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Electrochemical Generation of Superoxide
in Room-Temperature Ionic Liquids
Inas M. AlNashef,* Matthew L. Leonard, Matthew C. Kittle,
Michael A. Matthews, and John. W. Weidner** , z

Department of Chemical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA

We have demonstrated that superoxide ion can be generated electrochemically in room-temperature ionic-liquid solvents. In the
absence of impurities, cyclic voltammetry showed that the super oxide ion is stable in these solvents. Similar superoxide ion
chemistry has previously been demonstrated in volatile and environmentally suspect aprotic solvents such as dimethyl formamide
and acetonitrile. However, ionic liquids are nonvolatile and should minimize the problems of secondary solvent waste. It is
proposed that the resultant superoxide ion can be used to perform low-temperature oxidation of wastes. Low-temperature oxidation
of waste solvents can provide a much needed alternative to high-temperature waste incinerators, whose use is greatly complicated
by regulatory requirements and locating suitable sites.
© 2001 The Electrochemical Society.@DOI: 10.1149/1.1406997# All rights reserved.
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Sawyer and co-workers1-3 pioneered work on superoxide ion
(O2

•2), particularly the direct electrochemical reduction of dissolved
oxygen gas in aprotic solvents to form O2

•2 according to the follow-
ing reaction

O2 1 e2 → O2
•2 @1#

A comprehensive review of superoxide ion chemistry is given by
Sawyeret al.4 Superoxide ion can be formed directly from solvation
of K2O in aprotic solvents, or electrochemically via direct cathodic
reduction of dioxygen~typically E 5 21.0 V vs. SCE!.5 O2

•2 is a
strong nucleophile and disproportionates in water to O2 and hydro-
peroxide

2 O2
•2 1 H2O → O2 1 HOO2 1 HO2 @2#

For this reason, generation and utilization of O2
•2 must be done in

aprotic solvents. Acetonitrile~MeCN!, dimethyl formamide~DMF!,
and dimethyl sulfoxide~DMSO! are commonly used. The superox-
ide ion can degrade polychlorinated aromatics and polychlorinated
biphenyls~PCBs! to bicarbonates and chlorides.2,3,6

Room-temperature ionic liquids~RTILs! are stable mixtures of
an organic cation/anion salt with an inorganic salt.7 They are directly
related to more familiar high-temperature molten salts that are used,
for example, as heat transfer media. Early work on RTILs in elec-
trochemistry focused on their use as an electrolyte for advanced
battery systems. Certain RTILs are electrically stable over a range of
2-4 V and higher, are thermally stable, and are resistant to oxidation.
Various electrochemical syntheses have been attempted, including
polymerization of arenes to form conducting polymers,8 polymeriza-
tion of benzene to poly~p-phenylenes!,9-11 oligomerization of
anthracene,12 and preparation of silane polymer films.13 More fun-
damental studies on redox reaction kinetics and behavior in RTILs
have been done for anthracene,14 methylanthracene,15 and other
aromatics.16-18 It is clear that some RTILs can be used to support
electrochemistry. Osteryounget al.19 showed that superoxide ion
could be generated by the reduction of dioxygen in imidizalium
chloride-aluminum chloride molten salt. However, the resulting su-
peroxide ion was unstable and thus cannot be used as a reagent in
subsequent reactions.

In this paper, we also show that superoxide ion can be generated
via Reaction 1 in RTIL solvents. In addition, we show, using cyclic
voltammetry~CV!, that in the absence of impurities, the superoxide
ion is stable in these solvents. As far as we are aware, this is the first

time the generation of stable superoxide ions in ionic liquids is
reported. Blanchard and Brennecke20 showed that halogen-carbon
compounds are soluble in RTILs. These findings offer promise that
electrochemical oxidation of chlorinated compounds in ionic liquid
media may be an environmentally acceptable route for destruction
of these pollutants.

