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ELECTROCHEMISTRY AND SPECTRO-ELECTROCHEMISTRY OF OMONONUCLEAR AND

BINUCLEAR COBALT PHTHALOCYANINES. ,

W.A. Nevin, M.R. Hempstead, W.Liul, C.C. Leznoff, and A.B.P. Lever- %

Dept. of Chemistry, York University, North York, Ontario, Canada M3J

iP3

Abstract

The electrochemistry of [2,9,16,23-tetraneopentoxy)phthal-

ocyanato)cobalt, and some binuclear analogs, has been studied in

dichlorobenzene and in dimethylformamide. The redox mechanisms and

species on the electrode are discussed. Using an optically thin

electrode, the electronic spectra of seven different oxidation

states of the mononuclear derivative are reported. Data for a

selection of oxidation states ot several binuclear species are

also presented.

Introduction

The electrochemistry and spectro-electrochemistry of nietaIIo-

porphyrins have been extensively studied. 2 - i 6  However, relatively

little spectro-electrochemistry nas been carried out on pl)thal-

ocyanines 1 7 - 2 5  due to their low solubilities in suitabe solvents for

electrochemistry which limits the use of optically transparent I h n

layer electrodes (OTTLE). Such studies are desirable in view o te
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potential use of ph thalocyanines as eIectrocatalysts2 6 - 2 8 , where r

understanding o. the nature of the redox processes Jt t.1e pn :T i -

ocyanine molecule is essential for the design of more e f fic1en t

catalysts. The redox processes may occur at either the central Mretai

atom or the phthalocyanine ring, but this cannot us'ually be

distinguished using electrochemistry alone. Spectro-electrochemical

studies of the phthalocyanines are also important with regard to -heir

possible use as electrochromic materials.2 4 , 2 9 ,3 0

Recently 3 1 - 3 3 , we have reported the synthesis of a series of

binuclear phthalocyanines formed by linking units of tri(neopentoxy)

phthalocyanine (TrNPc) together through a benzene ring by bridges ot

1,2,4 or 5 atoms. The three neopentoxy groups are randomly drstr'ibu*ec

in the 4 or 5 positions of the unlinked benzene rings and provide niglh

solubility for the phthalocyanines in a wide range of organic solvents,

such as toluene, o-dichlorobenzene (DCB), dichloromethane (DCM) ar.

N,N- dimethylformamide (DMF). These complexes, and in particular the

cobalt derivatives, have been the subject of recent investigations as

oxygen reduction catalysts and as multi-electron redox catalyts.26, yts

We report here an electrochemical and spect ro-elec trec e m icaI study n

the cobalt derivatives of mononuclear and binucleaw eoe 2o. / I h ;3 r -D x -

ocyanines in DCB and D1F.

The purpose of thi1s work was to -btain, r " h .  
1 r ,

electronic spectra ot a wide rar.e of e e, t r'ocr, "n I e I

redox species in organic solution, an,", in drl 1 , to 1 e tcL ] i v. .

possible etfects 11 co pIn in 'll the ti n ' r -

processes and spectra. Severai - t re, -epr " .

ex Ist in the litera Lure; !IKwev, r ".' . .- >: " r' _ ,

reported in the 2-O I, star .r ' . . . .IV Y ,
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spectra.

Spectra are presented here for a series of seven electro-

chemically generated redox species of the mononuclear derivative.

Of relevence to this presentation are the following species, with

their abbreviations (Figure 1) (the number in parenthesis is the number

of bridging atoms connecting the two phthalocyanine rings):

label

CoTNPc (3,9,16,23-tetra(neopentoxy)phtnalocyanato]cobalt.

This is the mononuclear control molecule.

EtMeO(5)[CoTrNPc] 2  phthalocyanine rings linked via

-OCH2C(Me)(Et)CH20-.

Cat(4)[CoTrNPc] 2  phthalocyanine rings linked via -O-C 6 H04 -O-

(o-catechol).

C(2)CCoTrNPc] 2  phthalocyanine rings linked via -CH2CH2-.

O(1)[CoTrNPc]2 phthalocyanine rings linked via a single oxygen

(ether) bridge.

