
Citation: Li, D.; Yang, D.; Li, L.;

Wang, L.; Wang, K. Electrochemical

Impedance Spectroscopy Based on

the State of Health Estimation for

Lithium-Ion Batteries. Energies 2022,

15, 6665. https://doi.org/10.3390/

en15186665

Received: 6 August 2022

Accepted: 7 September 2022

Published: 13 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Electrochemical Impedance Spectroscopy Based on the State of
Health Estimation for Lithium-Ion Batteries
Dezhi Li 1, Dongfang Yang 2, Liwei Li 3,*, Licheng Wang 4 and Kai Wang 1,*

1 School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University,
Qingdao 266000, China

2 Xi’an Traffic Engineering Institute, Xi’an 710300, China
3 School of Control Science and Engineering, Shandong University, Jinan 250061, China
4 School of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
* Correspondence: liliwei@sdu.edu.cn (L.L.); wangkai@qdu.edu.cn or wkwj888@163.com (K.W.);

Tel.: +86-158-6306-0145 (K.W.); Fax: +86-532-8595-1980 (K.W.)

Highlights:

• EIS was used to estimate the SOH of LIBs found to be fast and effective.
• It is more convenient to use CNN to extract features of EIS data automatically.
• The improved ECM method and IPSO-CNN-BiLSTM method are proposed in this paper.
• IPSO algorithm was first proposed to applied to the problem of optimizing the initial parameters

of the neural networks.

Abstract: The state of health (SOH) is critical to the efficient and reliable use of lithium-ion batteries
(LIBs). Recently, the SOH estimation method based on electrochemical impedance spectroscopy
(EIS) has been proven effective. In response to different practical applications, two models for SOH
estimation are proposed in this paper. Aiming at based on the equivalent circuit model (ECM)
method, a variety of ECMs are proposed. Used EIS to predict the ECM, the results show that the
improved method ensures the correctness of the ECM and improves the estimation results of SOH.
Aiming at a data-driven algorithm, proposes a convolution neural network (CNN) to process EIS
data which can not only extract the key points but also simplifies the complexity of manual feature
extraction. The bidirectional long short-term memory (BiLSTM) model was used for serial regression
prediction. Moreover, the improved Particle Swarm Optimization (IPSO) algorithm is proposed
to optimize the model. Comparing the improved model (IPSO-CNN-BiLSTM) with the traditional
PSO-CNN-BiLSTM, CNN-BiLSTM and LSTM models, the prediction results are improved by 13.6%,
93.75% and 94.8%, respectively. Besides that, the two proposed methods are 27% and 35% better than
the existing gaussion process regression (GPR) model, which indicates that the proposed improved
methods are more flexible for SOH estimation with higher precision.

Keywords: electrochemical impedance spectroscopy; lithium-ion battery; estimation of SOH;
equivalent circuit model; data-driven method

1. Introduction

With the development and consummation of electric vehicles, information systems
and energy storage systems, LIBs are being used more and more widely because of their
advantages (high energy density and low cost) [1,2]; moreover, the scale of LIBs is also
increasing with the continuous expanding of application scenarios [3]. Estimating the SOH
of LIBs during the aging process, can improve safety and prolong service life [4,5].

Due to the interaction of various degradation mechanisms in the aging process of LIBs,
it is a significant and challenging issue to detect the SOH of LIBs rapidly and effectively.
SOH is an indicator used to compare the current performance of a battery with a brand
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new battery [2,6]. The deterioration of battery aging is usually accompanied by capacity
attenuation, energy density decrease, voltage difference increase when charging and dis-
charging and so on [7]. The standard definition of the SOH has not been finally unified,
capacity is typically defined in the literature:

SOH =
Cnow−Ceol
Cnew−Ceol

× 100% (1)

where Cnow is the current capacity of a used battery, Ceol is end of life capacity (usually 80%
of Cnew) of the representative battery, and Cnew is the capacity of a brand-new battery.

At present, the estimation method mainly based on voltage, current and temperature
obtained by battery management system (BMS) [8]. With the constant cycle of battery
charging and discharging, irreversible changes will occur inside the cell (lithium dendrite
and SEI layer growth, electrolyte reduction, etc.) [9]; this will lead to a decrease in the
available battery capacity (SOH) [10]. It will also cause an increase in voltage difference and
temperature in the process of charging and discharging. Monitoring the voltage, current,
and temperature of LIBs to estimate SOH is based on this principle [11,12]. However, the
efficiency of this method is greatly reduced due to the indirect way. A kind of effective
method is the use of ultrasonic nondestructive testing technology to obtain the components
and chemical states (electrodes, residual electrolytes) of LIBs directly (Table 1). Although
this method can accurately show the degradation mechanism inside the LIB, cannot auto-
matically identify the SOH. Relate the SOH with the internal state of LIBs (lithium dendrite
growth degree, SEI layer thickness) detected by ultrasonic nondestructive testing will be
the direction in the future [13,14].

Table 1. Non-destructive testing technology (NDT technology).

Measurement Technique Specific Method

Based on X-ray techniques

(1) X-ray Diffraction (XRD)
(2) Energy Dispersive Spectroscopy (EDS)
(3) X-ray Absorption Spectroscopy (XAS)
(4) X-ray Photoelectron Technique (XPT)

Electron and Scanning probe microscopy

(1) Scanning Electron Microscopy (SEM)
(2) Transmission Electron Microscopy (TEM)
(3) Electron Probe Microscopic Analysis (EPMA)
(4) Focused Ion Beam (FIB)

Spectroscopic techniques
(1) Fourier Transform InfraRed spectrometry (FTIR)
(2) Raman spectroscopy
(3) Prompt Gamma Activation Analysis (PGAA)

Recently, EIS, has been developed to estimate the SOH of LIBs; moreover, it has been
proved that the prediction accuracy is higher than that of the traditional voltage, current
and temperature data [15]. EIS is a new diagnostic technique and has the advantage of
non-destructive. During the tests, wide frequency is applied to LIB to reflect the cell’s
EIS information (imaginable part, real part, and phase Angle) at different temperatures
and SOC. The changes of cathode, anode, electrolyte and solid electrolyte layer (SEI) can
be adequately reflected in the aging process of LIBs. The EIS technique compared with
traditional BMS, and nondestructive testing technology has the advantages of fast detection
speed and rich reflection information [16,17]. EIS is usually measured by voltage excitation
or current excitation. The voltage excitation type is measured by applying a sinusoidal
voltage of a certain frequency range to the cell and analyze the output current and phase.
However, this method requires constant voltage during the measurement process, which is
not conducive to online measurement. Therefore, measuring by current excitation be the
mode usually adopt.
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2. Gap Analysis and Original Contributions