Experimental

CV tests were performed on the aprotic solvent system tetraeth-
ylammonium perchlorate~TEAP, 0.1 M! in acetonitrile~MeCN! and
in the ionic liquids 1-n-butyl-3-methylimidazolium hexafluorophos-
phate, @bmim#@HFP#, and 1,2-dimethyl-3-n-butylimidazolium
hexafluorophosphate,@dmbim#@HFP#. TEAP ~GFS Chemicals! was
dried overnight in a vacuum oven at 40°C, HPLC grade MeCN
~Fisher Scientific! was used as provided, and@bmim#@HFP#,
@dmbim#@HFP# ~SACHEM!, both with a stated purity of 97%, were
dried overnight in a vacuum oven at 50°C. The electrochemistry was
performed using an EG&G 263A potentiostat/galvanostat controlled
by computer and data acquisition software. The electrode configu-
ration was a glassy carbon working~BAS, 3 mm diam! and a plati-
num mesh counter~Aldrich! using SCE and Ag/AgCl references
~both Fisher Scientific! for the experiments in MeCN and
@bmim#@HFP#, @dmbim#@HFP#, respectively. The MeCN sample was
sealed or handled under nitrogen sparge to prevent water contami-
nation. All @bmim#@HFP# and@dmbim#@HFP# experiments were per-
formed in a dry glove box under an argon atmosphere. The systems
were sparged prior to electrochemical experiments with ultrahigh
purity ~UHP! nitrogen or oxygen fitted through a Drierite gas puri-
fication column~W. A. Hammond!.

Prior to superoxide ion generation, a nitrogen sparge was used
while obtaining a background voltammogram. Oxygen was then
bubbled through the system for 30 min to allow sufficient solubili-
zation. Between consecutive CV runs, oxygen was bubbled briefly
to refresh the system with oxygen and to remove any concentration
gradients. Nitrogen or oxygen sparging was discontinued during the
CV data acquisition.

Results and Discussion

Figure 1 shows CVs in~a! 0.1 M TEAP/MeCN and ~b!
@bmim#@HFP#. Reduction currents are positive throughout this paper.
The CVs were run with nitrogen and oxygen sparging. In MeCN, the
presence of oxygen results in a faradic reduction and oxidation
peaks at21.00 and20.72 V vs. SCE, respectively. This CV is
consistent with that obtained by Sawyeret al.4 They concluded that
the reduction peak is due to the generation of superoxide ion accord-
ing to Reaction 1 and the oxidation peak due to the reverse of
Reaction 1. The negligible background current in the presence of
nitrogen indicates that the solvent is stable under these conditions.
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In @bmim#@HFP#, Fig. 1b, the presence of oxygen showed a re-
duction peak at approximately20.86 V and an oxidation peak at
20.54 V vs.Ag/AgCl. Sawyeret al.4 showed that the solvent and
electrode materials can effect the reversibility and peak separation of
the CVs. The reduction potential for O2 /O2

•2 couple shifts to more
negative values as the solvating properties of the solvent decrease.
The variation in the peak potential for O2 /O2

•2 in MeCN and@bmim-
#@HFP# is small enough that the peaks seen in the two solvents are
consistent with Reaction 1. The current density for the O2 /MeCN
system, however, is more than an order of magnitude larger than that
in the O2 /@bmim#@HFP# system. The background currents in the two
reaction medium are comparable, which indicates that the ionic liq-
uid is also electrochemically stable.

To further quantify the difference in magnitude of the currents in
Fig. 1, CVs were run in 0.1 M TEAP/MeCN and@bmim#@HFP# for
several scan rates, 9, 16, 25, 36, 49, 64, 81, and 100 mV/s. Four of
the scans in@bmim#@HFP# are shown in Fig. 2. In both solvents, the
peak currents and peak potentials are proportional to the square root
and the log of the sweep rate, respectively. This is consistent with
the electrochemistry of a kinetically irreversible soluble redox
couple.21 Plotting the peak potentialvs. the log of the sweep rate
gives a cathodic transfer coefficient for Reaction 1 ofac 5 0.31.
This is then used, along with the solubility of oxygen in MeCN of

8.1 mM 4 and the peak current data, to obtain an O2 diffusion coef-
ficient of DO2 5 2.1 3 1024 cm2/s. A similar procedure in
@bmim#@HFP# gives ac 5 0.42 and DO2 5 2.2 3 1026 cm2/s ~the
solubility of oxygen in @bmim#@HFP# at room temperature is 3.6
mM 22!. The two orders of magnitude difference in diffusion coeffi-
cient is consistent with the fact that the viscosity of MeCN (0.345
cP23! is an order of magnitude lower than that of@bmim#@HFP# (312
cP24!.

