon atoms in the structure and the 3D
porous nature of piled graphene layers. Essentially, that raised the
effective adsorption surface area, expedited the electron transfer,
and ultimately enhanced the electrical conduction, the sensitivity,
the response range, and the EC performance of the modified
electrode. Figure 8 shows a representative diagram of the
fabrication pathway for the N@LEG electrodes.

FIGURE 8 | Pictorial schematic of the electrode preparation protocol via N@LEG for the dual EC sensing of Cd (II) and Pb (II). Reproduction was consented from (Lin
et al., 2018). Copyright 2018, Elsevier.
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Similarly, Lei et al. (2017) designed a nitrogen-doped
graphene-modified electrode for joint EC detection of copper
(II) and lead (II) ions in aqueous media. Their findings indicated
that the proposed sensor showed satisfactory quality with respect
to reproducibility plus resistance to interference by chemically
similar moieties. Besides, they recorded a calibration detection
range of 0.05–2.5 µM with a respective LOD of 11 and 5 nM for
copper and lead. Significantly, the researchers accounted for the
enriched sensitivity based on the electron interaction between the
nitrogen lone pairs and the carbon delocalized π system and
increased active sites.

On the other hand, boron as a doping agent is incorporated in
a special electrochemical analyte sensing material, boron-doped
diamond (BDD) which is hugely acknowledged owing to its
reduced background current (bio)chemical stability and wide
potential window (Marton et al., 2019). Correspondingly, Pei
et al. exploited the uniqueness of BDD and designed a functional
independent and innovative electrode based on a BDD substrate,
by growing graphene homogenously in situ in a vacuum at a
raised annealing temperature. The manipulated G/self-standing
BDD electrode with minimum defects was studied revealing
refined qualities comparative to unaltered GSBDD including a
lowly charge transfer resistance (Rct) of the electrode (Pei et al.,
2020). They further asserted that the modified electrode attained
0.475 μA L μg−1 cm−2 sensitivity accompanied by a detection
limit of 0.21 μg L−1 for lead ions over a spanning linear
relation of 1–100 ppb. These boosted properties inclusive of
long shelf period were attributed to advantageous collaborative
effects of BDD and graphene resulting in increased routes for
rapid charge movement. Moreover, this induced an improved
active surface area linked to the two-layered graphene
manipulation of SBDD, augmented adsorption centers
associated with the microporous framework, and upgraded
reaction kinetics which is fostered.

Besides nitrogen and boron, fluorine has been recognized as a
viable dopant option owing to the higher electronegativity
difference with carbon. Such difference potentially prompts
increased ionic interaction and spreading of charge densities
which stimulate charge transference. Moreover, the presence of
the heteroatom causes manipulation of graphene energy gap
which ameliorates the conveying of electrons and possible
metal-ligand complexing. Subsequently, the synergism
promotes the EC performance of the refashioned electrode
(Shahzad et al., 2017; Thiruppathi et al., 2017). Accordingly,
Thiruppath et al. utilizing CV and SWASV investigated multiple
HM ions determination founded on fluorinated GO modified
electrode and they reported linear concentration range of 0.6–5.0,
0.3–5.0, and 1.0–6.0 µM for bivalent Cd, Pb, and Hg, respectively.
Besides, a recognition limit of 10 nM for both Cd (II) and Pb (II)
was submitted and this was confirmation of enrichment of sensor
performance shown by peak stripping currents attributable to
increased target metal chelation and adsorption centers
(Thiruppathi et al., 2017) Table 1.

Pesticides
Although pesticides like organochlorine (OCPs) are an integral
feature of modern agricultural practices, they have adverse

repercussions on human health and the ecosystem owing to
their typical characteristics like toxicity. Accordingly, it is
paramount to advance environmental protection through
monitoring and determinations. Comparably, EC techniques
are more appealing credited to their facile status, short
response time, cost-effectiveness, and potential on-site
application, besides sensitivity and selectivity (Aragay et al.,
2012; Koçak et al., 2015; Capoferri et al., 2018; Ren et al.,
2019). Because of their predisposition to persist in an
ecosystem accompanied by an inclination to be absorbed by
aquatic biota consequently, they bioaccumulate and get
magnified along the food trophic system. Further, they are
lipophilic and cumulatively collected in fatty tissue of
organisms; eventually, they may be consumed by human
beings through food and water (Fayemi et al., 2016;
Hernandez-Vargas et al., 2018; Zamora-Sequeira et al., 2019).
OCP such as chlordane, aldrin, lindane, and dieldrin are
recognized to be toxic with severe effects on humans and the
ecological system. Recent efforts on lindane detection have
utilized one-dimensional graphenic carbon in the form of
MWCNTs functionalized with either conducting polymer
PANI compared to macrosynthetic organic molecule Nylon
6,6 and various metal oxides. The findings of Fayemi et al.,
based on EC investigations, showed a lowly limit of
concentration recognition of 32.0 nM stretching over a linear
relationship ranging from 9.90 pM to 5.0 µM. The boosted sensor
properties including magnified sensitivity were ascribed to
synergy of the integrated properties of the respective
nanofibers, MWCNTs, Nylon 6,6, and magnetic material
(Fayemi et al., 2016). Even Boke et al. assembled
nanocomposites of graphitic carbon nitride (C3N4 NTs) and
polyoxometalate (POM; H3PW12O40) and developed
molecularly imprinted sensors. Through CV and EIS, they
realized a linear concentration span from 1.0 × 10−10 to 1.0 ×

10−8M with a recognition limit of 2.0 × 10−11M for gamma
lindane (Pelin Böke et al., 2020).

On the other hand, organophosphate pesticides (OPP)
although regulated, excessive use in protecting crops such as
vegetables from pests has resulted in contamination of soils and
water and eventually food. Furthermore, these pesticides are toxic
and reasonably persistent in the ecosystem coupled with being
prone to bioaccumulate along the food chain. Themajor exposure
pathways include ingestion of contaminated food and/or water,
inhaling sprays, and absorption through the skin while their
harmful modal impact is principally nonreversible inhibition of
acetylcholinesterase enzyme. Consequently, the
neurotransmission activity is hampered with further
implications on visual, respiratory, cognitive, sensory, and
nervous impairment (Pellicer-Castell et al., 2020; Fu et al.,
2019; Zhang et al., 2019c; Sgobbi and Machado 2018; Rajaji
et al., 2019; Tian et al., 2018; Heydari et al., 2020). Similarly,
carbamates, namely, carbendazim and carbaryl, are used to
improve crop production and quality of yields via the
elimination of pests. Notwithstanding that, carbamates
contaminate ecological systems and are equally harmful to
humans and animals on account of their toxicity besides
having the same mechanism of disrupting neuronal
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transmission with detrimental effects including fatalities (Santana
et al., 2019; Oliveira et al., 2020; Rahmani et al., 2018). Even
though techniques currently being employed including
chromatography are accurate and sensitive, they inherently
have drawbacks. Among others, the techniques are laboratory-
based, arduous sample preparation; they require certified
personnel to operate and inappropriate for local analysis.
Therefore, it is paramount to instantaneously detect the
presence of different pesticides utilizing cost-effectual,
portable, elevated sensitive, and selective devices especially
within the aquatic media to enable remedial measures to be
instituted when their presence exceeds permissible limits
(Govindhan et al., 2014; Capoferri et al., 2018; Hernandez-
Vargas et al., 2018; Willner and Vikesland 2018). Remarkably,
variant innovative electrochemical technologies have been widely
employed in sensing the presence of OCPs as reflected.