There are two main methods for estimating SOH by EIS[18], which are based on ECM
method and deep learning method (Table 2). The principle of based on the ECM method is
to fit the EIS measured at different temperatures and SOC states with the ECM [19–21]. It is
possible to obtain the parameters of the ECM, necessary to reconstruct the discharge curves
of the LIBs, to study their cycling performance and to understand if they have anomalous
ageing during operation. Besides, some parameters vary with the ageing of the LIBs and
can be used to determine the SOH. Xiong Rui et al. established the relationship with SOH
by fitting SEI resistors in the ECM [22]. Matteo Galeotti et al. used the ohmic resistance to
estimate the SOH [23]. However, the above two methods do not consider the influence of
temperature and SOC in the process of testing. A model considers synchronously the two
factors was proposed by Xueyuan Wang et al. [24]:

Rct =
α1Texp

( α2
T
)√

SOC2 + β1SOC + β2
(2)

α1, α2, β1 and β2 are parameters that need to be determined, and T represents the
temperature of LIBs. The model can predict Rct at any temperature and SOC, making the
EIS technology more flexible and accurate to characterize the aging status of LIBs. On
this basis, the mapping between Rct and SOH was set up by Qunming Zhang et al. [25].
The precision of ECM influence the estimation accuracy of SOH directly. However, the
proposed method only considers one ECM in circuit fitting, which is prone to the problem
of poor fitting accuracy due to an inaccurate model. Aiming at such problem, a new method
of predicting ECMs by EIS is proposed in this article. To find the ECM with the highest
fitting accuracy, which can fundamentally improve the accuracy and robustness of the
prediction model [26,27].

Since the data-driven methods of process monitoring rely only on the historic pro-
cess data and do not assume any form of model information, they have been paid more
attention [28–30]. The SOH prediction of LIBs using machine learning methods usually
requires a large amount of historical data for preprocessing [31–33]. It takes the SOH as
the output of the model, the features with high correlation were extracted as the input
of the machine learning model [34,35]. The modeling results show high accuracy based
on the model adaptive iteration of the data. Yunwei Zhang et al. using GPR method,
real and imaginary parts of impedance with frequency range from 0.02–20,000 Hz were
used as model input. The SOH and remaining useful life (RUL) of LIBs were accurately
predicted [36,37]. On this basis, different features were extracted by Chun Chang et al. and
using Elman neural network and cuckoo search (CS-Elman) model to estimate the SOH [3].
Besides, neural network models such as deep Neural network(DNN) and recurrent Neural
networks (RNNs) have also been proved to be effective in estimating SOH [38]. However,
all the above methods require manual data processing for the EIS in advance, which is
often practically unfeasible in many applications. T. K. Pradyumna et al. proposed a CNN
model, the eigenvalues with high correlation between SOH and EIS are automatically
extracted as the input; this reduces the chance of leaving out important features from the
data, which can happen in the case of manual feature extraction; moreover, also can reduce
the calculation complexity greatly. However, the performance is slow with simple CNN
when dealing with regression problems. Combining CNN with other regression prediction
models will be the next study emphasis.

The method based on ECM and data-driven method were combined is a new research
direction, the parameters of the fitted circuit are regarded as input parameters of the neural
network. Yige Li et al. proposed a method to predict the parameters of ECM using the
Artificial Neural Network (ANN) model [39]. The ohmic resistance, SEI resistor and charge-
transfer resistance as the inputs of the BP neural network to estimate SOH [40]. Marvin
Messing et al. using the combining method to estimate SOH, the results indicated that has
worse accuracy than the traditional single method. The reason is that the combination of
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the two methods not only increases the amount of calculation but also increases the error.
Improving the accuracy and robustness of the estimation model will be beneficial to the
present research [41].

Table 2. Typical studies on predicting SOH based on EIS.

Researchers Calculation Basis Description

Xiong Rui et al. [42] Based on model method Establish the relationship between Rsei and the SOH

Matteo Galeotti et al. [23] Based on model method Establish the relationship between ohmic resistance and
the SOH

Xueyuan Wang et al. [24] Based on model method Establish the relationship between Rct, T and SOC
Qunming Zhang et al. [25] Based on model method Establish the relationship between Rct and SOH
Yunwei Zhang et al. [36] Based on data-driven method Built the EIS and GPR model
Chun Chang et al. [15] Based on data-driven method Built the EIS and CS-Elman model

Marvin Messing et al. [38] Based on data-driven method Built the EIS and DNN model
Akram Eddahech et al. [43] Based on data-driven method Built the EIS and RNNs model
T. K. Pradyumna et al. [44] Based on data-driven method Built the EIS and CNN model

Yige Li et al. [39] Based on model and data-driven method Used ANN to predict the equivalent circuit parameters

Chao Lyu et al. [40] Based on model and data-driven method Input Rct, Rsei to the BP
neural network

Aiming at the shortages of the methods based on ECM and the data-driven methods,
two improvement methods are proposed. Overall, the novel contributions of this paper are
as follows:

(1) A method based on multi-ECMs is presented with the consideration of ambient
temperature effect. By using the least square method, EIS data are used to predict
the ECM. The changing trends and aging mechanism of each circuit parameter with
SOH decay were analyzed. Both mechanism analysis and experimental study set the
foundation for EIS-based SOH estimation. The parameter with the highest correlation
were extracted. As far as we know, none of the existing work has quantitatively
studied the EIS-based SOH estimation by multiple equivalent circuit models.

(2) The EIS data used in some current studies are directly derived from electrochemical
workstations. However, operational errors, effects of the conductor or other unex-
pected accident, may result in damage of EIS data. Kramers-Kronig (K-K) relations
were used to verify the reliability of the EIS data.

(3) A new method (CNN) is put forward, which can implement auto-extracting of EIS
data. Greatly reduce the complexity of manual data processing. It makes feature
extraction more convenient and reduces the chance of leaving out important features
from the data.

(4) The EIS is collected between charging and discharging cycles, which are time series,
the recurrent neural network (RNN) is suitable to process time series when making
use of internal memory. Compared with Simple RNN, BiLSTM has the advantages of
adequately prevent gradients exploding and gradient vanishing. By coupling CNN
with BiLSTM neural network, a regression model is established, which can enhance
the forecast precision effectively and maintain robustness.

(5) Owing to the large number of parameters in the CNN-BiLSTM model which requires
a lot of tweaking for the ideal precision. PSO algorithm is adopted to optimize
parameters of CNN-BiLSTM. The constriction factor PSO algorithm is easily trapped
in the local optimum and appeared premature convergence. The number of hidden
layer nodes, learning rate of neural network are optimized using an improved particle
swarm optimization (IPSO) algorithm. Learning quality and training speed of the
neural network are improved. The validity and accuracy of modeling are tested
by simulations, and the simulation results of the comparison between other neural
networks and the model’s identification are given.