The cathode scan in Fig. 1b shows that O2
•2 can be generated in

RTILs, and the reverse scan shows that O2
•2 is stable. Figure 3 shows

CVs at 37°C in@bmim#@HFP# and@dmbim#@HFP#. An elevated tem-
perature was chosen for these CVs because
@dmbim#@HFP# has a melting point of 30°C. The nitrogen back-
ground shows comparable currents, indicating both RTILs are elec-
trochemically stable. For oxygen in@bmim#@HFP#, the elevated tem-
perature caused a slight shift in the reduction and oxidation peaks
toward more positive potentials, but the qualitative features of the
CV are not affected by temperature. That is, Reaction 1 produces a

Figure 1. CVs with nitrogen and oxygen sparging in~a! 0.1 M TEAP in
MeCN and~b! @bmim#@HFP#. All scans used a glassy carbon working elec-
trode at a scan rate of 100 mV/s.

Figure 2. CVs for various scan rates~mV/s! in @bmim#@HFP# with oxygen.
The working electrode was glassy carbon and the reference electrode was
Ag/AgCl.

Figure 3. CVs at 37°C in~1! @dmbim#@HFP# with oxygen, ~2! @dmbim-
#@HFP# with nitrogen,~3! @bmim#@HFP# with oxygen, and~4! @bmim#@HFP#
with nitrogen, all at 100 mV/s scan rate. The working electrode was glassy
carbon and the reference electrode was Ag/AgCl.
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symmetric CV. For@dmbim#@HFP# in the presence of oxygen, an
ill-defined reduction peak at approximately20.46 Vvs.Ag/AgCl is
observed. In addition, the scans showed no reverse~oxidation! peak.
This indicates that the superoxide ion generated in the forward scan
is not stable in this ionic liquid as received. Carteret al.19 reported
the absence of the reverse peak for the system 1-ethyl-3-methyl-
imidazolium chloride mixed with AlCl3 and attributed this to inad-
vertent introduction of protons while conducting their experiments.

To estimate the sensitivity of the oxidation peak resulting from
Reaction 1 to an additive, a small quantity of deionized water was
added to the 0.1 M TEAP/MeCN solution. The resulting CVs are
shown in Fig. 4. The background currents run with and without the
addition of water resulted in comparable currents. Therefore, the
water was not electrochemically active on glassy carbon in this po-
tential window. When O2 was bubbled through the solvent, a slight
increase in the current due to the production of the superoxide was
observed. A more dramatic result was seen in the reverse scan. In the
presence of 3.2% water, no oxidation current was observed even at a
positive potential of 0.5 V. Reaction 2 consumed the superoxide,
thus preventing the reverse of Reaction 1 to occur. The CVs in the
presence of water and O2 is qualitatively similar to that seen for O2
in @dmbim#@HFP# ~see curve 1, Fig. 3!. The only difference between
these two ionic liquids, Fig. 5, is the additional methyl group in
position 2 for@dmbim#@HFP#. Both ionic liquids should have com-
parable proton acidity; therefore, it is doubtful that the protons on
@dmbim#@HFP# are reacting with the superoxide ion. Rather, the in-
stability of the superoxide ion is believed to be due to the presence
of impurities in the RTIL, even though the stated impurities of the
two RTILs were 3%.

Conclusions

Preliminary experiments with the RTIL, 1-butyl-3-methyl-
imidazolium hexafluorophosphate@bmim#@HFP#, showed promise
that this solvent was capable of supporting the electrochemical gen-
eration of a stable superoxide ion. This finding may lead to new

routes for electrochemical oxidation of chlorinated compounds in
ionic liquid media. The presence of impurities can have a dramatic
effect on the stability of the superoxide ion in the ionic liquid.
Therefore, work is continuing on controlling the levels of impurities
in the RTILs.
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Figure 4. Effect of water on the stability of superoxide ion in MeCN~0.1 M
TEAP!. The working electrode was glassy carbon, the reference electrode
was Ag/AgCl, and the scan rate was 100 mV/s.~1! Nitrogen, ~2! nitrogen
with 3.2% by weight water,~3! oxygen without water, and~4! oxygen with
3.2% by weight water.

Figure 5. Structure of ~a! 1-n-butyl-3-methylimidazolium and~b! 1,2-
dimethyl-3-n-butylimmidazolium cations.
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