Organophosphorus containing pesticides (OPP) specifically
malathion, MP, methyl chlorpyrifos, and diazinon are
extensively used for the eradication of crops and plant pests
in contemporary agricultural practices. Significant amounts of
toxic, persistent, and bioaccumulative OPPs ultimately
contaminate soil and aqueous media hence have hazardous
effects on nontarget species like people. Therefore, detection of
such pesticides in food and water with cost-effective, facile,
rapid, and portable devices usable in loco is worthwhile (Sgobbi
and Machado 2018; Ramachandran and Dhayabaran, 2019;
Bolat and Abaci 2018).

Ramachandran and Dhayabaran devised a hybrid chemically
polymerized in situ composite of MnO2, polythiophene, and rGO
for modifying a GCE intended for sensing MP, an OP categorized
pesticide (Ramachandran and Dhayabaran, 2019). Owing to
synergistic outcomes among the integrated components
including π-π interactive force with MP, enormous effective
surface area, satisfactory electrical conductivity, and improved
charge transportation, enrichment of EC behavior was realized.
The affirmed results were magnified selectiveness, remarkable
sensitivity (0.0498 μA μM−1), and low LOD of 5.72 nM as well as
long shelf span stability thus showing the sensor’s potential
applicability. In parallel, Tan et al. explored the modification
of GCE employing nanohybridized rGO and ionic
supramolecular arene for MP determination via EIS, DPV, and
other techniques (Tan et al., 2019). Significantly, they reported
boosted EC performance of the sensor system including a broad
linearity dynamic range of 0.001–150 µM in conjunction with an
inferior recognition molarity limit of 0.0003 µM, fast response,
specificity, and sensitivity relative to beta-cyclodextrin-
functionalized rGO-altered GCE. Additionally, they reckoned
that the enrichment in EC properties was ascribable to
improved supramolecular preciseness of CP5 toward MP and
the synergic outcome of the macrocyclic arene such as fascinating
function, complexation host-guest relation based on hydrogen
bonds, and π-π interactions. Meanwhile, Figure 9 shows the
comparative development of β-CD-rGO and CP5-rGO and the
sensing of MP. Furthermore, a mechanistic sensing route was
proposed involving a nitro reduction in a four-electron pathway.
Ultimately, the researchers showed the potential viability of the
developed system in actual sample analysis.

Pajooheshpour et al. designed an enzyme-free gold-platinum
bimetallic nanocluster template on bovine serum albumin (BSA)
before integrating it with graphene nanoribbons (Au-Pt@BSA-
GNRs). This nanocomposite was used to modify a GCE for the
sole purpose of quantification of diazinon (Pajooheshpour et al.,
2018). Their CV and SWASV investigation attained a diazinon
detection concentration limit of 0.002 µM, over linear function
ranges of 0.01–10.0 and 10.0–170 µM. Besides, other properties of
the altered electrode such as reproducibility, accuracy, and
stability were improved. The refinement in EC properties was
attributable to the synergistic impact of the Au-Pt nanoclusters.
Effectively, they reduced the analyte transferring distance,
generated quantum effects coupled to greatly functionalized
protein, BSA, and multiplexed graphene electrical conduction
plus vast specific surface area. Also, the fabricated sensor had
satisfactory application potential.

In another study on OPP, Yola fabricated hexagonally
structured boron nitride quantum dots solely incorporated on
GO for manipulation of GCE surface. The innovative BNQDs/
GO/GCE manipulated electrode was applied for sensing of MP,
diazinon, and chlorpyrifos synchronously (Yola 2019). The
researcher asserted improving sensitivity and linear relation
span of 1.0 × 10−12M to 1.0 × 10−8M and corresponding low
LOD for diazinon, chlorpyrifos, andMPwere 6.7 × 10−14M, 3.3 ×
10−14M, and 3.1 × 10−13M. Remarkably, the magnified EC
performance was ascribed to the hybridization synergy of the
wide bandgap, electrical conduction, and active surface area of 2D
white graphene and novel GO properties.

While exploiting GQDs properties such as superior electron
transfer, elevated surface area, and remarkable electric
conduction, Mehta et al. attained a comparatively lower
parathion low LOD of 46 pg L−1 within a very broad linearity
calibration span of 0.01–106 ng L−1. These results were
established when they explored CV and EIS using an SPCE
modified electrode with decorated amine-functionalized
nanostructured GQDs. Additionally, they submitted that
GQDs were homogeneously distributed on the electrode
besides acting dually as an electron-donating component and
acceptor which enriched the sensor behavior (Mehta et al., 2017).

Rahmani et al. constructed sulfur and nitrogen dually doped
(via thiourea) three-dimension graphene decorated with gold
nanoparticles composite for electrode modifying hence
detection of carbaryl in different matrices. A low LOD of
0.0012 µM was attained within a linear relationship range of
0.004–0.3 µM through EC methods (Rahmani et al., 2018).
Moreover, the augmented properties including appropriate
lifespan, reproducibility, and satisfactory selectivity were
accounted for by the collaborative impact of the hugely
porous, enormous particular surface area, and rapid direct
electron movement kinetics of 3D graphene evidenced by the
amplified anodic peak currents for the altered electrode. Besides,
the graphene is interlinked and made functional by the thiourea
sulfur and nitrogen atoms relevant for complexation coupled to
the excellent electrocatalytic quality of gold nanoparticles.
Correspondingly, exploitation of synergistic impacts of noble
metal nanoparticles which provide active adsorption centers
and excellent electrical conduction, reactivating effect of
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macromolecule oxime against electrode passivation by the
pesticide and doped graphene properties, has been undertaken.
Zhang et al. explored the beneficial advantages of the cited
materials and fabricated Au NPs-hybridized nitrogen-doped
graphene further functionalized with a–SH containing oxime
for electrode decoration. They achieved satisfactory sensitivity
and reduced dimethoate concentration detection limit of 8.7 ×

10−13M over a broad linearity function range, 1.0 × 10−12 to 4 ×
10−8M, attributable to combinational advantages of the materials
(Zhang et al., 2017).

Emerging Pollutants
Emerging pollutants of concern refer to newly discovered
compounds, already recognized chemicals that are still being
studied to fully establish their ecological and human health
implications particularly in conjunction with those recently found.
Furthermore, there may be purely present-day issues cropping up on
historically known and accepted “harmless” compounds (Su et al.,
2018; Borrull et al., 2019; Álvarez-Ruiz and Picó 2020). Even though
natural contaminants are present in ecosystems at diminished
concentrations, there is the persistent anthropogenic deposition of
these compounds, including pharmaceuticals, personal consumer
products, industrial chemicals, pesticides, chemical warfare agents,
and illicit drugs. Moreover, several of these emerging pollutants have

endocrine disruptive characteristics, hence disturbing the natural
hormonal functions. Apart from their ecological and human
health implications they also causes different cancers and
impairment of reproductive cardiovascular functions on human
(Azzouz et al., 2019; Jaffrezic-Renault et al., 2020). Notably,
triclosan, parabens (alky) phenols, polychlorinated biphenyls
(PCBs), perfluorinated compounds, bisphenol A, phthalates,
organo/heavy metals, and other chemicals are among the
endocrine interfering category generating distress worldwide
(Borrull et al., 2019; Karzi et al., 2019; Álvarez-Ruiz and Picó 2020).

While currently used standard techniques for the
determination of endocrine interfering chemicals including
chromatographic and spectroscopic are reliable and sensitive,
they have limitations. Among them are the need for certified
personnel to operate the instruments, arduous sample
preparation means, and being laboratory-based, thus not
applicable for in situ analysis. Given the stated reasons, the
detection of emerging pollutants including TCS (alkyl)
phenols, PCBs, parabens, and other endocrine interfering
chemicals in various media inclusive of water, using
enormously sensitive, selective, cost-effective, portable, and fast
response devices, remains critical even in present time (Zheng
et al., 2018; Du et al., 2019; Moyo et al., 2015; Teixeira et al., 2020;
Sk et al., 2019; Butmee et al., 2019).