(6) Different methods for estimating SOH are compared and improvement models is
presented. It is a major task to be settled.
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The remainder of this paper is organized as follows. Section 3 introduces cell aging
and EIS data validation. Section 4 multi-models the LIBs and identifies the ECM parame-
ters. Present the SOH estimation method based on EIS and verifications and discussions.
Section 5 presents the IPSO-CNN-BiLSTM model and verifications with different tem-
perature and neural network models. Different methods’ estimation results of SOH are
discussed in Section 6. Section 7 is the conclusion and outlook of this paper.

3. Battery Aging and EIS Data Validation
3.1. Battery Aging

Twelve Eunicell LR2032 LIBs with a capacity of 45 mAh were subjected to aging experi-
ments until the cell’s capacity faded to its designed capacity (80% of the initial capacity) by
Yunwei Zhang et al. [36]. Considering the different operating temperatures of LIBs, the aging
of each LIB is tested in different ambient temperatures (25 ◦C, 35 ◦C, 45 ◦C). Eight of the LIBs
were placed at 25 ◦C and numbered 25C01–25C08, respectively. There two LIBs were placed
at 35 ◦C, numbered 35C01–35C02, respectively; moreover, the other LIBs were placed at 45 ◦C,
numbered 45C01–45C02, respectively. Each cycle consists of a 1C–rate (45 mA) CC–CV (con-
stant current–constant voltage) charge up to 4.2 V and a 2C–rate (90 mA) CC (constant current)
discharge down to 3 V. EIS is measured at nine different stages of charging/discharging during
every even-numbered cycle in the frequency range of 0.02 Hz–20 kHz with an excitation
current of 5 mA. In order to determine the rated capacity of each LIB, 30 charge–discharge
cycles had been studied at 25 ◦C before it was placed at a different ambient temperature.
Therefore, we erase the data of the first 30 times when processing EIS data. The capacity decay
curve, as well as EIS test process of LIBs as Figure 1.

Energies 2022, 15, x FOR PEER REVIEW 6 of 27 
 

 
(a) 

0 50 100 150 200 250 300
20

25

30

35

40

45

Ca
pa

ci
ty

(m
A

.h
)

cycles

 25℃
 35℃
 45℃

 
0.0 0.5 1.0 1.5 2.0 2.5

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Im
(Ω

)

Re(Ω)

 Cycle 1 time
 Cycle 15 times
 Cycle 40 times
 Cycle 60 times
 Cycle 80 times

 
(b) (c) 

Figure 1. (a) Aging and EIS impedance test diagram. (b) The capacity attenuation curves of LIBs at 
different temperatures. (c) Impedance curve as the number of battery cycles increases. 

3.2. EIS Data Validation 
Over 20,000 EIS spectra of commercial LIBs are collected at different SOH, state of 

charge (SOC) and temperatures—the largest dataset to our knowledge of its kind. 
However, in the process of EIS testing, the applied AC current, range of frequency sweep, 
points per decade represented, length of the pause time after a change in the SOC and 
length of the pause time after a change in the ambient temperature et al. all have affect to 
obtain useful results from EIS tests [45]. In order to estimate SOH, requires the measured 
spectrum to be a representation of a linear, time-invariant and causal system. A valid EIS 
data should conform to the K-K relations [46,47]. The relevant equations: 

𝑍𝑍𝑅𝑅𝑒𝑒(𝜔𝜔) =
2
𝜋𝜋
�

𝜔𝜔′𝑍𝑍𝐼𝐼𝐼𝐼(𝜔𝜔′)
𝜔𝜔2 − 𝜔𝜔′2

∞

0
d𝜔𝜔′ (3) 

𝑍𝑍𝐼𝐼𝐼𝐼(𝜔𝜔) =
−2
𝜋𝜋
�

𝜔𝜔′𝑍𝑍𝑅𝑅𝑒𝑒(𝜔𝜔′)
𝜔𝜔2 − 𝜔𝜔′2

∞

0
d𝜔𝜔′ (4) 

By applying Equations (4) or (5) to either the real part or imaginary part of a 
measured spectrum, the remaining part can be computed. By comparing the latter to the 
according measured part, the spectrum’s accordance to the K-K relations can be judged. 
However, the arising problem of missing parts of the impedance when approaching 
frequencies of zero and infinity can’t be avoided. A Lin-KK approach that overcame this 
was introduced by M. Schönleber et al.: Instead of directly evaluating Equations (4) and 

Tab

separator

Positive

Negative

pouch

electrolyte

LIBs

Set temperature: 25℃
30 aging cycles

Set temperature: 
25℃, 35℃, 45℃

High-low temperature chamber

Charge and discharge test system

CC-CV fully charge
Voltage to 4.2V

CC discharge
Voltage to 3V

EIS data collected at nine 
different states:

I:Before charging
II: Start charging
III: After 20 minutes charging
IV: After charging and before resting
V: After 15 minutes rest
VI: Start discharging
VII: After 10 minutes discharging
VIII: After discharging and before
resting
IX: After 15 minutes rest.

EIS test
Frequency range: 

0.02Hz-20kHz 

Electrochemical 
workstation

Capacity fading 
≥ 20%

End

Yes

No

Figure 1. (a) Aging and EIS impedance test diagram. (b) The capacity attenuation curves of LIBs at
different temperatures. (c) Impedance curve as the number of battery cycles increases.



Energies 2022, 15, 6665 6 of 26

3.2. EIS Data Validation

Over 20,000 EIS spectra of commercial LIBs are collected at different SOH, state of
charge (SOC) and temperatures—the largest dataset to our knowledge of its kind. However,
in the process of EIS testing, the applied AC current, range of frequency sweep, points per
decade represented, length of the pause time after a change in the SOC and length of the
pause time after a change in the ambient temperature et al. all have affect to obtain useful
results from EIS tests [45]. In order to estimate SOH, requires the measured spectrum to
be a representation of a linear, time-invariant and causal system. A valid EIS data should
conform to the K-K relations [46,47]. The relevant equations:

ZRe(ω) =
2
π

∫ ∞

0

ω′ZIm(ω
′)

ω2 −ω′2
dω′ (3)

ZIm(ω) =
−2
π

∫ ∞

0

ω′ZRe(ω
′)

ω2 −ω′2
dω′ (4)

By applying Equations (4) or (5) to either the real part or imaginary part of a measured
spectrum, the remaining part can be computed. By comparing the latter to the according
measured part, the spectrum’s accordance to the K-K relations can be judged. However,
the arising problem of missing parts of the impedance when approaching frequencies of
zero and infinity can’t be avoided. A Lin-KK approach that overcame this was introduced
by M. Schönleber et al.: Instead of directly evaluating Equations (4) and (5), the accordance
of an impedance spectrum with the K-K relations is judged by its reproducibility by an
appropriate K-K compliant ECM. A series connection RC-elements general model is chosen,
where the resistors as well as the time-constants of the ECM are fitted to a measured EIS.
The error value between the fitted impedance and the actual data are used to determine
whether the data conform to the K-K relationship. The ECM to be fitted to measured
impedance spectra as shown in Figure 2.
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The ECM impedance expression is given by:

Ẑ(ω) = R̂ohm +
M

∑
k=1

R̂k
1 + jωτk

(5)

where, the distribution of the time constants is responsible to the angular frequency of the
impedance. The smallest time-constant (τmin) is given by:

τmin = τ1 =
1

ωmax
(6)
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So, the largest time-constant (τmax) is given by:

τmax = τM =
1

ωmin
(7)

The time-constants τk are distributed logarithmically equal over the inverse range of
angular frequencies of the EIS to be tested. All other time-constants are therefore given by:

τk = 10[log (τmin)+
k−1
M−1 ∗log ( τmax

τmin
)]

(k = 2, . . . . . . , M− 1) (8)

In order to judge the reproducibility of a measured EIS data by the fitted ECM, a
measure describing an according deviation, the residual, is described as:

∆Re(ω) =
ZRe(ω)− ẐRe(ω)

|Z(ω)| (9)

or

∆Im(ω) =
ZIm(ω)− ẐIm(ω)

|Z(ω)| (10)

The number of RC-elements have higher requirements during the Lin-KK test. If the
selected numbers are less, that the order of the ECM is too small to fit the measured EIS, the
residuals will large, even though the latter might in fact be fully compliant with the K-K
relations. On the other hand, if the selected number of RC-elements is too large, not only
the useful information contained in the EIS is fitted, but the measurement noise as well.
Hence, the according residuals will also indicate invalidity, even though the tested EIS is
fully valid. It’s worth noting that between the noise part and the information part of an
EIS is the fact that neither the real part nor the imaginary part of an ideal spectrum shows
oscillatory behavior when plotted over the frequency. Therefore, all oscillations contained
in a measured EIS data are caused by noise or measurement errors. On the other hand, a
fitted spectrum that oscillates cannot be physically valid and must have been tuned to noise
or other errors, which is again precisely the definition of overfitting; moreover, oscillations
can only occur if some of the ohmic resistance have a negative sign. In order to prevent the
fit from oscillating the influence of negatively signed ohmic elements has to be limited. To
quantify this index, a measure relating the mass of negatively signed elements to the mass
of the positively signed elements is proposed by:

µ = 1−
∑Rk<0|Rk|
∑Rk≥0|Rk|

(11)

where the value of µ is between zero and 1, as soon as over-fitting starts, the mass of
negative elements increases and µ monotonously goes to zero. By judging the magnitude
of µ in the fitting process to confirm the number of RC-elements (Figure 3).

The value of c is a design parameter, however from the previous study’s experience
c = 0.85 has proven to be an excellent choice.



Energies 2022, 15, 6665 8 of 26

Energies 2022, 15, x FOR PEER REVIEW 8 of 27 
 

shows oscillatory behavior when plotted over the frequency. Therefore, all oscillations 
contained in a measured EIS data are caused by noise or measurement errors. On the other 
hand, a fitted spectrum that oscillates cannot be physically valid and must have been 
tuned to noise or other errors, which is again precisely the definition of overfitting; 
moreover, oscillations can only occur if some of the ohmic resistance have a negative sign. 
In order to prevent the fit from oscillating the influence of negatively signed ohmic 
elements has to be limited. To quantify this index, a measure relating the mass of 
negatively signed elements to the mass of the positively signed elements is proposed by: 

μ = 1 −
∑ |Rk|Rk<0

∑ |Rk|Rk≥0
 (11) 

where the value of μ is between zero and 1, as soon as over-fitting starts, the mass of 
negative elements increases and μ monotonously goes to zero. By judging the magnitude 
of μ in the fitting process to confirm the number of RC-elements (Figure 3). 

 
Figure 3. Lin—KK test flow chart. 

The value of c is a design parameter, however from the previous study’s experience 
c = 0.85 has proven to be an excellent choice. 

Using the Lin-KK method, the EIS data of six LIBs (25C01, 25C02, 35C01, 35C02, 
45C01, 45C02) at different temperatures and SOC until the end-of-life cycle were tested. 
The fitting residual results are shown in Figure 4. 

Start

EIS data

The number of RC-elements
M=1

Lin-KK Test

Compute μ

μ < c

Test result

Yes

M=M+1

No

Figure 3. Lin—KK test flow chart.

Using the Lin-KK method, the EIS data of six LIBs (25C01, 25C02, 35C01, 35C02, 45C01,
45C02) at different temperatures and SOC until the end-of-life cycle were tested. The fitting
residual results are shown in Figure 4.

As can be seen in Figure 4, the residual is larger at low frequencies at the state of 0%
SOC and 50% SOC. However, the residuals are much smaller at the state of 100% SOC. In
addition, the average fitting residuals of each LIBs are shown in Table 3. As can be seen
from the table, the results of the mean fitting error are consistent with the fitting error of the
impedance data at a single cycle. The fitting residuals will be different under different SOC
states. The closer the SOC is to 100%, the lower of fitting residuals data, which indicates
that the EIS more conform to the K–K relationships. Although at different temperatures, the
residuals in the same SOC state less variations within the acceptable range; this indicates
that whether EIS conforms to the K–K relationship is only related to the SOC of LIB itself
and has nothing to do with the ambient temperature. However, even for different LIBs at
the same temperature and SOC, the mean residual will be different. Such as 25C01 and
25C02 average real part (|∆Re|) residuals are 0.00014, 8.25 × 10−5 respectively. It is chiefly
because the impedance of different LIB will also change due to different internal changes
and external interference during the charging and discharging process. However, beyond
that, no matter |∆Im| or |∆Re|, which are just not the same deriving. The former uses the
known real part data to calculate the imaginary part, while the latter is the reverse. Both
can be used to determine whether the EIS data conforms to the K–K relationship.
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Figure 4. (a,b) Residual of EIS at different SOC, 25 °C under Lin−KK test. (c,d) Residual of EIS at 
different SOC, 35 °C under Lin−KK test. (e,f) Residual of EIS at different SOC, 45 °C under Lin−KK 
test. 
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Figure 4. (a,b) Residual of EIS at different SOC, 25 ◦C under Lin–KK test. (c,d) Residual of EIS at
different SOC, 35 ◦C under Lin–KK test. (e,f) Residual of EIS at different SOC, 45 ◦C under Lin–KK test.

Above all, it indicates that the EIS data at 100% SOC are more consistent with the K−K
relationship. Therefore, in order to avoid the effect on the SOH prediction accuracy of LIBs
due to the error of EIS data itself. EIS data under 100% SOC were adopted as training features.
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Table 3. Lin–KK test mean residual (mean values of fitted residuals for EIS data at all cycles of LIBs).