These binuclear complexes can exist in various contormat ions

depending upon the nature ot the bridging unit.35  The EtMeO(5) and

Cat(4) species can close in a "clamshell" - like fashion ksee Fi ure

1), while geometrical constraints Ut the bridge restrict tie C(2) ind

0(1) species to an open conformation. Electronic couplin, between the

C -, .. .-
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phthalocyanine rings may occur through space or through the bridge.
3 5

For the series of binuclear cobalt derivatives, the degree of

electronic interaction between the phthalocyanine rings has been found

to increase in the order 3
4:

C(2) < EtMeO(5) < Cat(4) < O(1)

The nomenclature CoTNPc or (CoTrNPc) 2 is used for a general species

of undefined oxidation state, while for specific compounds, the

oxidation states of both metal and phthalocyanine are defined. The

Pc(-2) state is the standard oxidation state for the phthalocyanine

ring.
3 6 ,

3 7

Experimental

The species H 2 THPc 3 i, CoTNPc 31 , EtMeO(5)LCoTrNPc) 2
3 1 ,

Cat(4)(CoTrHPc] 2
3 2

, C(2)(CoTrNPc) 2
3 2  

and O(i)(CoTrNPc] 2
3 3  

were prepared

by the literature routes cited. N,N-dimethylformamide (DMF) (Aldrich,

Gold Label, anhydrous, H 2 0 < 0.0057, packaged under nitrogen)

o-dichlorobenzene (DCB) (Aldrich, Gold Label), dichloromethane (DCM)

(Aldrich, Gold Label) and acetonitrile (Aldrich, Gold Label) were used

as supplied. Tetrabutylammonium perchlorate (TBAP) (KodaR) was

recrystallised from absolute ethanol and dried at 500 C under vacuum

for two days. [Co(I II)(Cfl) 2 TNPc(-2)IK 3 8- 4
0 was prepared by adding a

10-fold excess of KCN to a solution of Co(II)TNPc(-2) in DCM/CH CN

(2:1).

Electronic spectra were recorded with a Hitachx-Porkir, Elmer

Microprocessor model 340 spectrometer or a Guided Wave Inc. mociel

100-20 Optical Wav-guide Spectrum Analyser with a WWIO0 flbre opt ic
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probe. Electrochemical data were obtained using a Pine model RDE 3

double potentiostat, or with a Princeton Applied Research (PARC) model

173 potentiostat, or with a PARC model 174A Polarographic Anaiyser

coupled to a PARC model 175 Universal Programmer. Cyclic voltaMmetry

and differential pulse polarography were carried out under an atmo-

sphere of nitrogen in a Vacuum Atmospheres Drilab using a conventional

three-electrode cell. A platinum disc described by the cross-sectional

area of a 27 gauge wire (area ca. 10 - 3 cm 2 ), sealed in glass, was used

as the working electrode in DCB solution, and a platinum wire in DMF

solution. A platinum wire served as the counter electrode, and a

silver wire was used as a quasi-reference electrode. Potentials were

referenced internally to the ferrocenium/ ferrocene (Fc+/Fc) couple

(+0.OV vs SCE). 4 1 All DMF solutions were prepared within the dry-box.

The DCB solutions were prepared in air, degassed by repeated freeze-

pump-thaw cycles, and then transferred to the dry-box.

Spectro-electrochemical measurements were made with an optically

transparent thin layer electrode cell utilising a gold minigrid (500

lines/in)4 2 , in conjunction with the Hitachi-PerRin Elmer spectrometer;

or by using a bulk electrolysis cell, consisting of a platinum plate

working electrode, platinum flag counter and sliver wire

quasi-reference electrode (reference and counter electrodes were

separated from the working compartment by medium glass frits). Spectra

were recorded during bulk electrolysis by immersing the Guided Wave

fibre optic probe in the solution, degassed With areon.

Solutions for electrochemistry and spectro-eiectrochemistry cen-

tamned O.l-U.3M TBAP, as supporting electrolyte.

1 10
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Results and Discussion

Electrochemistry in DCB Solution

Figure 2(a) shows a typical cyclic voltammogram of CoTNPc in DCB. The

molecule undergoes two quasi-reversible one-electron reductions and

three quasi-reversible one-electron oxidations within the limit of the

solvent (ia:Ic, i a 4 v). Half-wave potentials and peak separations at a

scan rate (v) of 20 mV/s are given in Table I.

The binuclear (CoTrNPc) 2 complexes show very similar voltammetry to

the mononuclear species, although the waves are generally broader and

weaker. However, well defined peaks were obtained by differential pulse

4 polar ography; Figure 3 compares the results for O(i)[CoTrNPc] 2  with

those of CoTNPc in DCB. Values of half-wave potentials measured for the

binuclear complexes in DCB are given in Table I. Note that the

potential of the second oxidation couple (II) is very sensitive to

traces of anions which can coordinate to the cobalt atom.