FIGURE 9 | Symbolic diagram of MP, CP5, and β-CD plus the illustrative scheme of CP5-rGO (A) and β-CD-rGO (B) nanomaterials developed for EC detection
route of MP. Reproduction was sanctioned from (Tan et al., 2019). Copyright 2019, The Royal Society of Chemistry.
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Triclosan
Triclosan (TCS, 5-chloro-2-(2,4-dichlorphenyoxy) phenol) is
extensively utilized as a dual preservative and antimicrobial
constituent of pharmaceutical, household hygienic goods, and
individual care products. Among others are toothpaste,
deodorants, soaps, shampoos, lotions, dishwashing detergents,
medical disinfectants, and underclothing. Ordinarily, TCS is
anthropogenically released into ecological systems and water
bodies through wastewater, however ineffectually treated, and
it possibly has adverse effects on aquatic biota (Yola et al., 2015;
Lehutso et al., 2017; Wu et al., 2017; Zheng et al., 2018; Teixeira
et al., 2020). Furthermore, TCS is lipophilic and has been
recognized as interfering with endocrine hormonal
functioning; hence, it is globally considered a contemporary
contaminant to worry about. Apart from that, TCS
degradation intermediates and derivatives which include
dioxins-like chemicals are potentially harmful owing to their
carcinogenic status. Although TCS is regarded as low-level
toxic and is regulated by international organizations, its
detrimental human impact has been chronicled especially
dermal aftermaths as a result of persistent exposure (Jaffrezic-
Renault et al., 2020; Du et al., 2019; Moyo et al., 2015; Montaseri
and Forbes 2018; Cullinan et al., 2015; Saljooqi et al., 2020).

Wu et al. fabricated nanocomposites consisting of palladium
metal NPs, graphene, and a cationic polyelectrolyte poly (diallyl
dimethyl ammonium chloride) (PDDA-Gr/Pd NPs) in a facile
chemical protocol shown in Figure 10. The hybrids were used to
refashion the GCE surface and evaluated through CV and DPV
for the quantification of TCS. They established a TCS recognition
concentration limit of 3.5 nM over a linearity correlation (9.0
nM–20.0 µM), with a remarkable shelf lifetime and satisfactory
reproducibility. Particularly, they attributed the enriched sensor
performance to the collaborative impact of the constituent
material properties such as the good catalytic activity of Pd
NPs and superior graphene conductivity and active surface

area which enhanced electron transport speed. Besides, the
viability of that sensor system was assessed in actual aqueous
media samples (Wu et al., 2017).

In a different investigation, Saljooqi et al. fabricated a magnetic
iron oxide (Fe3O4)-functionalized GO before coating with gold
and polypyrrole (Fe3O4@Au-PPy/GO) for GCE modification.
The modified electrode was used in studying the quantification
of TCS through EC techniques such as CV and DPV (Saljooqi,
Shamspur, and Mostafavi, 2020). Their findings indicated
marked sensitivity, long-term stability in addition to an LOD,
and calibration range of 2.5 × 10−9M and 0.01–1.0 μmol mL−1,
respectively. Distinctly, the enhanced performance of this sensor
configuration was ascribed to combinational effects of the
original properties of the hybrid materials.

Meanwhile, Akylidirim assembled a novel NC integrating through
a hydrothermal strategy, silver NPs, with graphitic carbon nitride,
C3N4, GQDs, and an ionic liquid (IL) (Ag NPs/C3N4 NTs@GQDs/
IL) as electrode modifier (Akyıldırım, 2020). The researcher
employed the modified GC electrode in the determination of TCS
via CV, DPV, and EIS, subsequently reporting a low LOD of 2.0 ×

10−12M and a linear response spanning from 1.0 × 10−12 to 1.0 ×

10−8M. The Ag NPs/C3N4 NTs@GQDs/IL nanohybrid potentially
exhibited integral properties emanating from the individual
composite materials. These included the large electroactive area
and outstanding conductivity of GQDs, the excellent ionic
conductivity of IL, electron-conducting pathways of g-C3N4, and
the electrocatalytic effect of Ag NPs toward TCS and the aftermath
was rapid electron mobility.

Parabens
Comparably, another category of chemicals that were initially
considered less harmful as they are employed as additives for
preservation and antiseptic purposes is parabens. Particularly,
they are used in cosmetics, personal care, and pharmaceutical
formulations as well as food and beverage preservatives; hence,

FIGURE 10 | Illustrative scheme of the synthesis method of PDDA-Gr/Pd NPs along with the EC detection of TCS onmodifiedGCE. Reproduced with consent from
(Wu et al., 2017). Copyright 2016, Elsevier.
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they find their way into water sources. Nonetheless, parabens
have proven to be disruptive to the human endocrine functional
system and dermal problems and may have hazardous
environmental implications (Kajornkavinkul et al., 2016;
Mendonça et al., 2017; Piovesan et al., 2018; Faradilla Wan
Khalid et al., 2019; Muñoz et al., 2020).

Piovesan et al. constructed a nanocomposite integrating rGO
and gold nanoparticles in a dispersion of chitosan (Au NPs-rGO-
CS) toward modifying the GCE surface. CS served concurrently
as GO reductant and nanohybrid stabilizer. They applied the
adjusted electrode for the detection of methyl paraben (MeP), an
endocrine disruptive constituent of PCPs. The CV and EIS results
indicated a wider linear calibration range of 0.03–1.30 μmol L−1

with respective limits of quantification and concentration
detection of 41.73 and 13.77 μmol L−1 and superior sensitivity.
Additionally, the upgraded sensor performance as evidenced by
the magnified anodic peak currents was attributed to synergic
effects of the integrated components (Piovesan et al., 2018).

Mendonca et al. described a solvothermally synthesized
ruthenium NPs-functionalized rGO for modifying electrode
surface character. The integrated rGO-Ru NPs NC-modified
GCE was then evaluated for the quantification of MeP using
DPV. Enhanced signal for the altered electrode was observed;
hence, an LOD and calibration linear range of 2.40 × 10−7mol L−1

and 5.00 × 10−7 to 3.00 × 10−6mol L−1, respectively, were
reported. This was due to the synergism as a result of the
integration of individual material properties which facilitated
rapid electron transfer rate and improved conductivity
(Mendonça et al., 2017). Analogously, Khalid et al. designed a
cellulose nanocrystal (CNC)-functionalized rGO NC for
electrode modification, using a facile protocol of sonication
and drop-casting (Faradilla Wan Khalid et al., 2019). The
CNC-rGO/SPE was employed for MeP determination through
CV, DPV, and EIS. In this instance, the acceptable film-forming
qualities and antiadsorption ability of CNCwere beneficial as well
as the outstanding electrical conductivity of rGO. The synergic
interaction enhanced sensing by the configured electrode through
inhibiting MeP from adsorbing onto the surface of rGO owing to
π-π functioning, improved selectivity, and fast charge transfer.
An LOD of 1.0 × 10−4Mwith a concentration span of 2 × 10−4 to
9 × 10−4M was attained. The sensor system showed reusability
potential and proved to be a viable option in actual product
analysis for MeP.

Likewise, Munoz et al. composed different dimensional
nanocomposites including rGO decorated with platinum
nanoparticles (Pt NPs/rGO) as a surface modifier for GCE.
They explored through CV and DPV the detection of MeP
and reported magnification of sensor performance such as a
low recognition limit of 2.5 µM accompanied by a wider
correlation range of 5.0–50 µM and elevated sensitivity of
45 μA μM−1. Meanwhile, they concluded that the platinum-
functionalized one dimension CNT was the best sensor
platform with LOD and linearity in the nanomolar range
(Muñoz et al., 2020). Similarly, Santana and Spinelli exploited
the benefits emanating from hybridizing GQDs with a natural
polymer CS. They modified GCE and investigated through CV
and DPV the determination of TCS and MeP concurrently.