LIBs SOC |∆Re| |∆Im|

25C01
0% 0.004232971 0.016325792

50% 0.003294959 0.006302259
100% 0.000140785 0.001371033

25C02
0% 0.001918329 0.010518637

50% 0.001635152 0.0037642
100% 8.25 × 10−5 0.000912258

35C01
0% 0.006345962 0.016388624

50% 0.007214271 0.011049813
100% 0.000186722 0.001439418

35C02
0% 0.004387341 0.015948539

50% 0.003831015 0.004872054
100% 0.000137274 0.001328463

45C01
0% 0.002577748 0.009078397

50% 0.0026469 0.005081625
100% 6.30 × 10−6 0.000107301

45C02
0% 0.005054565 0.01810478

50% 0.006414285 0.014348096
100% 3.73 × 10−5 0.000319163

4. Based on Improved Equivalent Circuit Model Method
4.1. ECM of LIBs

The physical effects that occur in any electrochemical system can be associated to
the electrical parameters of an ECM, useful to quantify the phenomena that occur inside
the LIBs during charging, discharging and ageing processes. The internal process of LIBs
during the cycle aging can be quantified by the electrical parameters. The relationship
between general ECM and EIS is established and in Figure 5a.

The ultrahigh frequency segment, a vertical line below the real axis, is the inductive
effects caused by the movement of electrons in the wire and the winding of internal
electrodes, which is represented by an inductor Ls. The intersection of the vertical line and
the X-axis is the ohmic resistance formed by the movement of electrons in the solid phase
metal and ions in the electrolyte phase, which is represented by Rohm. The high frequency
segment is the first arc produced by the diffusion of lithium ions through the SEI film. A
constant phase element (instead of ideal capacitors), CPE1, is introduced to describe the
film capacitance considering the dispersion effect and RSEI represents the SEI resistance.
Where, the impedance expression of CPE1//RSEI is:

ZCPE1//RSEI =
RSEI

1 + RSEICPE1(jω)α1
(12)

where α1 at the denominator of the expressions denotes an angle that rotates in the complex
plane relative to a pure capacity behavior. If α1 = 1, the impedance is a pure capacitor, if
α1 = 0, the result is a pure resistance. The intermediate frequency segment is the second
arc that describes the charge transfer process in electrode reaction. Another constant phase
element CPE2 is used to describe the double-layer capacitance. The low frequency segment
is the diffusion tail.
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There is no definite for ECM of LIBs. Using EIS to estimate the ECM can be a good
solution to this problem. With the aging of the LIBs, its internal structure may change, the
ECM will also change accordingly. Five different ECMs were proposed to adapt to the
variations, which have been verified to have good accuracy. It analyzes different models for
fitting the EIS data by comparing their precision. In order to ensure the veracity of ECM,
adopted ECM with the highest fitting accuracy (Figure 5b).

(1) ECM (a) is modelled by exploiting two-time constants (parallel CPE//R) for the
intermediate frequency region. The Warburg element is placed on the resistive branch
of the second CPE//R element to describe the diffusive behavior of the LIBs and
also fit the low frequency tail of the impedance curve. A warburg element is used
to reproduce the diffusion phenomena of the ions in the electrolyte during the dis-
charging and charging processes. The impedance expression of the element can be
expressed as:

ZW =
1

CPEW(jω)αw (13)

(2) Two-time constants (parallel CPE//R) are used by ECM (b) to separate the intermedi-
ate frequency region and the Warburg element is placed in series with respect to the
other circuital elements. The two-time constants respectively to describe SEI layer for
anode-cell and the cathode electrolyte interface (CEI) layer for the cathode-cell.

(3) ECM (c) modelled by exploiting RC elements for the intermediate frequency region,
which is the only difference with ECM (a). The cathode ECM instead includes a
modified RC element with a Warburg element in the capacitive branch; this choice
allowed to a better description of the cathode EIS spectrum.

(4) ECM (d) is a modified Randles model: an RC element is used to model the surface
layer process; a second RC element is used to model charge transfer and double layer
effects and a Warburg element in parallel to a capacitance is used to model the low
frequency tail.

(5) The ECM (e) presents an identical configuration to ECM (b), using C elements instead
of Warburg to describe the diffusive behavior.

4.2. ECM Fitting

The fitting of ECM is performed by non-linear least squares regression of the circuit
model to impedance data via curve fit from the scipy.optimize package. Real and imaginary
components are fit simultaneously with uniform weighting, i.e., the objective function to
minimize is:

χ2 =
N

∑
n=0

[
Z′data(ωn)− Z′model(ωn)

]2
+
[
Z′′data(ωn)− Z′′model(ωn)

]2 (14)

where N is the number of frequencies and Z′ and Z′′ are the real and imaginary components
of the impedance, respectively.

By default, the high dimensionality of typical ECM. Basinhopping optimization algo-
rithms used to attempt to search the entire parameter landscape to minimize the error. The
fitting results of different ECM are as follows:

Where, the expression of RMSE is:

RMSE =

√√√√∑N
i=1

(
Zfit(i) − Zdata(i)

)2

N
(15)

As seen in Table 4, the fitting RMSE of ECM (a) and ECM (b) is relatively low than the
other three models. However, the fitting error of ECM(b) fluctuates greatly. In this paper,
the ECM (a) is used for SOH estimation. By taking 25C01 as an example, the parameters
variation trend of ECM (a) components is shown in Figure 6:
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Table 4. The root mean square error (RMSE) of LIBs under different ECMs.

LIBs ECM (a) ECM (b) ECM (c) ECM (d) ECM (e)

25C01 0.020008042 0.05372 0.02826916 0.028172482 0.023061876
25C02 0.026388823 0.012999786 0.034571499 0.035265693 0.026932343
35C01 0.016677489 0.032265334 0.02020132 0.022164251 0.023895306
35C02 0.016722439 0.014605039 0.018846951 0.018415463 0.024565196
45C01 0.015605166 0.014130575 0.016370651 0.016421256 0.021315892
45C02 0.012373409 0.013167452 0.013819581 0.034023868 0.022499835
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Figure 6. Curves of different parameters as the number of cycles increases.