No splitting of the redox peaks was seen for any of the binuclear

complexes, such as has been observed for the Co(II)/Co(I) couple of a

"clamshell" cobalt porphyrln1 3  and the Co(II)/Co(1) and Co(III)/Co(!I)

couples of "face-to-face" cobalt porphyrins. 13 ,1 4 This splittLng is

attributed to interactions between the two cobalt atoms which are held

in close proximity by the ligand geometry, resulting in overlap of tfleir

dz2 orbitals along the cobalt-cobalt axis. The size of the splittinp is

proportional to the magnitude of the interaction between the coh.at

atoms. In the case of the binuclear phthalocyanines studied here,

. . . ., . .. -, -,, "w "w - ' " ,," -" " " ' " " " ,,, ' ".".
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however, the two CoTrHPc units of each molecule oxidise or reduce

"simultaneously", even for those species known to exist in a closed

"clamshell" conformation in solution. Either electronic coupling between

the cobalt atoms is not sufficient to cause an observable splitting of

the couples, or more likely, in a preliminary chemical step, the more

coupled contormations rearrange to a less coupled conformation, prior to

the electron transfer. The electronic coupling IS sufficient to be

observed as a perturbation of the electronic spectra of these cobalt

species.
3 4

Note that for the "clamshell" porphyrin
1 3 , linkage occurs via bridges

between two benzene rings of each porphyrin ring thus giving a more

rigid geometry than for the binuclear phthalocyanines reported here.

The broadening of the redox waves of the binuclear compounds relative

to CoTNPc may arise because of the mixture of isomers which is present,

having slightly different redox potentials.

For comparison, half-wave potentials for the metal-tree mononuclear

complex, H 2 TNPc, in DCB solution are also given in Table I. Two

quasi-reversible one-electron reductions and two quasi-reversible

one-electron oxidations are observed, corresponding to the first and

second reductions and oxidations, respectively, of the phthalocyanine

ring.

Spectro-electrochemistry in DCB Solution

Typical absorption spectra tor ao(II)TUF'c(-e), and tile "closed" and

"open" binuclear species, E t M eo(5) (Cu( Il) T r N P c (2- )) a n d

C(2)(Co(l )Tr NPc(-2)J2, respectively, are shown in Figur e 4. -,he

binuclear species show an additional band centred at ca. jO nm to the
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blue of the normal Q band as a result of interaction between the

phthalocyanine rings through "exciton coupling:' 3 4 , 3 5  Spectroscopic ,.ata

for CoTNPc species are given in Table II.

Polarisation of a solution of CoTNPc in DCB in the OTTLE at 200 mV

negative of the first reduction couple (IV), results in the

spectroscopic changes shown in Figure 5, and a change of colour from

blue to yellow. Isosbestic points are observed at 325, 360, 395, 557

and 692 nm. The spectrum is typical of a Co(I)Pc(-2)

species 7t, 1 9 , 2 0 , 3 9 , 0 , 4 3 ,4 4 , characterised by the appearance of a

strong band at 475 nm, assigned as a metal-to-ligand charge transfer

from Co(I)Pc(-2)(d(xz,yz)]---> 1T*(1btu)Pc(-2)4O, 4 5, 4 6, and a red shift

and decrease in intensity of the o band. The reduced species is fully

reversible to the starting material by oxidation positive of the first

reduction couple.

Polarisation at 200 mV negative of the second reduction couple (V)

results in a change from yellow to a pink solution, the spectrum of

which is shown in Figure 6. The observed small red shift of the MLCT

band and decrease in intensity of the Q band relative to the first

oxidation product are similar to those obtained by Clack and Yandle 2 0

for the chemical formation of the species [Co(I)Pc(-3)] 2 -  in DMF, and

by Le Moigne and Even 4 3 for a chemically reduced thin film of CoPc. in

addition, a weak near ir band occurs at 950 nm. The appearance of a

band in the region of 950 nm appears characteristic of the

ligand-reduced species, as has been observed previously for a number ..t

metallophthalocyanines. 2 0 , 6 Re-oxidat ion at a potentiai positive of

couple (IV) generates the starting material with ca. 20X decrease in

the Q band intensity (no decomposition products absorbing in the reg, ion

of 300-1600 nm were observed).
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Oxidation of CoTNPc in DCB in the OTTLE at 200 mV positive of the