Recognition limits of 0.03 μmol L−1 plus 0.04 μmol L−1 for
respective TCS and MeP were achieved over a broad
functional span of 0.10–10.0 μmol L−1. Moreover, the
enrichment of properties was on account of synergism
between GQDs and CS (Santana and Spinelli, 2020).

Bisphenol A
Similarly, bisphenol A, BPA (2,2-bis (4-hydroxyphenyl)
propane), is a primary ingredient widely employed for the
commercial production of macromolecular products viz
polycarbonate polymers and epoxy resins. Furthermore, BPA
is thus a useful component of packaging containers employed in
the food and beverages industries. However, the presence of BPA
in different media including water sources has been substantiated
while it is partially treated in the water treatment terrain (Zou
et al., 2019; Canevari et al., 2019; Yu et al., 2017). BPA has been
recognized for its tendency to accumulate and be magnified along
the trophic chain besides its persistence within the ecosystem.
Recently, BPA has been acknowledged for its adverse impact on
the ecology and health of mankind. Specifically, BPA is an
endocrine system disrupting compound which imitates the
natural estrogens’ hormonal system. Concurrently, the toxic
chemical further severely impairs the human nervous function,
reproductive system, cardiovascular role apart from being
potentially a carcinogen (Sk et al., 2019; Li et al., 2017;
Butmee et al., 2019; Pang et al., 2020).

Shi et al. devised a single-step EC reduction of GO in which the
formed rGO was used to enfold copper (I) oxide, Cu2O. The GCE
was modified with Cu2O-rGO nanohybrid and assessed through
CV in the determination of BPA (Shi et al., 2017a). When
compared to Cu2O/GCE, rGO/GCE, and the bare electrode,
Cu2O-rGO/GCE had good electrocatalytic performance, as
evidenced by the high anodic currents. A diminished LOD
and wider linearity function of 5.3 × 10−8M and 1 × 10−7 to
8 × 10−5M respectively were reported. Furthermore, the enriched
sensor properties were on account of the synergistic impact of
rGO possessing high electroactive and superior conductivity plus
the marked catalytic activity of the metal oxide which facilitated
electron transport. The sensor configuration was evaluated to be a
viable candidate for BPA sensing in aqueous media.

Similarly, Canevari et al. fabricated hybridized rGO and
carbon NPs material through dispersing GO in alcoholic
media with CNPs which simultaneously acted as reductant
and attachment link to rGO. The CNPs-rGO hybrids were
used in SPCE modification then explored the determination of
BPA through DPV and EIS (Canevari et al., 2019). The
researchers reported a low LOD of 1 × 10−9mol L−1, a
sensitivity of 189.5 μmol L−1, and a broad linear response
spanning from 7.5 × 10−9 to 2.6 × 10−7mol L−1. The rGO-
CNPs-modified electrode showed an elevated electrocatalytic
response and reduced charge transfer resistance, thus
expediting the unimpeded electron transport from the solution
toward the electrode. Significantly, such enriched sensor
characteristics were due to the synergy premised on the huge
electroactive surface area of CNPs and magnificent electrical
conductivity of rGO. Moreover, the sensor design proved to
be a potential candidate for BPA sensing in drinking water.
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Equally, Li et al. assembled a simple GCE modifier integrating
reduced graphene oxide, silver metal NPs, and a biopolymer,
poly-L-lysine (rGO-Ag NPs/PLL), and then explored the sensor
system for BPA detection through CV, DPV, and EIS. Distinctly,
a widely varying linear relationship of 1–80 µM with a capped
sensing response of 0.54 µM is attained plus satisfactory stability
and good specificity. These were attributable to improved
electroactive anchoring sites, hydrogen bond linkages, and
enhanced electron mobility (Li et al., 2017). Likewise, Butmee
et al. fabricated a facile nanocomposite of graphene nanoplatelets
functionalized by an ionic liquid (IL-GNPs) as shown in
Figure 11. The NC was applied for electrode modification
prior to investigating BPA sensing using CV, DPV, and EIS
techniques. They reported enrichment of properties including a
low LOD of 6.4 nM over a linearity function range of 0.02–5.0 µM
besides reasonable stability, and enhanced sensitivity was due to
synergistic impact owing to elevated ionic conductivity of IL and
large surface area of GNPs leading to fast electron mobility
(Butmee et al., 2019).

Additionally, Table 2 shows further findings of recent research
utilizing graphene-derived materials toward sensing of pesticides
in addition to other emerging pollutants.

Natural Organic Matter
Natural organic matter (NOM) refers to complicated
heterogeneous matrices of nonhumic products, humin, humic
acid, and fulvic acid other than colloidal matter derived from
different hydrological and biogeochemical processes. Moreover,
by various means either internal to an ecosystem or exterior like
anthropogenic pathways, including microbiological degradation,
the formation of natural humic substances principally occurs.
Notably, humic acid and fulvic acid have functional component
groups viz carboxyl, hydroxyl, phenols, amino acids, among

others which influence their behavior in water. Several studies
have indicated the variability of NOM in surface waters
(Nkambule et al., 2012; Särkkä et al., 2015; Sillanpää et al.,
2018; Fakayode et al., 2020).

Significantly, NOM in water is by no means solely toxic nor
is it a contaminant. Nonetheless, water’s unpalatable
organoleptic characteristics inclusive of inferior taste,
undesirable color, foul odor, and lack of freshness are
attributed to the presence of NOM. Additionally, the organic
content is considered responsible for the corresponding and
concurrent chemical coagulant expenditure and the regularly
undertaken plant backwashing owing to membrane fouling
(Moyo et al., 2019; Roosmini et al., 2018; Sarno et al., 2019;
Chaukura et al., 2018; Islam et al., 2020). Apart from that, NOM
nurtures microbial regrowth and promotes complexation since
the terminal functional groups act as ligands which complex
with HM ions boosting the bioavailability and toxicity of
organometals (Adekunle et al., 2020; Ma et al., 2018; Zhao
et al., 2019; Islam et al., 2020). Furthermore, when there is
inadequate removal of NOM before either chlorinating or
chloramination, it is recognized that the respective chlorine
or chlorine dioxide gases react with the organic material
forming known mutagenic and carcinogenic disinfectant by-
products (DBPs) (Basumallick and Santra 2017; Haarhoff et al.,
2010; Nkambule et al., 2009; Ray et al., 2017; Fakayode et al.,
2019b; Li et al., 2012; Sillanpää et al., 2018). Besides, the DBPs
have other impactful effects, namely, liver damage (Zhang et al.,
2019a).

In view of the grave challenges stemming from the variability,
indeterminate composition, and the recalcitrant predisposition
status of NOM, it is accordingly imperative that innovative
technologies be modeled to monitor its prevalence (and
removal) to inhibit the formation of DBPs right through the

FIGURE 11 | Schematic representation of (A) fabrication of IL-GNPs EC sensor and (B) EC oxidation detection mechanism of BPA on IL-GNPs/GCPE. Reprinted
with approval from (Butmee et al., 2019). Copyright 2018, Elsevier.
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water purification terrain (Särkkä et al., 2015; Ye et al., 2018;
Pavitt and Tratnyek 2019; Adekunle et al., 2020). Lately,
electrochemical strategies have been proposed and gained
considerable recognition ascribable to being cost-effective, the
potential for actual-time, online analysis, elevated sensitivity, and
selectivity. Significant reports in the literature show that
considerable attention has been focused on the detection of

NOM particularly humic and fulvic acids in aquatic
environments using spectroscopic techniques. Nevertheless,
much of the electrochemical sensing material has been based
on either organic macromolecules or (un)functionalized metal
(oxides) nanoparticles (Basumallick and Santra 2017; Ma et al.,
2018; Fakayode et al., 2019a; Pavitt and Tratnyek 2019; Adekunle
et al., 2020; Fakayode et al., 2020).