The degradation of lithium-ion batteries is caused by many physical and chemical
mechanisms, including different degradation mechanisms. There are three common degra-
dation modes: the loss of lithium inventory, anodic active material loss and the loss of
cathodic active material [48]. Due to the parasitic reactions, decomposition reactions (SEI
layer decomposition, electrolyte decomposition), SEI layer growth, resulting in lithium-ion
consumption [49]. Insufficient to support the cycle between cathode and anode, resulting
in capacity fade. Structural disordering, particle cracking, graphite exfoliation, loss of
electrical contact or blocking of the active sites, which can lead to the decline of active
anode materials; this will also cause the battery capacity fade. Similarly, these damages
will also occur at the cathode and cause the loss of cathode active material. At present, a
large number of studies have described the most sensitive phenomenon of capacity loss in
LIBs as the growth of SEI resistance and ohmic resistance. The growth of SEI resistance
is mainly characterized by the impedance rise in the intermediate frequency region [50].
The growth of ohmic resistance is due to the decomposition of electrolyte during battery
aging [51,52]. In addition, the cathode charge transfer velocity decreases during the aging
process [53]. However, the change in the latter is less pronounced than in the first two;
these conclusions are consistent with our experimental results.
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With the aging of LIBs, the trend of R0 (ohmic resistance) and R1(SEI resistor) become
big gradually. Because the capacity fade of LIB is principally due to the growth of an SEI
layer on anode side of the battery during cycling, that results in an increase in the Rohm and
a loss of capacity at the same time. Considering that much noise is generated when the R1
increasing, R0 is finally used as a feature index to estimate SOH.

4.3. SOH Estimation Model

The relationship between SOH and R0 follows:

SOH(R0) = a1 × exp

(
−
(

R0 − b1

c1

)2
)

(16)

where a1, b1, and c1 are constant parameters.
The above model is used to fit the LIBs data at 25 ◦C, 35 ◦C, 45 ◦C and the results

are listed in Table 5. Accordingly, the SOH model of LIB with different temperatures is
reached as:

SOH(R0, T) =



0.9542× exp
(
−
(

R0−0.3655
0.02343

)2
)

, T = 25 ◦C

0.8651× exp
(
−
(

R0−0.289
0.02606

)2
)

, T = 35 ◦C

0.9493× exp
(
−
(

R0−0.01734
0.003553

)2
)

, T = 45 ◦C

(17)

Table 5. Model fitting results under different temperature.

Temperature LIBs
Coefficients (with 95% Confidence Bounds)

RMSE R-Square
a1 b1 c1

25 ◦C 25C01 0.9542
(0.9345, 0.974)

0.3655
(0.3644, 0.3666)

0.02343
(0.02219, 0.02467) 0.0540 0.9678

25 ◦C 25C02 0.9496
(0.919, 0.9801)

0.2123
(0.2085, 0.2162)

0.05471
(0.05071, 0.05871) 0.0534 0.9071

35 ◦C 35C01 0.8651
(0.8386, 0.8916)

0.289
(0.2872, 0.2908)

0.02606
(0.02419, 0.02793) 0.0793 0.9227

35 ◦C 35C02 0.2541
(0.123, 0.3852)

1.698
(1.565, 1.832)

0.1751
(0.06872, 0.2815) 0.0691 0.9453

45 ◦C 45C01 0.9493
(0.929, 0.9696)

0.01734
(0.01717, 0.0175)

0.003553
(0.003402, 0.003705) 0.0541 0.9661

45 ◦C 45C02 1.003
(0.9383, 1.067)

0.06305
(0.0621, 0.06401)

0.008891
(0.008181, 0.009602) 0.0497 0.9693

As seen in Table 5, both RMSE and R2 showed acceptable ranges. The validity of the
method is demonstrated. The R2 represents the goodness of fit, which value has to be
between 0 and 1. The closer that this value is to 1, the more significant goodness-of-fit is. In
addition, the improvement model has fewer parameters than other models. Consequently,
the estimation speed will improve significantly.

5. Based on the Improved IPSO-CNN-BiLSTM Model Method
5.1. Overview of CNN

The advantage of CNN is able to extract important features from data without any
manual interactions. Because of the rich information content contained in EIS data, using
CNN greatly reduce the complexity of processing data and ensures that no loss of important
information. CNN includes input layer, convolution layer, activation layer and fully
connected layer.
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The input layer is used to perform preprocessing of the input EIS data, which includes
the real part, imaginary part, modulus and phase at 60 different frequencies under each
charge/discharge cycle. Normalization was performed firstly, and the formula is:

xnormalization =
x− xMin

xMax − xMin
(18)

where, the xMax and xMin is the maximum and minimum value of the sample data respec-
tively. The same impedance plot can be represented in the form of a 60 × 4 shaped arrays
with real, imaginary, module and phase values of the impedance after processing.

Filters are used to extract important features in the whole range of input data at the
convolution layers. The convolution can be represented by Equation (20).

Convoluton Layer : σ(W× x + b) (19)

The nonlinear mapping on the output results of the convolution layer are implemented
in the activation layers. Common excitation functions are as follows:

Sigmoid(x) =
1

1 + e−x (20)

tanh(x) =
e2x − 1
e2x + 1

(21)

Relu(x) = max(0, x) =
{

0 (x ≤ 0)
x (x ≥ 0)

(22)

Due to its quick convergence, find the gradient easily, the activation function of Relu
are widely used in various fields. Therefore, the Relu activation function is selected in the
excitation layer. The pooling layer sandwiched between different convolution layers, which is
used in data compressing. Simulation experiments show that the algorithm can remove the
noise and preserve EIS data’s original features effectively. The common method of pooling
include max pooling and average pooling. The average pooling is adopted in this paper. The
flatten layer is used to convert the two-dimensional image data to one-dimensional digital
temporal signals, then input them to the regression neural network model.

In order not to skip important features, adding multiple CNN layers for feature
extraction is necessary. The network structure is shown in Table 6.

Table 6. Details of the CNN architecture.

Designation Specifications

Input layer 60 × 4
Conv1 3 filters, filter size 2 × 1

Pooling average pooling, 2 × 2
Conv2 5 filters, filter size 3 × 1

Pooling average pooling, 3 × 3
Flatten 285

5.2. Overview of LSTM

Because the data of the EIS are collected between charging and discharging cycles,
which are time series, the recurrent neural network (RNN) is suitable to process time series
when making use of internal memory. Because the different neurons of simple RNN hidden
layers have contacts. The output of the hidden layer is not merely determined by the current
input, it is also about the previous time point; this makes the simple RNN memorizable.
However, simple RNN cannot keep long memories because of the gradient explosion and
gradient disappearance. The LSTM was created based on the Simple RNN. By adding the
memory gating structure to the hidden layers of simple RNN, remembering and forgetting
of previous and current information can be controlled and relative application in other
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field [54–57]. A new state c was added to the simple RNN to preserve the long-term state.
There are three gating units in LSTM: forget gate, input gate and output gate. The previous
state ct−1 of units was entered into the current state ct, which was controlled by forget gate.
The input gate determines how much of the current input xt goes into the current unit
state xt. The output gate was used to determine the output at the current moment, which
combines the current memory and long-term state. The calculation formula for each gate
function and state transfer process in the LSTM module is as follows:

ft = σ
(

W f [ht−1, xt] + b f

)
(23)

it = σ(Wi[ht−1, xt] + bi) (24)

c̃t = tanh(Wc[ht−1, xt] + bc) (25)

ot = σ(Wo[ht−1, xt] + bo) (26)

ct = ft × ct−1 + it × c̃t (27)

ht = ot × tanh(ct) (28)

where, ft, it and ot are the outputs of forget gate, input gate and output gate respectively.
ht−1 and ht are the previous value and current value in the network. ct−1, ct are the state
of the previous and current time respectively. c̃t is the current memory of the network.
Wf, bf, Wi, bi, Wo, bo, Wc, bc are the weight matrix and bias terms of forget gate, input
gate, output gate and computing element, respectively. σ and tanh all are the nonlinear
activation function.