first oxidation couple (III), results in a rapid decrease in ._he

intensity of the 4 band and the formation of a pale pink solution. The

broad, low-intensity spectrum, shown in Figure 7, is unlike those

observed for Co(III) phthalocyanine species34, 3 9 , 4U, 4 7 , 4 8 , but is very

similar in appearance to those reported for the ligand oxidations of

phthalocyanines 2 1' 2 2 , 4 9  to forn the PC cation radical species,

[Pc(-I)] + . Since this redox couple is a one-electron process, it must

correspond to the one-electron oxidation of the phthalocyanine ring, to

give the species (Co(II)TNPc(-I)] + . Similarly, a broadening and

lowering of intensity of the bands in the visible region is typically

observed for the ligand oxidation in metalloporphyrins. 2 , 5 0 - 5 2  The

results are in agreement with those of Gavrilov et al.2 4 , who reported

the oxidation of Co tetra-4-t-butyl- phthalocyanine in DCB. In

contrast, the first oxidation of cobalt tetraphenylporphyrin (CoTPP) in

non-coordinating solvents has been shown to occur on the cobalt

atom.
3 - 5

Polarisation of the OTTLE at 200 mV positive of the second oxidation

couple (II) results in the formation of a red-brown solution, with a

spectrum shown in Figure 7. The broad, three-banded spectrum is

typical of those found previously for chemically oxidised CoPc in

CHC1 3 
4 7  and as a thin film3 7 , and assigned to a [Co(llI)F'c(-l)]2 +

species. Thus, the second oxidation occurs on the metal t) give

[C o(I II)TN Pc( -I )] j +
.

Polarisation of the OTTLE positive of the third oxidation couple (1)

gives a decrease in absorption intensity to a broad spectrum with bands

centred at 430 and 630 nm, as shown in Figure 7. Re-reduction (it 'hi s

solution positive of couple (Il1), tormed the start ing species with ca.

- M"W , ," ,,, , . , - , -. . . .- ,-. - -. .. - - w . . . ., ", ,
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50X loss of the 0 band intensity; however the spectrum was identical in

shape to the initial spectrum and no decomposition products absoring

in the 300-1600 nm region were observed. To our knowledge, no report

has previously been made of a phthalocyanine third oxidation product.

In view of the similarity of the potential to that of the second ligand

oxidation of H 2 TNPc, and the fact that the electronic spectrum (Figure

7) is very different from the Pc(-i) species, it is likely that this is

also the second ligand oxidation, to give [Co(III)TNPc(0))
3 + , rather

than [Co(IV)TNPc(-i)] 3 + .

Electrochemistry in DMF Solution

Figure 2(b) shows a typical cyclic voltammogram for CoTNPc in DMF,

with half-wave potentials and peak separations at 20 mV/s given in

Table I. The reduction processes are very similar to those found in

DCB solution, having two quasi-reversible one-electron couples sep-

arated by ca. 1.15 V; however, marked changes are seen for the

oxidation processes. The reversibility of the first oxidation wave

(III) is strongly dependent both upon scan rate and the upper positive

limit of the voltage sweep. If the voltage sweep is reversed at a

potential negative of the second oxidation couple (II), a broad flat

irreversible return wave is obtained at slow sweep rates, which

increases in magnitude with increasing sweep rate, as shown in Figure

8(a).

Sweeping the potential positive of the second oxidation potential

results in an increase in the return wave for a given sweep 1ate ,

although at very slow scan rates (2 mV/s) the return wave i.

irreversible (Figure 8(b)). The second oxidation exhibit two at s:ic

and two cathodic waves, as shown in Figure 8(b). At nigh sweep r it
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(Figure 8(c)) (100 mV/s), the more positive wave is dominant, with only

a shoulder occurring at ca. +0.3 V, and a single return wave. AZ rhe

sweep rate is decreased, the contribution from the more negative couple

increases, so that the return wave splits into two peaks. Betore

discussing the significance of these data, it is useful to review the

spectro-elect rochemical data.

Spectro-electrochemistry in DMF

Controlled potential electrolysis in the OTTLE of a solution of

CoTNPc in DMF at 200 mV positive of the first oxidation couple (III)

results in the spectroscopic changes shown in Figure 9, and the form-

ation of a blue-green solution. This spectrum, characterised by a

red-shift, increase in intensity and sharpening of the Q band and a

red-shift of the Soret band relative to the starting spectrum, is

similar to those observed for the Co(III)Pc species,

[Co(III)(X) 2Pc(-2)]- (X OH, F, C l or Br) 7,

[Co(III)(OH) 2TNPc(-2)] 34 , [Co(III)(CN) 2 Pc(-2)] 3 9,4 0 ,4 8  a n d

[Co(III)(CN) 2 TNPc]1 - (this work). Thus, in DMF solution, the first

oxidation (III) indeed occurs on the cobalt rather than the phthal-

ocyanine ring.