TABLE 1 | Graphene-based HM ions detection methods, sensing materials, and analytical parameters.

S no. Sensing (nm) EC technique Metal ions Linearity range LOD References

1. rGO/AuNPs/ TPP DPV Cd+2 0.05–300 µM 22 nM Si et al. (2018)
2. Nitrogen- doped @LEG/PANI/PVP SWASV Cd+2 5–380 g L−1 1.08 g L−1 Lin et al. (2018)

Pb+2 0.5–380 μg L−1 0.16 g L−1

3. PG/Gr/PE CV, DPV Hg+2 6.6 µM Raril and Manjunatha (2020)
Pb+2 0.8 µM

4. ErGO/MWCNTs/L-cys CV, EIS Pb+2 0.2–40 μg L−1 0.1 μg L−1 AL-Gahouari et al. (2020)
5. GQDs/Gr DPASV Cu+2 0.015–8.775 µM 1.34 nM Wang et al. (2017)
6. GO/ĸ-Car/L-cys SWASV Cd+2 5–50 nM 0.58 nM Priya et al. (2018)

Pb+2 1.08 nM
7. Nitrogen-doped Gr SWASV, CV, EIS Cd+2 10 pM-1 nM 8.0 pM Liu et al. (2016)

Pb+2 10 pM-1 nM 5.0 pM
8. F@SnO2/T/rGO CV, DPV Cu+2 2–1,000 nM 0.3 nM Cui et al. (2018)
9. Fluorinated GO CV Cd+2 0.6–5.0 µM 10 nM Thiruppathi et al. (2017)

SWASV Pb+2 0.3–5.0 µM 10 nM
Hg+2 1.0–6.0 µM

10. Nitrogen-doped Gr SWASV Cu+2 0.05–2.5 µM 11 nM Lei et al. (2017)
Pb+2 5 nM

11. CA/rGO SWV, EIS Fe+3 1.0 × 10−10 2.0 × 10−11 M Göde et al. (2017)
Cd+2 −1.0 × 10−8 M
Pb+2

12. SnF-GO-SPCE film SWASV Cd+2 0.1–1.5 µM 0.054 µM Ruengpirasiri et al. (2017)
Pb+2 0.026 µM
Cu+2 0.060 µM
Hg+2 0.066 µM

13. GO@Fe3O4@2-CBT SWASV Cd+2 0.02 ng mL−1 Dahaghin et al. (2018)
Pb+2 0.03 ng mL−1

14. rGO/CS/PLL DPASV, CV, EIS Cd+2 0.05–10.0 μg L−1 0.01 μg L−1 Guo et al. (2017)
Pb+2 0.02 μg L−1

Cu+2 0.02 μg L−1

15. Flower-like NiO/rGO SWASV Pb+2 0.01 µM Sun et al. (2019b)
16. L-cys/AuNPs/NG SWV Pb+2 0.5–80 μg L−1 0.056 μg L−1 Cheng et al. (2016)

CV
17. 3DGF/Bi NP film SWASV Cd+2 1–120 μg L−1 0.05 μg L−1 Shi et al. (2017b)

CV EIS Pb+2 1–120 μg L−1 0.02 μg L−1

Zn+2 40–300 μg L−1 4.0 μg L−1

18. Fe3O4@TiO2@NG@AU@ETBD SWV, CV Pb+2 4 × 10−13–2 × 10−8 mol L−1 7.5 × 10−13 mol L−1 Liu et al. (2017)
EIS

19. Fe3O4/GN//f.GE SWV, CV Pb+2 0.001–0.5 nM 0.0123 pM He et al. (2018b)
EIS 0.5–1,000 nM

20. CS@3DrGO@DNA EIS Hg+2 0.1–10 nM 0.016 nM Zhang et al. (2016)
21. Bi/Nafion/rGO/AuNPs CV Cd+2 1.0–90 μg L−1 0.08 μg L−1 Zhao et al. (2017)

SWASV Pb+2 0.12 μg L−1

22. N-doped/rGO/MnO2 SWASV Hg+2 0.01–0.2 µM 0.0414 nM Wen et al. (2018)
23. AuNPs/rGO/DNA CV Hg+2 0–2,000 nM 0.04 nM Zhang et al. (2018b)
24. PTh-afGQDs CV, EIS Hg+2 1 pM–1 µM 0.6 pM Tian et al. (2020)
25. IL/GO SWV Cd+2 2.4–70 ppb 0.33 ppb Pandey et al. (2019)

Pb+2 5–15 ppb 0.42 ppb
26. IL-CNT-GF DPASV, CV, EIS Cd+2 0.001–1 µM 0.1 nM Dong et al. (2017)

Pb+2 0.001–1 µM 0.2 nM
27. rGO-Fe3O4 DPASV, EIS As+3 2–300 μg L−1 0.10 μg L−1 Chimezie et al. (2017)
28. G/Zn MOF CV, DPV As+3 0.2–25 ppb 0.06 ppb Baghayeri et al. (2020)

rGO: reduced graphene oxide; LEG: laser-engraved graphene; PG: polyglycine; TPP: tetraphenylporphyrin; GO: graphene oxide; PANI: polyaniline; PVP: polyvinylpyrrolidone; T: thiazole

derivative; Gr: graphene; CA: calixarene; CS: chitosan; GQDs: graphene quantum dots; 2-CBT: benzothiazole-2-carboxaldehyde; PLL: poly-L-lysine; NO-Ur: nitroso-uracil; GE: garlic

extract; PTh: polythiophene; IL: ionic liquid; CNT: carbon nanotube; GF: graphene flower; MOF: metal-organic framework.
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TABLE 2 | Graphene-based analyte detection techniques, sensing material, emerging organic analytes, and performance parameters.

S no. Sensing NC EC technique Analyte Linear range LOD References

1. ZnCdTe QD-rGO CV, DPV Carbendazim 9.98 × 10−8 to 1.18 × 10−5 mol L−1 9.41 × 10−8 mol L−1 Santana et al. (2019)
2. 3D-rGO-PANI/ CV Ethion 1.0–70 μg L−1 0.4 μg L−1 Heydari et al. (2020)
3. MnO2/PTh/rGO CV, DPV, EIS MP 0.50–10 µL 5.72 nM Ramachandran and Dhayabaran (2019)
4. CuO-NPs/3D Gr CV, DPV, EIS Malathion 0.01 nM Xie et al. (2018)
5. rGO/AChE CV, DPV, EIS Carbaryl 0,2–1.0 μmol L−1 1.9 nmol L−1 da Silva et al. (2018)
6. CP5-AuNPs/ GO DPV Paraquat 1.0 × 10−8 – 1.0 × 10−5 M 1.0 × 10−8 M Sun et al. (2019a)
7. rGO-PDA-Au NPs-Ag NPs-AChE-CS DPV MP 0.016–3,040 nM 9.1 pM Chen et al. (2019)
8. Apt/rGO-Cu NPs CV, DPV Profenofos 0.01–100 nM 0.003 nM Fu et al. (2019)

Phorate 1–1,000 0.3
Isocarbophos 0.1–1,000 0.03
Omethoate 1–500 0.3

9. FTO/PA6/PPy/ CrGO CV, DPV, EIS Malathion 500–2 × 104 ng mL−1 0.8 ng mL−1 Migliorini et al. (2020)
10. BNQDs/GO/GCE CV, EIS MP 1.0 × 10−12 to 1.0 × 10−8 M 3.1 × 10−13 M Yola (2019)

Diazinon 6.7 × 10−14 M
Chlorpyrifos 3.3 × 10−14 M

11. PrM/rGO CV, EIS MP 0.02–1.55; 1.55–114 µM 1.8 nM Karthik et al. (2018)
12. g-C3N4/GO/Fc-TED CV, EIS Metolcarb 0.045–213 µM 8.3 nM Xiao et al. (2020)
13. 3DG-Au NPs DPV, CV Carbaryl 0.004–0.3 µM 0.0012 µM Rahmani et al. (2018)
14. Poly (FBThF)/Ag-rGO-NH2/AChE CV Malathion 0.099–9.9 μg L−1 0.032 μg L−1 Zhang et al. (2019c)