The activation functions and derivatives adopted by LSTM are shown in formula 31 to 41:

σ(z) = y =
1

1 + e−z (29)

σ′(z) = y(1− y) (30)

tanh(z) = y =
ez − e−z

ez + e−z (31)

tanh′(z) = 1− y2 (32)

5.3. Overview of Bi-LSTM

Bi-LSTM can synthesize the output in both directions to adjust the weight values.
Reading the time series data from both directions, then output the results with a compre-
hensive balance. The accuracy of training can be improved greatly. Having information
between the past and the future for the features, which is the design philosophy of Bi-LSTM.
The simulation proves that the performance of Bi-LSTM is better than LSTM. The state of
forward and reverse hidden layer as shown in Formula (35) to (36).

→
Ht = φ(XtW

( f )
xh +

→
Ht−1W( f )

hh + b( f )
h ) (33)

←
Ht = φ(XtW

(b)
xh +

←
Ht+1W(b)

hh + b(b)h ) (34)

The calculation formula of output layer as shown in below:

Ot = HtWhq + bq (35)

where,
→
Ht ∈ Rn×h,

←
Ht ∈ Rn×h are the state of forward hidden layer and reverse hidden

layer, which n and h are the number of samples and hidden units respectively. Xt ∈ Rn×h

is used to represent the input, which n and d are the number of samples and input. φ is
used to represent the activation function of the hidden layer. W( f )

xh ∈ Rd×h, W( f )
xh ∈ Rd×h,



Energies 2022, 15, 6665 17 of 26

W( f )
xh ∈ Rd×h, W(b)

hh ∈ Rh×h, Whq ∈ R2h×q, b( f )
h ∈ R1×h, b(b)h ∈ R1×h and bq ∈ R1×q are

represent the magnitude of different weights and biases. Ot represents the output of output

layer. Ht(Ht ∈ Rn×2h) is the final state of hidden layer, combining with the
→
Ht and

←
Ht.

5.4. Optimization Algorithm

Choosing optimal parameters for a deep learning can be a challenging task. There
would bring noise and make the ability of algorithm weakly, when the initial parameters
are not selected appropriately. Finally, an improved PSO algorithm is proposed in this
paper, which can find out the optimal parameters automatically. IPSO can avoid the defect
of reaching the part best value easily.

Improved PSO Algorithm

The position and speed update formulas of PSO are shown in Formula (36):
vk+1

i = ωk
i vk

i + c1rand
(

pbesti − xk
i

)
+c2rand

(
gbest− xk

i

)
xk+1

i = xk
i + vk+1

i

(36)

where, c1 and c2 are learning factors, and rand is a random number. The scope of rand is
[0, 1], vk+1

i consists of vk
i the memory item, c1rand

(
pbesti − xk

i

)
the self-cognition item, and

c2rand
(

gbest− xk
i

)
the group cognition item. ωk

i determines the optimization ability of the

algorithm. The stronger of the global optimizing ability with the ωk
i larger. Otherwise, it

indicates that the local optimization ability is more vital. On this basis, ωk
i is involved in

the iteration, which is shown in Formula (37).

ωk
i =

 ωmax, f k
i > f k

avg

ωmin −
(ωmax−ωmin)( f k

i − f k
min)

f k
avg− f k

min
, else

(37)

In PSO, vk+1
i considers the direction and steps size of particle search, which is chal-

lenging to ensure that the search step size of the most suitable particle is determined based
on the optimal direction. In order to further improve the iterative convergence speed, an
iterative time factor is added during position iteration. The IPSO is formed. The new
iterative formulas are shown in (38) and (39).

vk+1
i = ωk

i vk
i + c1rand

(
pbesti − xk

i

)
+c2rand

(
gbest− xk

i

)
xk+1

i = xk
i + tk+1

i vk+1
i

(38)

tk+1
i =

 1.5
∣∣∣ideal − f k

i

∣∣∣ f k
i > f k

avg
‖pbesti−xk

i ‖+‖gbest−xk
i ‖

2‖vk+1
i ‖

else
(39)

vk+1
i and tk+1

i determine the next development direction of the particle the step size
respectively. It also can be seen from (41) that tk+1

i is directly related to pbest, gbest, and
f k
i f k

i > f k
avg means that the particle is still far from the optimal position at this time, and

it needs to be searched with a larger step. Here, ideal an idealized factor is introduced,
which is close to the actual minimum value. At this time, the step is mainly determined
by
∣∣∣ideal − f k

i

∣∣∣; moreover, the larger step with it larger. Otherwise, it needs to be updated
continuously according to the current position of the particle. The step of each particle
should increase with ‖pbesti− xk

i ‖ and ‖gbesti− xk
i ‖ to reduce the number of iterations.



Energies 2022, 15, 6665 18 of 26

In addition, since vk+1
i has a step change, standardized is needed before calculation. The

two factors combined action to continuously change the iterative direction and step of the
particle to explore the optimal position at a faster speed.

Finally, to prevent premature convergence, we abandon the individuals with poor
fitness and replace them with the position of the remaining optimal individual after pertur-
bation.

5.5. IPSO-CNN-BiLSTM Model

Combining the CNN-BiLSTM model with IPSO algorithm, which was used to find
the best learning rate and the number of hidden layer units for SOH estimation. The
IPSO-CNN-BiLSTM model was proposed in this paper, which the structure and algorithm
as shown in Figure 7 and Algorithm 1.

Algorithm 1. IPSO-CNN-BiLSTM Algorithm

Step1: Set filters number and filter size
Step2: Set IPSO parameters: c1, c2, ωmax, ωmin
Step3: do

(a) Population initialization and determining global and individual optimal solutions.
(b) Calculation of ωk

i , tk+1
i , vk+1

i , and xk+1
i according to (39)–(41).

(c) I Over-limit location processing.
(d) x = xk+1

i , v = vk+1
i

Step4: While not satisfy termination condition
return Step3
else return x.

Step5: x1, x2→ number o f hidden layer units(M), learning rate

Step6: Calculate Fn = 1
n

m
∑

i=1
wi(yi − ŷi)

2

If Fn < target→ output SOH
else return Step1.
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Figure 7. The diagram of IPSO-CNN-BiLSTM model.