Poiarisation in the OTTLE at potentials positive of the oxidation

couple (II) resulted in a fairly rapid loss of the phthaIocydnine

absorption. However, the spectrum of the oxidised species was obtained

using the bulk cell/5ulded Wave spectrometer arrangement. The rpectr-um

was very similar to that of the second oxidation in DCB (see Fable I1),

albeit with the bands red-shifted by 50 - 9U nm with respect to DCB

solution. Thus couples (III) and (II) in DMF cori'espo nd to the



spectrochem 20/7/86,-12-

formation of (Co(III)TNPc(-2)] +  
and (Co(III)TNPc(-1I) 2

+, respectively.

The binuclear cobalt phthalocyanines gave essentially similar

spectro-electrochemistry to CoTNPc. The spectra of the redox products

were those expected for complete oxidation or reduction of the two

CoTrNPc units at each redox couple, with no evidence for the formation

of any mixed valence states. As an example, the spectrum of the second

reduction product of O(i)[CoTrNPc) 2  is shown also in Figure (. ,)f

note, the absorption of the ligand reduced species was rather more

broad in the binuclear complexes, probably as a consequence of

coup11ng.
3 4

Discussion of Electrochemical Behaviour in DMF

The bulk solute in DMF is expected to be the five coordinate

DMFCo(II)TNPc(-2) based upon earlier studies which show the prevalence

of five coordinate Co(II)Pc species. 5 3

Since the axial site is expected to be labile, there will be other

species in equilibrium. The most important are likely to be:-

DMFCo(II)Pc(-2) <==> (DMF)2Co(II)TNPc(-2) <==> [(DMF)(Cl04)C0(l I)THF~C(-2)j-

(A) (B) (C)

One may readily predict that species (C) will oxidise at the least

positive potential1.1  Thus in Figure t the anod ic wave [IA)

corresponds to oxidation of species (C), formed very r apidIy t 'he

electrode in a CE reaction. Given that the C1O 4 -:Co(lI)TNFc ratio o

large, and that there is an axial site vacant on the pnthiocya1:ne,

the rate of perchlorate ion incorporation is probably dt fu s.r) n

.
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control led.

When the switching potential lies between couples (II) and liI),

the cathodic wave corresponding to (lia) diminishes in current quite

dramatically with slower scan rate, and the ratio ic/la is considerably

less than unity (Table III). At higher scan rates, this ratio eq11--Is

unity. Thus the couple is irreversible at very slow scan rates. These

ratios are subject to some uncertainty given the close proximity of the

next redox couple, so that calculation of rate constants therefrom

would be unreliable. We note that, at a given scan rate, the ic/ia

ratio increases with increasing perchlorate ion concentration,

supporting the view that species (C) is involved as proposed. The

product on the electrode after oxidation is the six coordinate

[DMF(CIO,)Co(III)TN Pc(-2)). This will participate in an equilibrium (2)

in which either the DMF or perchlorato groups are lost to form a five

coordinate species which is much more readily reducible to Co(II) than

is the six coordinate species and thus has a redox potential positive

of couple (III).

[DM F(C10 4 )Co(III)Pc(-2)] <:::> DMF + [CIO 4 Co(III)Pc(-2)]

<===> C10 4 - + (DMFCo(III)Fc(-2)] +

(2)

Althougrn this five coordinate Co(III) species is likely to be ormed in

only minute amounts, the equilibrium should be suffic.entIy facile that

during the time of the cathodic sweep positive of couple till), some of

the Co(III) species on the electrode is reduced and therefore does not

contribute current to ca thodic wave (i112). Clearly tha slower t he

sweep, the greater the loss in cathodic current in (lIIC). Previous

studies 5 4  show that alth1ough axial substItut1o1 of SAX coord 1.i tc

N Co(III) species is usually very slow indeed, axiiI sites on o( Ill)
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macrocycles are more labile.