Trichlorfon 0.0206–2.06 μg L−1 0.001 μg L−1

15. Au-Pt@BSA-GNRs SWASV, CV, EIS Diazinon 0.01–10.0; 10.0–170 µM 0.002 µM Pajooheshpour et al. (2018)
16. 3DGOS@CuFeS2 CV, DPV MP 0.073–801.5 µM 4.5 nM Rajaji et al. (2019)
17. CP5-rGO DPV, EIS MP 0.001–150 µM 0.0003 µM Tan et al. (2019)
18. GCE/VS2QDs-GNP/CMWCNTs/DZBA CV, DPV, EIS Diazinon 5.0 × 10−14–1.0 × 10−8 mol L−1 1.1 × 10−14 mol L−1 Khosropour et al. (2020)

1.0 × 10−14–1.0 × 10−8 mol L−1 2.0 × 10−15 mol L−1

19. Ab/GQDs EIS Parathion 0.01–106 ng L−1 46 pg L−1 Mehta et al. (2017)
20. Au NPs/FcDr/rGO CV EIS Dichlorvos 0.43–218.4 µM 0.21 µM Yan et al. (2020b)
21. NG/Au NPs/MNO CV, DPV Dimethoate 1.0 × 10−12–1.0 × 10−8 M 8.7 × 10−13 M Zhang et al. (2017)
22. ZnO NSt@GO CV, DPV, EIS MP 0.03–670 µM 1.2 nM Manavalan et al. (2020)
23. Au-ZrO2 –GNs CV, SWV, EIS MP 1–100 ng mL−1; 100–2,400 ng mL−1 1 ng mL−1 Gao et al. (2019)
24. AChE-CS/3DG-CuO NFs CV, SWV, EIS Malathion 3 pM-46.665 nM 0.92 pM Bao et al. (2019)
25. Au NPs/GOAQ CV, DPV Paraquat 0.02–24 µM 6 nM Kong et al. (2019)
26. FS-rGO CV DPV Fenitrothion 0.005–1.0 µM 0.00019 µM Özcan et al. (2019)
27. rGO-CNPs DPV BPA 7.5 × 10−9–2.6 × 10−7 mol L−1 1 × 10−9 mol L−1 Canevari et al. (2019)
28. GNPs-Au NPs CV, DPV, EIS BPA 5 × 10−3–100 µM 0.027 nM Zou et al. (2019)
29. IL-GNPs CV, DPV, EIS BPA 0.02–5.0 µM 6.4 nM Butmee et al. (2019)
30. Au NPs/rGO-MWCNTs DPV BPA 5.0 × 10−9–1.0 × 10−7; 1.0 × 10−7–2.0 × 10−5 M 1.0 × 10−9 M Yu et al. (2017)
31. rGO-Ag/PLL CV DPV BPA 1–80 µM 0.54 µM Li et al. (2017)
32. Cu2O-rGO CV BPA 0.1–80 µM 0.053 µM Shi et al. (2017b)
33. rGO/Ru NPs DPV MeP 5.00 × 10−7–3.00 × 10−7 mol L−1 2.40 × 10−7 mol L−1 Mendonça et al. (2017)
34. CNC-rGO CV, DPV MeP 2 × 10−4 -9x10−4 M 1.0 × 10−4 M Faradillawan Khalid et al. (2019)
35. Pt-NP@rGO CV, DPV MeP 5.0–50 µM 2.5 µM Muñoz et al. (2020)
36. Au NPs-rGO-CS CV, EIS MeP 0.03–1.30 μmol L−1 13.77 μmol L−1 Piovesan et al. (2018)
37. Fe3O4@Au NPs-PPy/GO DPV, LSV TCS 0.01–1.0 μmol mL−1 2.5 × 10−9 M Saljooqi et al. (2020)
38. PDDA-Gr/Pd NPs CV, DPV TCS 9.0 nM -20.0 µM 3.5 nM Wu et al. (2017)
39. Ag NP/C3N4 NT@GQDs/IL CV, DPV TCS 1.0 × 10−12–1.0 × 10−8 M 2.0 × 10−12 M Akyıldırım (2020)
40. GQDs/CS CV, DPV MeP 0.10–10.0 μmol L−1 0.04 μmol L−1 Santana and Spinelli (2020)

TCS 0.03 μmol L−1

41. rGO-ZnO CV, DPV Phenol 2–15 µM; 15–40 µM 1.94 µM Sha et al. (2017)
(Continued on following page)
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Nitroaromatics
Nitroaromatics, namely, nitrophenol compounds are key
ingredients in agriculture and industry. Notwithstanding,
nitroaromatics compounds find their way into the ecology
hence, contributing significantly to environmental pollution
due to their elevated toxicity (Qin et al., 2019; Li et al., 2019).
Nitroaromatics such as DNT, TNP, TNT, and NB are used in
chemical explosives and landmines. Explosives residues are
recognized to cause harmful effects to the central nervous,
cardiovascular, and respiratory systems among others (Wen
et al., 2018; Jigyasa and Kaur Rajput, 2018; Ramachandran
and Karunkaran Yesodha, 2019). Therefore, it is crucial to
protect the environment through timeous, target-specific,
simple, sensitive detection means. EC techniques have gained
recognition due to analyte specificity, sensitivity, portability, on-
site, and real-time determinations.

He et al. prepared a sensor for EC determination of
nitrophenol based on acetylene black paste and graphene
hybrid electrode (GR/ABPE). Through CV, respective linear
range and LOD of 20 nM to 8.0 and 8.0 µM were reported
(He et al., 2019b). Most recently, Hwa et al. fabricated an EC
sensor exploiting halloysite nanotubes (HNTs) and Ag NPs
decorated on rGO for modification of GCE. The rGO-HNTs-
Ag NPs-configured sensor was examined in the sensing of 4-NP
through CV and DPV. Significantly, the researchers achieved a
linear response in the concentration range 0.1–363.9 µM, with an
LOD of 48.6 nM and sensitivity of 35.25 µAµM−1 cm−2.
Additionally, the sensor was found viable when evaluated
using different sample matrices (Hwa and Ganguly, 2020).

Similarly, Zhang et al. adopted dual heteroatom doping
introducing nitrogen and sulfur into graphene nanoribbons
prior to base washing (BW) and then modified a GCE. The
BW-NS-rGO NRs/GCE sensor was studied through CV, DPV,
and EIS in detecting TNT. The sensor platform recorded a wide
linear range of 0.0008–5.1 ppm and LOD of 0.1 ppb. The superb
sensing performance is attributed to the dual doping of N and S
atoms and full exposure of the rich defective active sites of BW-
NS-rGO NRs after base washing, and rGO enables target
molecules binding besides its high electrical conductivity; thus,
signal amplification was realized. The proposed sensing platform
was evaluated and exhibited potential for TNT determination in
water samples (Zhang et al., 2018b).

Li et al. fabricated a core-shell GO@polymerized-Mn-
porphyrin (GMPP@AMP) nanocomposite for altering GCE
surface and the platform was applied for the determination of
NB via CV and DPV. Evidently, there was synergistic impact
owing to the prevalence of functionalizing nitrogen-containing
moieties, π-π porous conjugated caged metalloporphyrin
structure, and GO conductivity expediting the high electron
transfer capacity, strong mutual affinity, and increased contact
area between NB and the mesoporous polymer enhancing the
electrocatalytic activity of the sensor. The reported linear range
was 0.04–0.24 mM while LOD was 0.243 × 10−6M and the
evaluated sensor exhibited practical prospects for sensing NB
in ecological matrices (Li et al., 2019).