5.6. Prediction and Evaluation of SOH
5.6.1. Analysis of Results

It utilizes the predicting models of IPSO-CNN-BiLSTM and estimates the SOH of LIBs
at various temperatures. To enter the EIS data into the model, and the training set-to-testing
set ratio was 6:4. The results displayed as shown in Figure 8.
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From the experimental results, the SOH prediction results are satisfactory. The model
results show that the models are not affected by temperature as well as more robustness, can
effectively estimate the SOH of LIBs under different working environments. Additionally,
the capacity regeneration phenomenon occurs in the process of the aging cycle, because of
the indeterminacy of aging mechanism. The proposed model can also response with this
phenomenon excellently.

5.6.2. Comparison with Other Models

In order to evaluate the performance of our model, we have compared experimental
results with the other three methods (PSO–CNN–BiLSTM, CNN–BiLSTM, LSTM), using
the same training and testing data. As shown in Figure 9, the IPSO–CNN–BiLSTM has
better accuracy than the traditional PSO–CNN–BiLSTM. With not preprocess the data of
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LSTM, the noise in the EIS data greatly affects the estimation accuracy; this also indicated
the necessity of using the CNN model.
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As shown in Table 7, the comparison results demonstrate that IPSO–CNN–BiLSTM gives
better accuracy than other models for LIBs SOH prediction. The improved PSO algorithm
performs better than the traditional PSO and may avoid falling into the local optimum
instead. Compared to the other three models, the estimation accuracy of IPSO–CNN–BiLSTM
increased by 13.6%, 93.75% and 94.8%, respectively (25C01). The simulation results show the
presented quick training algorithm can speed up the learning process of IPSO–CNN–BiLSTM
and improve the learning properties on convergence and robust performance.
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Table 7. The RMSE of different models for LIBs.

25C01 25C02 35C01 35C02 45C01 45C02

IPSO-CNN-BiLSTM 0.0176 0.0238 0.0145 0.0183 0.0236 0.0188

PSO-CNN-BiLSTM 0.02 0.0268 0.0178 0.0238 0.0292 0.0216

CNN-BiLSTM 0.0341 0.0286 0.0209 0.0266 0.0385 0.0223

LSTM 0.0343 0.0368 0.0225 0.0281 0.0436 0.0239

6. Comprehensive Analysis of Data-Driven Method and Model-Based Method

As shown in Figure 10a, improved ECM model and IPSO-CNN-BILSTM model are
compared with the basic ECM and data driven method (GPR) [25,36]. The RMSE all showed
obvious improvement. As compared with the traditional methods, the RMSE of improved
method, which reduce by 17.9% and 63.6% respectively. The performance of the proposed
approach is demonstrated by several examples. It is worth noting that the current basic
methods only focus on the real and imaginary parts of EIS when extracting impedance
features. In the GPR model, the imaginary part of impedance at low frequency is used;
these methods ignore the important features of modulus value and phase in EIS data. When
selecting the input of the neural network model, we take all the EIS data, which makes
the feature extraction more comprehensive and is conducive to reducing the estimation
error (RMSE). In addition, enhancing the robustness of the model is also crucial to reduce
the estimation error. For the method based on ECM, scientific and accurate EIS data are
crucial for model fitting. Once there is an error in the EIS data, double-layer errors will
occur in ECM fitting and SOH prediction, which will lead to greater RMSE. In addition, the
accurate ECM is also the most effective in reducing the RMSE.
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But beyond that, IPSO-CNN-BiLSTM has better prediction accuracy than improved
ECM model (Figure 10b). Because the ECM based on the chemical system, which has a very
complex mechanism, it brings about relative high requirements on modeling, solving and
optimizing models theoretically. During estimating SOH, the effect of this will lead to seri-
ous errors; that is to say, the data-driven models, which apparently had more advantages.

7. Conclusions and Outlook

As clean energy, the effect of LIBs in the new generation power is crucial. However,
an important problem with LIBs is how to accurately predict their SOH. Aiming at the
deficiencies of ECM and data-driven methods currently, this paper puts forward two
improvement methods of estimating SOH based on EIS.

(1) EIS data was used to estimate ECM, which can reduce the estimate error of SOH
caused by the imperfect ECM. The method had greatly improved the accuracy for
ECM. As compared with the GPR model, the R2 coefficient, which increase 34.63%.
The performance of the proposed approach is demonstrated.

(2) CNN is used to process EIS data, it is proved his algorithm can not only extract the key
points, but also guarantee the simplified of the feature extraction; moreover, it is prone
to realize in fact with broad applicability. BiLSTM model was used for serial regression
prediction, the time dependence of EIS data and SOH can be sufficient considered.
Then, the CNN-BiLSTM model was optimized based on the IPSO algorithm. The
estimation results indicated that compared with the GPR, PSO-CNN-BiLSTM, CNN-
BiLSTM and LSTM models, the performance increased 27%, 23.7%, 63% and 84.7%
respectively. The practice has proved that the method will improve the precision of
SOH forecasting effectively and has excellent robusticity.
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However, measuring the EIS of LIBs is still an important challenge. The aging mecha-
nism still unclear, which is the essential cause of SOH estimation disabilities. Although the
data-driven model has good performance, the amount of data are insufficient will bring
large error. The main difficulties and the opening problems of the estimation of SOH as
shown in below.

(1) Simplified the measuring device of EIS and improved the measuring speed. Binary
modules are used to obtain the EIS data will be the main direction for the next
research step.

(2) Numerical simulation of the dendritic growth process, SEI and capacity regeneration
are still one of the most interested fields in the aging process of LIBs which is essential
for accurate ECM establishment.

(3) The application of the data-driven algorithm is restricted by the depends on historical
data excessively. Under the circumstance of reducing the training data, ensure the
model robustness and precision is precisely the challenge ahead.
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LIBs Lithium-ion batteries
SOH State of health
EIS Electrochemical impedance spectroscopy
ECM Equivalent circuit model
K-K Kramers-Kronig
CNN Convolution neural network
Bi-LSTM Bidirectional long short-term memory
IPSO Improved particle swarm optimization
PSO Particle swarm optimization
GPR Gaussion process regression
BMS Battery management system
NDT Non-destructive test
XRD X-ray diffraction
EDS Energy dispersive spectroscopy
XAS X-ray absorption spectroscopy
XPT X-ray photoelectron technique
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SEM Scanning electron microscopy
TEM Transmission electron microscopy
EPMA Electron probe microscopic analysis
FIB Focused ion beam
FTIR Fourier transform infrared
PGAA Prompt gamma activation analysis
SEI Solid electrolyte layer
SOC State of charge
RMSE Root mean square error
RNN Recurrent neural network
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