Beyond (IIIa) the next process is oxidation t o

[DMF(C104)Co(I II)TNPc(-l)] reasonably associated with th1e major

oxidation peakR (lla). Although in the spectro-electrochemical

experiment, this species is unstable, it is evidently sufficiently

stable in the much shorter time frame of the cyclic voltammetry

experiment. There are two clearly identifiable cathodic peaks whose

relative intensity changes with scan rate (Figure 8b). With increasing

scan rate the more positive wave (lIc) grows at the expense of the less

positive wave (II'c), and vice versa at slower scan rates. Moreover

with increasing perchlorate ion concentration (0.I - 0.3M), the less

positive wave grows slightly, at the expense of the more positive wave.

The most positive reduction wave, (lIc), must correspond with the

reduction of [DMF(C10)Co(III)TNPc(-1)] +  Wave (II'c) must involve

additional perchlorate ion and is reasonably associated with reduction

of [(CIO 4 )2Co(III)TUPc(-1)] formed by a slow substitution of DMF by

perchlorate ion in [DMF(C104)Co(I II)TN Pc(- 1 +

On the anodic component of couple (II), there is a very weak lower

potential shoulder which is more evident at slow scan rates (Figure

8(b)) and is marginally enhanced by increasing perchliorate ion

concentration. This is likely to be the anodi1c partner to ill'c) formed

by very slow substitution of DMF by oerchilorate ion in

[DMF(CIO)Co jIl)TNPc( - i) formed on thv Il,-ctrode surtace. The redox

couple for- the b is-perclora to species (I) lies at S (Sl111, tlY) 10 W k'r

potential than for the mono-percnlorato species, as woull be

anticipated because of the extra charge A lis posed onto the Cubl

When the switching potential s positive ut couple 'I), the

cathod ic return .ave for couple (III) is not di min ished e..ep at

-4. ~~ ~ ~ ~ 4~-->. A
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exceptionally slow scan rates, the ic/la ratio remaining unIty.

Assuming that the above mechanism for irreversibility is correct. -,L

follows that the species now on the electrode must !e different :rom

the previous switching situation and must dissociate a ligand rather

more slowly. Indeed at the slow scan rates necessary to observe t his

phenomenon, the species on the electrode when switched beyond couple

(II), will be [(C1O 4 ) 2Co(III)TN Pc(-) ]- which must then have a slower

dissociation rate. This bis-perchlorato species would be expected to

have a somewhat less positive reduction potential than the

[DMF(C10)Co(III)TN Pc(-2)] species, yet this appears experimentally not

to be the case. Possibly the difference is too small to be evident.

Previously, Kelly and Kadish i 2  had shown that DMF(C)Cr(III)TPP

and [(DMF) 2Cr(III)TPPI + both reduce at the same potential, in DMF, and

explain this by assuming that a CE reaction occurs, with chloride being

replaced by DMF at the electrode in a reaction driven by the applied

potential. This is the same argument being used here to infer which

cobalt species is active at each couple.

Thus, in summary, the species involved in the region of coupies

(II) and (III) are (vs Fc+/Fc):-

[DMF(ClO 4 Co(III)TNPc(-2)/DMF(C1O 4 )Co(II)TNPc(-- EI/2 -O.02V

DM F(C10 4 )Co( 1II)TN Pc(-l) +/DMF(CIO4 )Co(III)TNPc(-2)] E1/ 2  + U..3V

[(CIO 4,)2Cok I I I)T NPc(- i) /(CIO04)2Co(III)TNPc(-2)- ]  El/2 L) 3O.) V

The overall redox behaviour is shown in Scheme I.

7,
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Rationalisation with the Literature.

There are scattered reports of the spectra of phthalocyanine anion

and cation radical species in the literature, as referenced above, out

this is the first study where the spectra of one species have been

followed through seven oxidation states. Cation radical spectra >ave

only rarely been reported in the solution state.

It is tempting to try to assign the spectra of the various

oxidation species reported here and compare the data with those for

related materials in the literature. Indeed we have previously

predicted the type of spectra to be anticipated for metallo-

phthalocyanines in various oxidation states 46; however, in the absence

of supporting data such as MCD4 9 , it would be foolhardy to try and

assign, in any detail, the rather broad and overlapping bands commonly

observed for these various species (e.g. Figure 7).