Ramachandran, Nair, and Yesodha explored aromatic
nitrogen-doped GQDs synthesized via the hydrothermalT
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treatment of precursor PANI. The modified GCE (N-GQD/GCE)
was employed for the detection of TNP through DPV and an
LOD of 0.2 ppb (1 nM) was revealed. They concluded that the
enhanced sensitivity and selectivity emanate from rich N-doped
aromatic structure of the N-GQD which promoted closer and
selective molecular interactions with nitroaromatics through ring
stacking, π-π interaction, or hydrogen bonding which improved
the electrical conductivity and electron transferability. Again, the
sensor also differentiated various nitroaromatic species, TNP,
DNT, and NP DNT (Ramachandran and Karunakaran Yesodha,
2019).

Polyphenols
Polyphenols including flavonoids, phenolic acids, tannic acid,
and polyphenolic amides are abundantly prevalent in fruits,
vegetables, beverages, herbs, and spices among others. Further,
notable examples viz garlic acid, curcumin, and catechins are
readily available. Polyphenols have diverse acclaimed health
benefits; however, some may have potential toxicity. Either
way, their detection with facile, sensitive, cost-effective, on-site
portable devices is worthwhile (Kokulnathan et al., 2018; Ganesh
et al., 2019; Manikandan et al., 2019; Ansari and Arvand 2020;
Suvina et al., 2020).

Manikandan et al. (2019) configured a sensor based on
fluorine-doped GO and modified a GCE. The F-GO/GCE
sensor was applied for the detection of caffeic acid via CV and
DPV and then realized concentration range and LOD of
0.5–100.0 and 0.018 µM, respectively. Fluorine has elevated
electron affinity which leads to the formation of fluorine
dopant-to-graphenic carbon electron linkages and generation
of reactive centers, hence improving electrical communication.
Moreover, the applicability of the sensor was judged to be a
potential quality control means for the determination of
polyphenols in food and beverages industry.

Analogously, Kokulnathan et al. constructed a hexamine
cobalt (III) coordination complex [Co(NH3)6]

+3 grafted onto a
rGO NC-modified GCE. The rGO/[Co(NH3)6]

+3 chelate was
produced through a sonochemical process. The platform was
employed via CV, DPV, and EIS for the determination of a
flavonoid, morin (MR) (Kokulnathan et al., 2018). They revealed
a wide linear range, LOD, and sensitivity of 0.008–72.35 µM, 1.0
nM, and 4.326 μA μM−1 cm−2 correspondingly. Notably, the
cobalt hexamine complex has excellent electrocatalytic activity
attributed to its heterogeneous electron transferability which
enhanced the sensor’s analytical performance.

Recently, Ansari and Arvand developed a magnetic bar carbon
paste electrode (MBCPE) modified using cobalt ferrite magnetic
electrospun nanofibers (NFs) and GO and reconnoitred the
determination of rutin, a flavonoid. They applied CV and
DPV to investigate the behavior of rutin on the modified
MBCPE (Ansari and Arvand, 2020). Significantly, they
reported two linear ranges viz 0.001–0.1 nM and 1.0–100 nM
besides an extremely low LOD of 0.94 pM. Likewise, they ascribed
the enriched sensor characteristics to the spinel ferrite’s superior
electrical conductivity due to swinging of electrons between
different valence states of the metals and availing surface
redox-active sites for adsorption.

Catechol (CT) has varied health advantages and is regarded as
a principal fragment of tea catechins. However, CT is recognized
to have potential toxic and carcinogenic characteristics; thus, its
determination has been pursued. Suvina et al. (2020) devised an
original CT sensor based on lanthanum cobaltite anchored on
graphene nanosheets (LaCo/GNSs) and modified a GCE prior to
monophenol determination through CV and EIS. The sensor
configuration attained LOD of 1.0 nM, sensitivity of
5.68 μA μM−1 cm−2, and broad linear range of 0.009–132 µM.
Distinctly, the sensor components LaCo and GNSs impacted the
sensor analytical performance as LaCo has a nanostructured
framework with great biochemical compatibility, superior
electrical conductivity, large surface area, rapid electron
transfer, and short channels. Conversely, graphene is known
for its delocalized π electron system, excellent electron
communication, numerous structural defects, and high surface
area-to-volume ratio. These properties were synergistically
integrated attaining increased surface area, increased analyte
affinity, and signal amplification.

Nitrates and Sulfates
Nitrates are key ingredients of fertilizers which are a backbone of
intense farming practices. They are also available as a constituent
of the natural nitrogen cycle; however, transcend fertilizer
applications cause an imbalance. Consequently, excess nitrates
are leached into ecological systems including soil and water
sources. Distinctively, excessive exposure to nitrates may pose
potential risks to human health on account of potential toxicity.
Moreover, nitrates also affect ecological balance in water sources
leading to adverse aftermaths on aquatic biota due to
eutrophication. On the other hand, sulfates are also valuable
constituents of contemporary industrial and agricultural
practices. Despite that, they invariably contribute to
environmental pollution. Therefore, it is critical to enforce
environmental protection and safeguard human health,
through EC detection techniques which are more appealing
attributable to their simplicity, rapid response, high sensitivity,
target specificity, portability, and potential actual on-site analysis
(Mahmud et al., 2020; Jiang et al., 2020; Li et al., 2020).

Bagheri et al. developed a sensor based on Cu NPs, MWCNTs,
and electrochemically prepared rGO where the Cu NPs were
deposited on theMWCNTs-rGOmatrix to create a platform. The
Cu NP/MWCNTs/rGO nanohybrid was utilized in modifying a
GCE and then used for concurrent determination of nitrates and
nitrites via CV (Bagheri et al., 2017). The authors deduced that
the well-dispersed Cu metal on MWCNT-rGO composite
contributed to the improvement of the electrochemical activity
and the active redox sites. Ultimately, the sensor had high
sensitivity and differentiation, while a low LOD of 0.1 µM and
a wide linear range of 1–10−3 μMwere achieved. Additionally, the
sensor was evaluated proving to be a potential candidate for
nitrates/nitrites analysis in samples.

Correspondingly, Wang, Kim, and Cui prepared a nitrate
sensor utilizing polyelectrolytes, positively charged poly(diallyl
dimethyl ammonium chloride) (PDDA), and negatively charged
poly(sodium 4-styrene sulphonate) (PSS) with self-assembled Cu
NPs and graphene NSs (Wang et al., 2018). They modified an
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electrode surface and then applied the sensor for detection of
nitrates through CV attaining sensitivity of 0.2 μA μM−1 and
detection limit of 7.89 µM. Furthermore, it was considered
that the polyelectrolytes stimulated anchoring the graphene
onto the glass substrate and the resultant 3D network actuated
enhancement of reactive surface area and ultimately the sensor
performance. Again, the practicality of the proposed sensor was
examined demonstrating promising viability for the
determination of nitrates in real water samples.

Yu et al. (2016) designed a sensor based on the
electrooxidation of a complex heteropoly blue with
poly-L-lysine-functionalized graphene. The platform was
employed in modifying GCE prior to investigating the
determination of sulfate ions through SW. The determination
was undertaken indirectly in the presence of a surfactant
cetyltrimethylammonium bromide (CTAB) due to high
overpotential. A wide linear range and LOD of 0.8–1,000 and
0.26 µM, respectively, were reported. More so, there was
synergism among the blue complex, the surfactant, and
graphene which resulted in signal enhancement.