Phthalocyanine cation radical (Pc(-i)) spectra are now Known for a

range of metal ions includin ,  Co(II), Co(III), Ru(II), Rh(III),

Fe(III), Cr(III), Zn(II), Si(IV), H 2 , Mg and Cu(Il).2 1 ,2 2 ,3 7 ,4 6 ,

-. 47.49,55,56 These all appear to show medium intensity bands near

700-800nm and near 500nm. The former is assigned as a transition from a

lower lying eg ,7 level into the hole in the HOMOe n j.vel (),4,,5 5

Charge transfer spectra from metal d levels to the ro o e i n the HOM1O

level can be anticipated, but have not been ident f.d'

The voltammetry of H2TNPc and CoTNI'c is numrni'it2jd and :omrareu

with that of HTppd, 9 ,11,15,16.57 -59  and : 1 I , ,< in th e t or'Tr,

of a redox potential state diagram in Figure IU. Complexatiori wIth

cobalt (11) causes a negative -hi f t in t he potential ut the :2't

i gand reduction by ca. 500 mV i n non-coordinat i n so vn: 2 for, ,) h

' , k '' 1, , .. . r -, , - - " - % . "- '- - -" "- - . " "- -' '- "- "- - "- "- - " "- , ' "- ",
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TNPc and TPP (Figure 1W), as a result of the insertion of the cobal.t d

orbitals between the HOMO and LUMO orbitals of the ring. The potenrtial

the first ligand oxidation also shifts negatively, but to a lesser

extent, rasulting in a net increase in separation between the first

oxidation and reduc2Aon couples (E[L+/L] - E[L/L-] 2.1 and 2.9 V for"

CoTNPc and CoTPP, resPectively).
3 - 5 , 7 ,8 , 5b Notaly, the L/L-,

Co(II)/Co(I) and Co(IlI)/'iI) couples of CoTNPc and CoTPP lie at

similar potentials in non-coordinating solvents (Figure 10). For both

compounds, the Co(lI)/Co(I) couple lies positive of the first ligand

reduction, so that the cobalt is reduced first. However, differences

are seen in the oxidation processes. For CoTNPc, the separation between

the HOMO and LUMO orbitals of the ring is small enough to leave the

L+/L couple negative of the Co(III)/Co(II) couple, so that oxidation

occurs at the ring first. For CoTPP, however, the larger separation of

the HOMO and LUMO orbitals results in the L+/L couple lying positive of

the Co(lII)/Co(II) couple, even in non- coordinating solvents. The

relative positions of the cobalt d orbitals and TNPc HOMO also results

in a large increase in separation of the first and second ligand

oxidations compared with the metal-free complex, while for porphyrins a

small decrease in separation of tie couples is seen.4 ,5 ,7 ,11,15 ,16

In DMF, the Co(III)/Co(II) couple of CoTNPc shifts negatively by ca.

600 mV, as a result of the stabilisation of the Co(lIl) species in the

presence of the axially coordinating solvent, wh ile the L /L couple

shifts positively by 300 mV, as a consequence of the presence of the

highly polarising central ion (Co(II)).)) Thus, the first uxi dat.on

now occurs at the cobalt atom. Similarly, the Co(III)/Co(1i) couple

shifts negatively by almost 800 mV for CoTPP on goine trom DCM to .,AF

solution. 
4  The potential of the Co(l)/Co(l) couple remains

-.II1 1 1 1 1AII 1! l 1 [ I :
Ak r %
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approximately constant, as expected for the four-coordinate Co(l)

species.

Data for the binuclear species are somewhat disappointing given

that they differ little from the mononuclear analog. The binuclear

species are significantly, but not dramatically, more efficient for

oxygen reduction 2 6 , than the mononuclear control. More tghtly

coupled binuclear phthalocyanines are currently under investigation.
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Legends

Figure t. Binuclear phthalocyanine compounds.

Figure 2. Cyclic voltammetry o CoTNPc (a) in DCB solution (Ft

working electrode) and (b) in DMF solution (Pt wire working electrc

Scan rate : 50 mV/s, [CoTNPc] : i x IO1-41, [TBAP] = 0.3M.

Figure 3. Differential pulse polarograms of (a) CoTNPc and

O(I)[CoTrNPcI3 in DCB solution (0.3M TBAP). Scan rate 2 mV

[CoTNPc) I x 10-4M, [O(i)CoTrNPcJ 2I ca. 5 x 10- 5 M.

Figure 4. Electronic absorption spectra of Co(II)TNPc(-2) (-,

EtMeO(5)[Co(II)TrNPc(-2)]p ( ---- ), and C(2)[Co(II)Tr FNPc(-2)] 2  in.... n

[[Pc] x pathlength constantl

Figure 5. Development ot the electronic absorption spectra with time lu

the reduction of Co(II)TNPc(-2) at -L.iV vs Fc+/Fc in DCE; (0.31M PBt

(CoTIlPc] L . x 10- 4 M.