CHALLENGES AND OPPORTUNITIES

Although significant research on graphene synthesis has been
undertaken, inherent impediments still exist. Presently,
graphene-based nanomaterial preparation methods have
prospects for improvement in terms of reproducibility and
possible upscaling. The goal remains to synthesize
functionalizable graphene-based nanomaterials which would
attain preciseness and sensitivity expeditiously though
produced through cost-effective means. Furthermore, the
fabricated material needs to have prolonged stability and
durability under ambient and environmental conditions with
the potential to be used again. On the other hand, numerous
nanomaterial sensors have been designed, explored, and
evaluated at laboratory status but methods for upscaling of
nanomaterials to massive production at low cost with
satisfactory reproducibility continue to be challenging. Thus,
facile but cost-effective graphene-based material synthesis
approaches to enable bigger scale production are still an area
to pursue (Molina et al., 2016; Nag et al., 2018; Tiwari et al., 2018;
Wongkaew et al., 2019).

Utilizing graphene-based material in electrode modulation
continues to have drawbacks such as fouling and nonspecific
interaction, hence generating other signals. Besides that,
agglomeration results in the manifestation of defects
particularly when composites are formed integrating organic
polymers. Another distinct challenge is the applications in real
original matrices which need to be explored further to establish
the influence of sample matrix (Sturala et al., 2018; Krishnan
et al., 2019; Smith et al., 2019). Currently, the wholesome effects
of graphene-derivatized nanomaterials on ecological systems are
yet to be fully understood. Moreover, the extent of these
graphene-based nanomaterials’ impact on human health is
being studied. Besides, understanding the toxicity and
persistence, it is prudent to prevent deposition of nanoparticle

materials into aquatic media while toxicological impact and
scientific knowledge gaps of nanographene and its derivatives
on the environment are being reduced. Therefore, the question of
the fate and dilemma of bioavailability of nanomaterials to
aquatic flora and fauna in the environment needs to be
interrogated further (Sharma et al., 2020; Lai et al., 2018;
Huang et al., 2019a; Song et al., 2016). Apart from that, the
absence of international regulatory framework and proclaimed
definitions to guide the evaluation of nanomaterials toxicity on
the environment, aquatic biota, and humankind retards progress
on assessment. Consequently, there is a need for consensus in
establishing such guidelines (Huang et al., 2019b; Song et al.,
2016).

Windows of opportunities are present given that it is
imperative to continuously improve protocols for graphene
synthesis to achieve bulky graphene production. Besides,
controlled synthesis is desirable to produce crystals of specific
chemicophysical characteristics to prevent restacking of graphene
and provide outstanding templates for large-scale preparation.
Additionally, modification of graphene surface to mitigate against
fouling and nonspecific interactions, improve reusability of
materials, and enhance reproducibility and repeatability of
synthesis processes requires further studying. Moreover, the
assessment of selectivity, stability, and sensitivity of graphene-
based nanohybrids in unpleasant conditions and complicated
environmental matrices of multiplex analytes presents research
possibilities. Beyond this, more research to assure the global
population of the biocompatibility, zero environmental
persistence, and nontoxicity status of graphene-based NMs is
valuable. As such, the perpetual application of graphitic materials
would hinge on research to evaluate and repress toxicity, thus
guaranteeing the absence of any potential health risk to both
humans and the ecosystem (Wang et al., 2020; Peña-Bahamonde
et al., 2018; Lee et al., 2019a; Tiwari et al., 2018; Lawal 2018; Cinti
and Arduini 2017; Willner and Vikesland 2018).

Critical method refinement for NMs development from 2D to
3D graphenic structures and utilization of 3D printing technology
remains very attractive since electrical and electronic
characteristics are greatly enhanced with diverse possibilities in
applications. Furthermore, there is potential in miniaturization of
graphene sensors and fabrication of flexible graphene sensor
devices for point of analysis of pollutants. Besides, further
exploration of applications of GQDs motivated by their
superior properties should be rewarding for the scientific
community (Molina et al., 2016; Sturala et al., 2018; Su et al.,
2018; Zuo et al., 2019). Therefore, the functionalization of
graphene-derived NMs with diverse materials continues to be
appealing. Hence, further understanding of the interaction
between analytes and hybridized graphene derivatives would
be generated. Apart from that, the potential EC detection
mechanisms for DBPs-inducing NOM, emerging contaminants
of concern, and hazardous pesticides enlist exploration.
Moreover, various innovative research initiatives coupling
functionalized graphene-derived nanomaterials to different
technological dimensions to develop improved and cost-
effective devices for point of assessment of contaminants of
concern are worthwhile.
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CONCLUSION AND FUTURE RECKONING

This review evaluated recent electrochemical detection of HM
ions, pesticides, and emerging pollutants utilizing different
electrodes modified with graphene-derived nanocomposite
materials. Apart from that, the review summarized the
graphene-based materials methods of synthesis and their
functionalization. Likewise, the immediate challenges being
encountered in the synthesis and application of graphene
nanomaterials have been outlined, thus pointing to envisaged
opportunities for future research. Among others, massive scale
production of graphene nanomaterials remains a dilemma, while
the aspects of reproducibility as well as long-term stability of
fabricated sensor systems are daunting. Meanwhile, the totality of
the impact of nanosized materials including graphene and its
offshoots on human health and environment is yet to be fully
documented and international guidelines on ecotoxicity need to
be established. Virtually, graphene-derived materials including
rGO, 3D graphene, GQDs, and doped graphene remain appealing
for nanocomposite synthesis and electrode modification.
Enhanced sensor configurations culminate in the development

of portable sensor devices with the potential for point of analysis
and online monitoring of HM ions and organic and emerging
pollutants in protecting different media especially food, water,
and the environment.
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GLOSSARY

AApt aptamer

Ab antibody

AChE acetyl cholinesterase

ASV anodic stripping voltammetry

BN boron nitride

BPA bisphenol

BSA bovine serum albumin

CA calixarene

2-CBT benzothiazole-2-carboxaldehyde

CC catechol

Cl-DNB 1-chloro-2,4-dinitrobenzene

CMWCNTs carboxylated multiwalled carbon nanotubes

CNT carbon nanotube

CrGO chemically reduced graphene oxide

CoTFPP cobalt tetrakis(pentafluorophenyl) porphyrin

CP5 pillar 5

CS chitosan

CuO NFs copper (II) oxide nanoflowers

3DG 3-dimensional graphene

DNB 1,3-dinitrobenzene

DNT 2,4-dinitrotoulene

DPV differential pulse voltammetry

DZBA diazinon-binding aptamer

EC electrochemical;

FBThF 4,7-di (furan-2-yl) benzo [1,2,5] thiadiazol

Fc-TED ferrocene containing dendrimer

FcDr ferrocene dendrimer

FTO fluorine-doped tin oxide

g-C3N4 graphitic carbon nitride

GE garlic extract

GF graphene flower

GNP graphene nanoplatelets

GOAQ graphene oxide 8-aminoquinoline

GO graphene oxiderreduced graphene oxide

GO graphene oxiderreduced graphene oxide

GQDs graphene quantum dots

Gr graphene

HM heavy metals

HQ hydroquinone

IL ionic liquid

LEG laser-engraved graphene

metolcarb 3-methylphenyl-methylcarbamate

MeP methyl paraben

MNO 2-(4-mercaptobutoxy)-1-naphthaldehyde oxime

MOF metal-organic framework

MP methyl parathion

NB nitrobenzene

NC nanocomposite

NG nitrogen-doped graphene

NO-Ur nitroso-uracil

4-NP p-nitrophenol

PA6 polyamide

PANI polyaniline

PCPs personal care products

PDA polydopamine

PG polyglycine

PLL poly-l-lysine

6PPy polypyrrole

PrM praseodymium molybdate

PTh polythiophene

PVP polyvinylpyrrolidone

SWV square wave voltammetry

T thiazole derivative

TCS triclosan

TNB 1,3,5-trinitrobenzene

TNT trinitrotoluene

TNP trinitrophenol

TPP tetraphenylporphyrin

VS2QDs vanadium disulphide quantum dots

ZnO NSt zinc oxide nanostars
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