Figure 6. Electronic absorptiun spectra of electrochOmicCaiY genera

[Co(I)TIIPc(-3)] 2 -  (- i and 0(i)[ Co(1)TrNPc(- 3) 2
4  

(- - ) i n DCL S

TBAP). [CoTNP() z '-4 :< I()-S5 l, L UM)[ CoT r 1Pe]),, - 4t x< I U S'

0< €'L

' ir Figure 7. EIectronic ;pectra of elect roclemic.aliy gvn-- a

no

[Co(lI)TNpc(-lf)1 ( . . ,Co(III)THPc(-1)V
4  ( I.... an

[Co (I 1)TU1Pc(0)] 3j 3 species in DC B (0l.JM 'ITBAP) [OT NPcJ 5 X 1U-

( -- , sp cli
e

V).
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Figure 8. Cyclic voltammetry of CoTNPc in DMF (0-3M TBAP) i t v ar~.o us

scan rates and switching potentials. (a) The CO(III)/Co(II) couple a t

2,5,10 and 20 mV/s. (b) Pc(-I)/Pc(-2) and Co(III)/Co(II) couples at

2.5,10 and 20 mV/s, and (c) Pc(-I)/Pc(-2) and Co(III)/Cco(II) couples a t

20,50 arid 100 mV/s. (CoTNPc] I x 10-4 M.

Figure 0. Development of the electronic absorption spectra with time du,

the oxidation of Co(II)TNPc(-2) at +0.2V vs Fc t /Fc in DMF (0.3M TBAF).

(CoTNPc) 2.3 x 10- 4 m.

Figure 10. Summary of the electrochemistry of H2 TNPc and Co(lI)TNPc(-2)

comparison with H2 TPP and CoTPP.

Rpoduced Irome.C

AP
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Trable I. Electrochemical Data for Mononuclear and Binuclear Neou-ntuxy

halocyanines.

-------------------------- -------- --------------------------------------------

E1/2 V. (AEp, mV)a

Oxidation Reduct ion

------------------------------------------------- ---------------------

Compound I I c III IV V

-----------------------------------------------------------------------------------

1'"TNPc +0.77 +0.28 -1.35 -1.70(70)

C 8WPc +0.87(102) +0.59(90) +0.03(89) -0.91(70) -2.07(80)

CDTNPcb +0. 3 8 d -0.02 -0.85(85) -1.99(85)

E+,eO(5)(CoTrNPc] 2  +0.87 e +U.05(165) -0. 93 -2.U7(85)

CjT u4")[CoTrNPc] 2  +0.89 e +0.03 -0.93 -2-U7(95)

C@?U}CoTrHPc]2f +0.87 +0.33 +0.03 -0.94 -2.07

0()(CoTrNPc)2 f +0.91 +U.51 +0.04 -0.93 -2.07

aDCB solution except for bDMF solution. Potentials are reported with

respect to the ferrocenium/ferrocene couple. E1 /2  measured by cyclic

voltammetry at 100, 50 and 20 mV/s [E/ 2  (Epa + Epc)/ 2 ] or ditferential

pulse polarography at 2 mV/s gave essentially identical potentijis. Values

of AEp (: Epa - Epc) are given for a potential sweep rate ut -u

mV/S. See text for assignment of couples I-V. CThe potential ot this

couple in DCB is very sens itive to traces ot coori natli i ,an iis. Weak

shoulder at 0.3UV, see text, labelled couple ( I' eI.ot 'e -,_Ived.

tf dditonal weak waves are seen at -1 .3o t nd L . V s a cunSequnce ot

areeatiun

bI l e rd cd fo

b,, 'la ie ¢ py..
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Table III Cathodic -Anodic Peak Ratius for CoTNPc Redox Couple III in

DMF Solution at Various Scan Rates a

------------------------------------------------------------------------------------ 1

Scan Rate (TBAP] 'c/la [TBAP) /a

t0 mV/s 0.3 M 078

20 mV/s 0.1 M 0.76 - 0.3 0.81

50 0.1 0. 77 - 0.3 Od

1 00 0.1 U.82 - 0. 3 0 .86

200 0.A 0.87

500 0.1 1 .00

a (COTNPc] I x 10-4 M. Positive switching potential lies between

couples II and III.

I~. ~%
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